#### Master Program in Data Science and Business Informatics

### Statistics for Data Science

Lesson 22 - Issues with linear regression. Logistic regression

### Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

### Issues: Omitted variable bias

• Suppose we omit a variable  $z_i$  that belongs to the true model

$$Y_i = \alpha + \beta_1 x_i + \beta_2 z_i + U_i$$

with  $\beta_2 \neq 0$  (i.e., Y is determined by Z)

- ▶ Under-specification of the model, e.g., due to lack of data
- Fitted model  $Y_i = \alpha + \beta_1 x_i + U_i'$ 
  - ▶ We have:  $E[U'_i] = E[\beta_2 z_i + U_i] = \beta_2 z_i + E[U_i] = \beta_2 z_i \neq 0$
  - ▶ The assumption  $E[U'_i] = 0$  is not met! Hence, estimators will be biased!
- Let  $\hat{\alpha}$  and  $\hat{\beta}_1$  be the LSE estimators of the fitted model. It turns out (proof not included):

$$E[\hat{eta}_1] = eta_1 + eta_2 \delta$$
  $Bias(\hat{eta}_1) = eta_2 \delta$ 

where  $\delta$  is the slope of the regression of  $Z_i = \gamma + \delta x_i + U_i''$ , i.e.:

$$\delta = r_{xz} \frac{s_z}{s_x}$$

•  $Bias(\hat{\beta}_1) \neq 0$  if X and Z correlated

# Issues: Multi-collinearity and variance inflation factors

- Multicollinearity: two or more independent variables (regressors) are strongly correlated.
- $Y_i = \alpha + \beta_1 x_i^1 + \beta_2 x_i^2 + U_i$
- It can be shown that for  $j \in \{1, 2\}$ :

$$Var(\hat{eta}_j) = rac{1}{(1-r^2)} \cdot rac{\sigma^2}{SXX_j}$$

where  $r = cor(x^1, x^2)$ ,  $\sigma^2 = Var(U_i)$  and  $SXX_j = \sum_1^n (x_i^j - \bar{x}_n^j)^2$ 

- Correlation between regressors increases the variance of the estimators
- In general, for more than 2 variables:

$$Var(\hat{eta}_j) = rac{1}{(1 - R_i^2)} \cdot rac{\sigma^2}{SXX_j}$$

where  $R_i^2$  is the coefficient of determination  $(R^2)$  in the regression of  $x_j$  from all other  $x_i$ 's.

• The term  $1/(1-R_i^2)$  is called variance inflation factor

### Variable selection

- Recall: when  $U_i \sim N(0, \sigma^2)$ , we have  $Y_i \sim N(\mathbf{x}_i \cdot \boldsymbol{\beta}, \sigma^2)$ , hence we can apply MLE
- Log-likelihood is  $\ell(\beta) = \sum_{i=1}^n \log \left( \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left( \frac{y_i \mathbf{x}_i \cdot \boldsymbol{\beta}}{\sigma^2} \right)^2} \right)$
- Akaike information criterion (AIC), balances model fit against model simplicity

$$AIC(\boldsymbol{\beta}) = 2|\boldsymbol{\beta}| - 2\ell(\boldsymbol{\beta})$$

- stepAIC(model, direction="backward") algorithm
  - 1.  $S = \{x^1, \dots, x^k\}$
  - 2. b = AIC(S)
  - 3. repeat
    - 3.1  $x = arg \min_{x \in S} AIC(S \setminus \{x\})$
    - 3.2  $v = AIC(S \setminus \{x\})$
    - 3.3 if v < b then  $S, b = S \setminus \{x\}, v$
  - 4. until no change in S
  - 5. return *S*

# Regularization methods: Ridge/Tikhonov

$$\hat{oldsymbol{eta}} = arg \min_{oldsymbol{eta}} S(oldsymbol{eta})$$

Ordinary Least Square Estimation (OLS):

$$S(\boldsymbol{\beta}) = \|\boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{\beta}\|^2$$

where  $\|(v_1,\ldots,v_n)\|=\sqrt{\sum_{i=1}^n v_i^2}$  is the Euclidian norm

- ► Performs poorly as for prediction (overfitting) and interpretability (number of variables)
- Ridge regression:

$$S(\boldsymbol{\beta}) = \|\boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{\beta}\|^2 + \lambda_2 \|\boldsymbol{\beta}\|^2$$

where 
$$\|\boldsymbol{\beta}\| = \sqrt{\alpha^2 + \sum_{i=1}^k \beta_i^2}$$
.

- ▶ Notice that  $\lambda_2$  is not in the parameters of the minimization problem!
- ▶ Variables with minor contribution have their coefficients **close** to zero
- ▶ It improves prediction error by reducing overfitting through a bias-variance trade-off
- ▶ It is **not** a parsimonious method, i.e., does not reduce features

### Regularization methods: Lasso and Penalized

• Lasso (Least Absolute Shrinkage and Selection Operator) regression:

$$S(\boldsymbol{\beta}) = \|\boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{\beta}\|^2 + \lambda_1 \|\boldsymbol{\beta}\|_1$$

where  $\|\beta\|_1 = |\alpha| + \sum_{i=1}^{k} |\beta_i|$ .

