Master Program in Data Science and Business Informatics

Statistics for Data Science

Lesson 27 - Bootstrap and resampling methods

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

Bootstrap principle

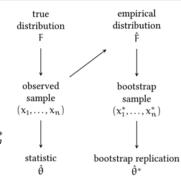
- Let $X_1, \ldots, X_n \sim F$ be a random sample
 - ▶ with unknown distribution F
- Estimator $T = h(X_1, \dots, X_n)$, e.g., $\bar{X}_n = (X_1 + \dots + X_n)/n$
 - ▶ with unknown (sampling) distribution
- From a dataset x_1, \ldots, x_n , we can derive a point estimate $\hat{\theta} = h(x_1, \ldots, x_n)$
- From many datasets $\{x_1^i,\ldots,x_n^i\}_{i=1}^m$, we can derive many point estimates $\hat{\theta}^i=h(x_1^i,\ldots,x_n^i)$
- By the Glivenko-Cantelli Thm, the empirical distribution of $\hat{\theta}^i$ approximates the distribution of T
- Problem: typically, we do not have many datasets, but only one!

Bootstrap principle

- Let $X_1, \ldots, X_n \sim F$ be a random sample
 - ▶ with unknown distribution F
- Estimator $T = h(X_1, \dots, X_n)$, e.g., $\bar{X}_n = (X_1 + \dots + X_n)/n$
- From a dataset x_1, \ldots, x_n , we can
 - derive a point estimate $\hat{\theta} = h(x_1, \dots, x_n)$
 - \blacktriangleright or, derive an estimate \hat{F} of F
- From \hat{F} we can generate (a lot of) bootstrap samples x_1^*, \ldots, x_n^*
 - ▶ as realizations of $X_1^*, \dots, X_n^* \sim \hat{F}$

and then (many) bootstrap point estimates $\hat{ heta}^* = h(x_1^*, \dots, x_n^*)$

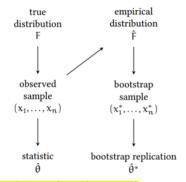
BOOTSTRAP PRINCIPLE. Use the dataset $x_1, x_2, ..., x_n$ to compute an estimate \hat{F} for the "true" distribution function F. Replace the random sample $X_1, X_2, ..., X_n$ from F by a random sample $X_1^*, X_2^*, ..., X_n^*$ from \hat{F} , and approximate the probability distribution of $h(X_1, X_2, ..., X_n)$ by that of $h(X_1^*, X_2^*, ..., X_n^*)$.



- How to derive \hat{F} from x_1, \ldots, x_n ?
- If we know nothing about F, use the empirical distribution:

$$\hat{F}(a) = F_n(a) = \frac{|\{i \in 1, \dots, n \mid x_i \le a\}|}{n}$$

- How to generate a bootstrap sample x_1^*, \ldots, x_n^* ?
 - $\triangleright x_i^*$ is chosen randomly from \hat{F}
 - i.e., x_i^* s chosen randomly from x_1, \ldots, x_n (our dataset)



- Hence, a bootstrap dataset x_1^*, \dots, x_n^* is obtained by random sampling with replacement!
- Often the bootstrap approximation of the distribution of T will improve if we shift T by relating it to a corresponding feature of the "true" distribution.
 - rather than approximating the distribution of \bar{X}_n by the one of \bar{X}_n^* , better to approximate $\Delta = \bar{X}_n \mu$ by $\Delta^* = \bar{X}_n^* \mu^*$, where $\mu^* = E[\hat{F}] = \bar{x}_n = (x_1 + \ldots + x_n)/n$ [See remarks 18.1 and 18.2 of textbook]

EMPIRICAL BOOTSTRAP SIMULATION (FOR $\bar{X}_n - \mu$). Given a dataset x_1, x_2, \dots, x_n , determine its empirical distribution function F_n as an estimate of F, and compute the expectation

$$\mu^* = \bar{x}_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

corresponding to F_n .

