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Issues: Omitted variable bias

® Suppose we omit a variable z; that belongs to the true model
Yi=a+ fixi + Bazi + U
with 2 # 0 (i.e., Y is determined by Z)
» Under-specification of the model, e.g., due to lack of data
® Fitted model Y; = o+ B1x; + U!
» We have: E[U!] = E[f2z; + U] = Bozi + E[Ui] = B2z # 0
» The assumption E[U/] = 0 is not met! Hence, estimators will be biased!
® Let & and (1 be the LSE estimators of the fitted model. It turns out (proof not included):
E[f1] = 1 + Bad Bias(f1) = 20
where ¢ is the slope of the regression of Z; = v + dx; + U/, i.e.

Sz
0= ry—
'X

® Bias(f1) # 0 if X and Z correlated
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Issues: Multi-collinearity and variance inflation factors

® Multicollinearity: two or more independent variables (regressors) are strongly correlated.
* Vi=a+fixt + foxF + Ui

® |t can be shown that for j € {1,2}:

1

(I1—r2) SXX;

where r = cor(x!, x?), 02 = Var(U;) and SXX; = S20(x) — &/)?

® Correlation between regressors increases the variance of the estimators

Var(ﬁAj) =

® |n general, for more than 2 variables:

Var(Bj) = (1—1R2) : 5;7;
5 J
where RJ-2 is the coefficient of determination (Rz) in the regression of x; from all other x;'s.
® The term 1/(1-R?) is called variance inflation factor

See R script
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Variable selection

® Recall: when U; ~ N(0,02), we have Y; ~ N(x; - B,02), hence we can apply MLE
i—x; B2
Log-likelihood is £(8) = 37, |og(a¢1§e*%(y #2)

Akaike information criterion (AIC), balances model fit against model simplicity
AIC(B) = 2|B| — 2(B)

stepAlC(model, direction="backward") algorithm

L S={x}...,x}
2. b= AIC(S)
3. repeat
3.1 x = arg minyes AIC(S \ {x})
32 v=AIC(S\{x})
33 ifv<bthen S,b=S5\{x},v
4. until no change in S
5. return S

See R script
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Regularization methods: Ridge/Tikhonov

B = arg min S(B)
® Ordinary Least Square Estimation (OLS):
SB) =ly-X-gI?

where [|(vi,...,v,)|| = />, v? is the Euclidian norm

» Performs poorly as for prediction (overfitting) and interpretability (number of variables)

® Ridge regression:

where [|8]| = (/a2 + Yk, 52,

Notice that A, is not in the parameters of the minimization problem!

Variables with minor contribution have their coefficients close to zero

It improves prediction error by reducing overfitting through a bias-variance trade-off
It is not a parsimonious method, i.e., does not reduce features

S(B) = lly — X - 8] + x[I8]1?

vV vyVvYy
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Regularization methods: Lasso and Penalized

® Lasso (Least Absolute Shrinkage and Selection Operator) regression:
S(B) = lly = X - Bl* + M8l
where [|B]l1 = || + 31, |1

Notice that A; is not in the parameters of the minimization problem!

» Variable with minor contribution have their coefficients equal to zero

» It improves prediction error by reducing overfitting through a bias-variance trade-off
» It is a parsimonious method, i.e., it reduces the number of features

v

® Penalized linear regression:
S(8) = lly = X - BI* + X[IBII* + M8

» Both Ridge and Lasso regularization parameters

® How to solve the minimization problems? Lagrange multiplier method and the methods studied
at the Optimization for Data Science course

® How to find the best A; and/or A;? Cross-validation!

See R script
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Towards logistic regression

® Consider a bivariate dataset
(X15y1)7 DR (Xnv)/n)

where y; € {0,1}, i.e., Y; is a binary variable

® Using directly linear regression:
Yi = a+ Bx + U

results in poor performances (R?)

See R script
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Towards logistic regression

® Consider a bivariate dataset
(Xlayl)v ey (Xnvyn)
where y; € {0,1}, i.e., Y; i binary variable

® Group by x values:
(dla fl)a ) (dma fm)

where dy, ..., d, are the distinct values of xi,...,x, and f; is the fraction of 1's:

_Welallx=dny=1}
[ € Lon] [ =

and the linear model (we continue using x; but it should be d;):

fi

Fi= o+ pxi+ U;
where F; = P(Y; =1)
See R script
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Towards logistic regression

® Rather than F;, we model the log odds of F; (called the logit)
logit(F;) = o+ Bx; + Uj

where logit and its inverse (logistic function) are:

logit(p) = log —* inv. logit(x) = —- 1

1 = mnv. IT\ X ) = =

SIt\P & 1—p & 14ex 14e X
6] —ﬂx):lnj’%c
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o Why? '
» F; €[0,1] while the a« + x; + U; is in R, hence inadequate to model probabilities
» Relation between x;'s and F; is sigmoidal, not linear, hence the use of logistic function
» Other sigmoid functions beyond the logistic one (see also FisherZ in Lesson 18)
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Logistic regression

® Since F; = P(Y; = 1), we actually estimate p; for Y; ~ Ber(p;), and U; is not necessary
ea+/3><,-
. = inv.logit N=— 1
pi = inv ogit( -+ ) = o (1)

® Since distribution is known, MLE can be adopted for estimating a and S in logistic regression:

o, B) =Y [yilog (inv.logit(c + Bx;)) + (1 — y;) log (1 — inv.logit(a + fx;))]
i=1
recalling the p.m.f. of Ber(p;): p? - (1 — p;)**=2)
® Since p;/(1 — p;) = e**P% then e” can be interpreted as:
» the expected change in odds after a unit change in x;,
» e.g., S =0.38 in predicting heart disease from smoking: the smoking group (x = 1) has
e® = 1.46 times the odds of the non-smoking group (x = 0) of having heart disease.
® By (1) for x; = 0, then e®/(1 + e®) can be interpreted as the base probability:

» e.g., a = —1.93 means the probability a non-smoker (x = 0) has heart disease is
e*/(1+e*) =0.13.
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Generalized linear models

® Generalized linear models: family = distribution + link function
» E.g., Binomial + logit for logistic regression
» Actually Bernoulli + logit [Binary logistic regression]
See R script
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Elastic net logistic regression

® Penalized linear regression minimizes:

ly =X - Bl + 220181 + M8l

» A1 = 0 is the Ridge penalty
» XAy = 0 is the Lasso penalty

® Elastic net regularization for logistic regression minimizes:

(1-a)

~t9)+ A (S5 21812 + el

» o = 0 is the Ridge penalty
» o =1 is the Lasso penalty
» )\ is to be found, e.g., by cross-validation

See R script
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Optional references

@ Michael David W. Hosmer, Stanley Lemeshow, and Rodney X. Sturdivant (2013)
Applied Logistic Regression.
3rd editionJohn Wiley & Sons, Inc.
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