- ▶ Notice that  $\lambda_1$  is not in the parameters of the minimization problem!
- ▶ Variable with minor contribution have their coefficients equal to zero
- ▶ It improves prediction error by reducing overfitting through a bias-variance trade-off
- ▶ It is a parsimonious method, i.e., it reduces the number of features
- Penalized linear regression:

$$S(\boldsymbol{\beta}) = \|\boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{\beta}\|^2 + \lambda_2 \|\boldsymbol{\beta}\|^2 + \lambda_1 \|\boldsymbol{\beta}\|_1$$

- ▶ Both Ridge and Lasso regularization parameters
- How to solve the minimization problems? Lagrange multiplier method and the methods studied at the Optimization for Data Science course
- How to find the best  $\lambda_1$  and/or  $\lambda_2$ ? Cross-validation!

# Towards logistic regression

• Consider a bivariate dataset

$$(x_1,y_1),\ldots,(x_n,y_n)$$

where  $y_i \in \{0, 1\}$ , i.e.,  $Y_i$  is a binary variable

• Using directly linear regression:

$$Y_i = \alpha + \beta x_i + U_i$$

results in poor performances  $(R^2)$ 

# Towards logistic regression

• Consider a bivariate dataset

$$(x_1,y_1),\ldots,(x_n,y_n)$$

where  $y_i \in \{0, 1\}$ , i.e.,  $Y_i$  i binary variable

• Group by x values:

$$(d_1, f_1), \ldots, (d_m, f_m)$$

where  $d_1, \ldots, d_m$  are the distinct values of  $x_1, \ldots, x_n$  and  $f_i$  is the fraction of 1's:

$$f_i = \frac{|\{j \in [1, n] \mid x_j = d_i \land y_j = 1\}|}{|\{j \in [1, n] \mid x_j = d_i\}|}$$

and the linear model (we continue using  $x_i$  but it should be  $d_i$ ):

$$F_i = \alpha + \beta x_i + U_i$$

where 
$$F_i = P(Y_i = 1)$$

# Towards logistic regression

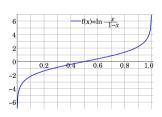
Rather than  $F_i$ , we model the log odds of  $F_i$  (called the *logit*)

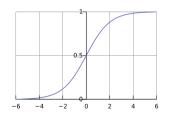
$$logit(F_i) = \alpha + \beta x_i + U_i$$

where logit and its inverse (logistic function) are:

$$\mathit{logit}(p) = \log rac{p}{1 - \mu}$$

$$logit(p) = log \frac{p}{1-p}$$
  $inv.logit(x) = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}}$ 





- Why?
  - $ightharpoonup F_i \in [0,1]$  while the  $\alpha + \beta x_i + U_i$  is in  $\mathbb{R}$ , hence inadequate to model probabilities
  - ▶ Relation between  $x_i$ 's and  $F_i$  is sigmoidal, not linear, hence the use of logistic function
  - ▶ Other sigmoid functions beyond the logistic one (see also FisherZ in Lesson 18)

# Logistic regression

• Since  $F_i = P(Y_i = 1)$ , we actually estimate  $p_i$  for  $Y_i \sim Ber(p_i)$ , and  $U_i$  is not necessary

$$p_i = inv.logit(\alpha + \beta x_i) = \frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}}$$
(1)

• Since distribution is known, MLE can be adopted for estimating  $\alpha$  and  $\beta$  in logistic regression:

$$\ell(\alpha,\beta) = \sum_{i=1}^{n} \left[ y_i \log \left( inv.logit(\alpha + \beta x_i) \right) + (1 - y_i) \log \left( 1 - inv.logit(\alpha + \beta x_i) \right) \right]$$

recalling the p.m.f. of  $Ber(p_i)$ :  $p_i^a \cdot (1-p_i)^{(1-a)}$ 

- Since  $p_i/(1-p_i)=e^{\alpha+\beta x_i}$ , then  $e^{\beta}$  can be interpreted as:
  - the expected change in odds after a unit change in  $x_i$ ,
  - e.g.,  $\beta = 0.38$  in predicting heart disease from smoking: the smoking group (x = 1) has  $e^{\beta} = 1.46$  times the odds of the non-smoking group (x = 0) of having heart disease.
- By (1) for  $x_i = 0$ , then  $e^{\alpha}/(1 + e^{\alpha})$  can be interpreted as the base probability:
  - e.g.,  $\alpha=-1.93$  means the probability a non-smoker (x=0) has heart disease is  $e^{\alpha}/(1+e^{\alpha})=0.13$ .

#### Generalized linear models

- **Generalized linear models**: family = distribution + link function
  - ► E.g., Binomial + logit for logistic regression
  - ► Actually Bernoulli + logit

[Binary logistic regression]

# Elastic net logistic regression

Penalized linear regression minimizes:

$$\|\mathbf{y} - \mathbf{X} \cdot \boldsymbol{\beta}\|^2 + \lambda_2 \|\boldsymbol{\beta}\|^2 + \lambda_1 \|\boldsymbol{\beta}\|_1$$

- $\lambda_1 = 0$  is the Ridge penalty
- $\lambda_2 = 0$  is the Lasso penalty
- Elastic net regularization for logistic regression minimizes:

$$-\ell(oldsymbol{eta}) + \lambda \left( rac{(1-lpha)}{2} \|oldsymbol{eta}\|^2 + lpha \|oldsymbol{eta}\|_1 
ight)$$

- $\alpha = 0$  is the Ridge penalty
- $\alpha = 1$  is the Lasso penalty
- $\blacktriangleright$   $\lambda$  is to be found, e.g., by cross-validation

## Optional references



Michael David W. Hosmer, Stanley Lemeshow, and Rodney X. Sturdivant (2013) Applied Logistic Regression.

3rd edition John Wiley & Sons, Inc.