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \dots, x_n^*$ from F_n .
- 2. Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_n^* - \bar{x}_n$$
,

where

$$\bar{x}_n^* = \frac{x_1^* + x_2^* + \dots + x_n^*}{n}.$$

Repeat steps 1 and 2 many times.

- Use the empirical distribution of $\delta^* = \bar{x}_n^* \bar{x}_n$ (realizations of $\Delta^* = \bar{X}_n^* \bar{x}_n$)
 - for estimating the distribution of $\Delta = \bar{X}_n \mu$, and in particular:

$$E[\Delta] = E[\bar{X}_n] - \mu \approx E[\Delta^*] \approx mean(\delta^*)$$

- lacktriangle and then estimate μ as $\hat{\mu} = E[\bar{X}_n] mean(\delta^*) \approx \bar{x}_n mean(\delta^*)$
 - $mean(\delta^*)$ is the estimated bias
- ▶ and $se(\bar{X}_n) = \sqrt{Var(\bar{X}_n)} = \sqrt{Var(\bar{X}_n \mu)} \approx \sqrt{Var(\bar{X}_n^* \bar{x}_n)} \approx sd(\delta^*)$ See R script

EMPIRICAL BOOTSTRAP SIMULATION (FOR $\bar{X}_n - \mu$). Given a dataset x_1, x_2, \ldots, x_n , determine its empirical distribution function F_n as an estimate of F, and compute the expectation

$$\mu^* = \bar{x}_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

corresponding to F_n .

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \ldots, x_n^*$ from F_n .
- 2. Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_n^* - \bar{x}_n,$$

where

$$\bar{x}_n^* = \frac{x_1^* + x_2^* + \dots + x_n^*}{n}.$$

Repeat steps 1 and 2 many times.

- Use the empirical distribution of $\delta^* = \bar{x}_n^* \bar{x}_n$ (realizations of $\Delta^* = \bar{X}_n^* \bar{x}_n$)
 - for estimating the distribution of $\Delta = \bar{X}_n \mu$, and in particular:
 - confidence interval for $\delta = \bar{x}_n \mu$ is $(q_{\alpha/2}, q_{1-\alpha/2})$ of δ^* empirical distribution
 - $q_{\alpha/2} \le \delta = \bar{x}_n \mu \le q_{1-\alpha/2}$ implies c.i. for μ is $(\bar{x}_n q_{1-\alpha/2}, \bar{x}_n q_{\alpha/2})$

boot.ci method in R confidence intervals:

- type='basic': $(\bar{x}_n-q_{1-\alpha/2},\bar{x}_n-q_{\alpha/2})$ with quantiles over the distribution of δ^*
- type='perc': $(q_{\alpha/2},q_{1-\alpha/2})$ with quantiles over the distribution of \bar{x}_n^* (without shift)
- type='norm': $(\bar{x}_n q_{1-\alpha/2}, \bar{x}_n q_{\alpha/2})$ with quantiles over $N(mean(\delta^*), var(\delta^*))$
- type='bca': bias (and skewness) correction and acceleration

boot.ci method in R confidence intervals:

• type='stud': $(\bar{x}_n-q_{1-\alpha/2}\frac{s_n}{\sqrt{n}},\bar{x}_n-q_{\alpha/2}\frac{s_n}{\sqrt{n}})$ with quantiles over the distribution of t^*

EMPIRICAL BOOTSTRAP SIMULATION FOR THE STUDENTIZED MEAN. Given a dataset x_1, x_2, \ldots, x_n , determine its empirical distribution function F_n as an estimate of F. The expectation corresponding to F_n is $\mu^* = \bar{x}_n$.

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \dots, x_n^*$ from F_n .
- $2. \;\;$ Compute the studentized mean for the bootstrap dataset:

$$t^* = \frac{\bar{x}_n^* - \bar{x}_n}{s_n^* / \sqrt{n}},$$

where \bar{x}_n^* and s_n^* are the sample mean and sample standard deviation of $x_1^*, x_2^*, \dots, x_n^*$.

Repeat steps 1 and 2 many times.

- Bootstrap approach applies to any estimator, not only the mean
- Example 1: the German Tank problem

$$T_2 = \frac{n+1}{n}M_n - 1$$

$$E[T_2] = N$$

• Example 2: linear regression coefficients

[see Lesson 26]

▶ 95% confidence intervals (assuming $U_i \sim \mathcal{N}(0, \sigma^2)$):

$$\hat{eta} \pm t_{n-2,0.025} se(\hat{eta})$$

$$\hat{lpha} \pm t_{n-2,0.025}$$
se (\hat{lpha})

An application: probability of large errors

- Bootstrap principle: for $X \sim F$
 - lacktriangle the empirical distribution of $\Delta^*=ar{X}_n^*-ar{x}_n$ approximates the distribution of $\Delta=ar{X}_n-\mu$
- Application: estimate $P_F(|\bar{X}_n \mu| > 1)$ as
 - $lacksquare P_{\hat{\mathcal{F}}}(|ar{X}_n^*-ar{x}_n|>1)$ and then by the fraction of $\delta^*=ar{x}_n^*-ar{x}_n$ such that $|\delta^*|>1$

Wrap up on empirical bootstrap

- How many bootstrap samples?
 - ▶ There are $\binom{2n-1}{n-1}$ distinct bootstrap samples

[Why?]

- ► Suggested to use at least 1000 bootstrap samples
- ▶ **Jackknife resampling**: bootstrap samples $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$, for $i = 1, \ldots, n$
- How good is the approximation by bootstrap?
 - ightharpoonup Small perturbation to data-generating process should produce small perturbation of the parameter to estimate (θ)
 - ▶ Problems with extreme values, e.g., percentiles, maximum, etc.

- Decision rule $y_{\theta}^+(w)$ (classifier) or score function $s_{\theta}(w)$ (binary probabilistic classifier, Lesson 23)
- Loss function, e.g., 0-1 loss $\ell_{\theta}(c, w) = \mathbb{1}_{y_{\theta}^+(w) \neq c}$

Risk (or Expected Prediction Error EPE)

The risk w.r.t. a loss function ℓ_{θ} is $R(\theta_{TRUE}, \theta) = E_{(W,C) \sim f_{\theta_{TRUE}}}[\ell_{\theta}(C, W)].$

Question: how to estimate risk given a dataset?

• **Holdout method:** split dataset into training and test, build $y_{\theta}^+()$ on training, estimate as the empirical risk on test set $(w_1, c_1), \ldots, (w_n, c_n)$:

$$\hat{r} = \frac{1}{n} \sum_{i=1}^{n} \ell_{\theta}(c_i, w_i)$$
 se $= \sqrt{\frac{\hat{r}(1-\hat{r})}{n}}$ [see Lesson 26 on CI for proportions]

Drawbacks: variability of training/test set, and then of empirical risk estimates

Question: how to estimate risk given a dataset?

- Random sampling: repeat holdout k times, and average the empirical risks: $\hat{r} = \frac{1}{k} \sum_{j=1}^{k} \hat{r}^{j}$ with $\hat{r}^{j} = \frac{1}{n_{i}} \sum_{i=1}^{n_{j}} \ell_{\theta}(c_{i}^{j}, w_{i}^{j})$ is the error on j^{th} training-test split
- Standard error calculated as standard deviation over the *k* repetitions:

$$se = \sqrt{rac{1}{k-1}\sum_{j=1}^{k}(\hat{r}^{j}-\hat{r})^{2}}$$

Wrong! As test sets (and then \hat{r}^{j} 's) are not independent!

Question: how to estimate risk given a dataset?

• k-fold cross-validation: average the empirical risks over k-fold splits:

$$\hat{r} = \frac{1}{k} \sum_{j=1}^{k} \hat{r}^j$$
 with $\hat{r}^j = \frac{1}{n/k} \sum_{i=1}^{n/k} \ell_{\theta}(c_i^j, w_i^j)$

$$se = \sqrt{\frac{1}{k-1}\sum_{j}(\hat{r}^{j}-\hat{r})^{2}}$$

 $\hat{r} = \frac{1}{k} \sum_{j=1}^k \hat{r}^j \text{ with } \hat{r}^j = \frac{1}{n/k} \sum_{i=1}^{n/k} \ell_\theta(c_i^j, w_i^j)$ Standard deviation calculated over the k folds, with $se = \sqrt{\frac{1}{k-1}} \sum_j (\hat{r}^j - \hat{r})^2$ Wrong!(*) Test sets are independent, but training sets (and then \hat{r}^j 's) are not! $\frac{1}{k}$

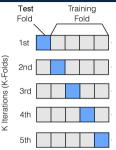
• If classifier is stable over the folds (see [Kohavi, 1995]), use:

$$se = \sqrt{\frac{\hat{r}(1-\hat{r})}{n}}$$

[see Lesson 26 on CI for proportions]

- Boils down to estimation as holdout but using all data instances (lower variability)!
- ► This is the one implemented in R/caret
- Setting k = n is the **leave-one out cross-validation** (LOOCV)

(*) CV should be treated as an estimator of the average prediction error across training sets!



Question: how to estimate risk given a dataset?

- training = bootstrap x_1^*, \dots, x_n^* , test = dataset \ bootstrap = $\{x_1, \dots, x_n\} \setminus \{x_1^*, \dots, x_n^*\}$
 - ▶ .632 **bootstrap algorithm** for *k* bootstrap runs

$$\hat{r} = \frac{1}{k} \sum_{j} (0.632 \cdot \hat{r}^{j} + 0.368 \cdot \hat{r}_{tr})$$

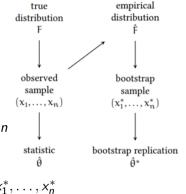
where \hat{r}^j is the empirical risk on j^{th} bootstrap run, and \hat{r}_{tr} is the empirical risk on the dataset

- [Kohavi, 1995, Kim, 2009] conclusions and recommendations:
 - Bootstrap has low variance, but it is extremely biased
 - ► k-fold cross-validation has low bias and variance can be controlled
 - $\ \square$ by averaging multiple k-fold cross-validation
 - ▶ Recommendation: use **repeated** (stratified) k-fold cross-validation, with $k \approx 10$
- [Vanwinckelen, 2012] warns against "repeated", and it recommends k-fold cross-validation

Parametric bootstrap principle

- Let $X_1, \ldots, X_n \sim F(\gamma)$ be a random sample
 - \blacktriangleright with known family F but *unknown* parameter γ
- Estimator $T = h(X_1, \dots, X_n)$, e.g., $\bar{X}_n = (X_1 + \dots + X_n)/n$
- From a dataset x_1, \ldots, x_n , we can
 - derive an estimate $\hat{\gamma}$ of γ
- From $F(\hat{\gamma})$ we can generate (a lot of) bootstrap samples x_1^*, \ldots, x_n^*
 - as realizations of $X_1^*, \dots, X_n^* \sim F(\hat{\gamma})$ [a form of Monte Carlo simulation]

and then (many) bootstrap point estimates $\hat{ heta}^* = h(x_1^*, \dots, x_n^*)$



Parametric bootstrap

PARAMETRIC BOOTSTRAP SIMULATION (FOR $\bar{X}_n - \mu$). Given a dataset x_1, x_2, \ldots, x_n , compute an estimate $\hat{\theta}$ for θ . Determine $F_{\hat{\theta}}$ as an estimate for F_{θ} , and compute the expectation $\mu^* = \mu_{\hat{\theta}}$ corresponding to $F_{\hat{\theta}}$.

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \dots, x_n^*$ from $F_{\hat{\theta}}$.
- 2. Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_n^* - \mu_{\hat{\theta}},$$

where

$$\bar{x}_n^* = \frac{x_1^* + x_2^* + \dots + x_n^*}{n}.$$

Repeat steps 1 and 2 many times.

- Cfr with non-parametric bootstrap: use $\mu_{\hat{\theta}}$ instead of \bar{x}_n
- Use the empirical distribution of $\delta^* = \bar{x}_n^* \mu_{\hat{\theta}}$ for estimating
 - confidence interval for $\delta = \bar{x}_n \mu$ is $(q_{\alpha/2}, q_{1-\alpha/2})$ of δ^* empirical distribution
 - $q_{\alpha/2} \le \delta = \bar{x}_n \mu \le q_{1-\alpha/2}$ implies c.i. for μ is $(\bar{x}_n q_{1-\alpha/2}, \bar{x}_n q_{\alpha/2})$

Application: distribution fitting

- Consider x_1, \ldots, x_n realizations of a random sample $X_1, \ldots, X_n \sim F$
- Is the dataset from an $Exp(\lambda)$ for some λ ? I.e., is it $F = Exp(\lambda)$?
- We estimate $\hat{\lambda} = 1/\bar{x}_n$

[MLE estimation]

We measure how close is the dataset to the distribution as:

$$t_{ks} = \sup_{a \in \mathbb{R}} |F_n(a) - F_{\hat{\lambda}}(a)|$$

where:

- $ightharpoonup F_n(a)$ is the empirical cumulative distribution function of x_1, \ldots, x_n
- $F_{\hat{\lambda}}(a) = 1 e^{\hat{\lambda}a}$, for $a \ge 0$, is the CDF of $Exp(\hat{\lambda})$
- $ightharpoonup t_{ks}$ is the *Kolmogorov-Smirnov* distance

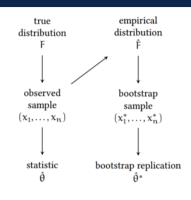
[See Lesson 11]

- if $F = Exp(\lambda)$ then both $F_n \approx F$ and $F_{\hat{\lambda}} \approx F$, and then $F_n \approx F_{\hat{\lambda}}$, so that t_{ks} is small
- if $F \neq Exp(\lambda)$ then $F_n \approx F \neq Exp(\lambda) \approx F_{\hat{\lambda}}$, so that t_{ks} is large

Application: distribution fitting

- For the software dataset from the textbook
 - $\hat{\lambda} = 0.0015$ and $t_{ks} = 0.17$
- Is $t_{ks} = 0.17$ expected or an extreme value?
- Let's study the distribution of the bootstrap estimator:

$$T_{ks} = \sup_{a \in \mathbb{R}} |F_n^*(a) - F_{\hat{\Lambda}^*}(a)|$$



where:

- $igwedge X_1^*,\ldots,X_n^*\sim \textit{Exp}(\hat{\lambda})$ is a bootstrap sample
- $ightharpoonup F_n^*(a)$ is the empirical cumulative distribution of the bootstrap sample
- $\hat{\Lambda}^* = 1/\bar{X}_n^*$
- It turns out $P(T_{ks} > 0.17) \approx 0$, unlikely that $Exp(\lambda)$ is the right model

Optional references

Ji-HyunKim (2009)

Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap.

Computational Statistics & Data Analysis, 53 (11): 3735-3745

Ron Kohavi (1995)

A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.

Proc. of IJCAI 1995: 1137-1145

Gitte Vanwinckelen and Hendrik Blockeel (2012)

On Estimating Model Accuracy with Repeated Cross-Validation.

Proc. of BeneLearn and PMLS 2012: 39 - 44

Michael R. Chernick and Robert A. LaBudde (2011)

An introduction to Bootstrap methods with applications to R.

John Wiley & Sons, Inc.