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® Let X be a continuous random variable with density function f(x)
o kth moment of X, if it exists, is:

E[X¥] = /OO xKF(x)dx

® 1 = E[X] is the first moment of X
o kth central moment of X is:
= ELX =)' = [ (= " Fx)oi

o = /E[(X — u)?] standard deviation is the square root of the second central moment
kth standardized moment of X is:

=M _E {(Xﬂ)k]

- ok o
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® [iy = E[(X-m)l/o = 0 since E[X —pu] =0
® jip = El(X=1)?l/s? = 1 since 02 = E[(X — p)?]
® jiz = El[(X—p)*/o3 [(Pearson’s moment) coefficient of skewness]

® Skewness indicates direction and magnitude of a distribution’s deviation from symmetry

Mean
Median

Mode
|
Positive Symmetrical Negative
Skew Distribution Skew
e E.g., for X ~ Exp()), ji3 =2 Prove it!
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® jig=E [(%)4] [(Pearson’s moment) coefficient of kurtosis|
® For X ~ N(u,0), fia =3 fia — 3 is called kurtosis in excess
® Kurtosis is a measure of the dispersion of X around the two values y + o
(+) Leptokurtic General
Forms of
(D) Mesokurtic Kurtosis
(Normal)

(- Platykurtic

® jig > 3 Leptokurtic (slender) distribution has fatter tails. May have outlier problems.
® [ig < 3 Platykurtic (broad) distribution has thinner tails
See R script
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Functions of two or more random variables: expectation

V = mHR? be the volume of a vase of height H and radius R
g(H,R) = mHR? is a random variable (function of random variables)
Py(V = 3) = Pugr(mHR? = 3)

How to calculate E[V]?

TWO-DIMENSIONAL CHANGE-OF-VARIABLE FORMULA. Let X and
Y be random variables, and let g : R — R be a function.

If X and Y are discrete random variables with values a1, as,... and
by, ba, . .., respectively, then

B, V)] = 33 glaib))PX = @i, =by).

If X and Y are continuous random variables with joint probability
density function f, then

Q(XY]—/ / ) [z, y) do dy.

If H AL R: e
E[V]:E[WHRZ]:/ / mhr?fy(h)fr(r)dhdr
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Linearity of expectations

Theorem. For X and Y random variables, and s, t € R:
E[rX +sY +t] = rE[X] + sE[Y] + t

Proof. (discrete case)

ElrX+Ys+t]=Y ) (ra+sb+t)P(X =a,Y = b)
a b

= (rZZaP(Xz;:,Yzb)) + (sZZbP(X:a,Y:b)) + (tZZP(Xz;:,Yzb))
a b a b
= (ZaP ) ( > bP(Y >+t—rE[X]+sE[Y]+t

a
Corollary. Efag+ >, a;Xi] = a0 + > i, aiE[X]]

Corollary. X < Y implies E[X] < E[Y]
Proof. Z=Y — X > 0 implies E[Z] = E[Y] — E[X] > 0, i.e., E[Y] > E[X].
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Applications

® Expectation of some discrete distributions
» X~ Ber(p) E[X]=p
» X ~ Bin(n,p) E[X]=n-p
O Because X =Y, X; for X1,..., X, ~ Ber(p)
_1
» X ~ Geo(p) E[X]=3
> X ~ NBin(n,p) ~ E[X] = =12
O Because X = > ", Xi — n for Xi,..., X, ~ Geo(p)
® Expectation of some continuous distributions
» X ~ Exp(\)  E[X]=1x
» X~ Erl(n,\)  E[X]=%
O Because X =) 7, X; for Xi,..., X, ~ Exp(\)
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Expectation of product and quotients

Theorem. For X I Y, we have: E[XY] = E[X]E[Y] Prove it!

PROPAGATION OF INDEPENDENCE. Let Xy, Xo,..., X, be indepen-
dent random variables. For each i, let h; : R — R be a function and
define the random variable

Then Y;,Ys,...,Y,, are also independent.

Corollary. For X 1L Y and Y > 0, we have: E[X/Y] > E[X]/E[Y]
Proof. X 1L Y implies X 1L 1/y. By theorem above:

E[X/Y] = E[X-Y/v] = E[X]E[/¥] > E[X]/E[Y]

because by Jensen's inequality E[t/y] > 1/E[Y] since 1/y is convex for y 0. O
Exercise at home. Show that E[X/Y] = E[X]/E[Y] is a false claim.
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Law of iterated/total expectation

Conditional expectation

oo

E[X|Y = b] = Za;p(a,-|b) EX|Y =y] = / xf(x|y)dx

— 00

Theorem. (Law of iterated/total expectation)
Ey[E[X|Y]] = E[X]
Proof. (for X, Y discrete random variables)
Ev[E[X|Y]] = Zza px|v(ailbj)py (b Zza pxv(ai, bj) = Zaipx(ai) = E[X]
J i i

Example (cfr the example from Lesson 1 on the Law of total probability)

® Factory 1's light bulbs working hours ~ Exp(/1000)

® Factory 2's light bulbs working hours ~ Exp(/2000)

® Factory 1 supplies 60% of the total bulbs on the market and Factory 2 supplies 40% of it.

What is the average work hour of a light bulb on the market? 0/17



Variance of the sum and covariance

Var(X + Y) = E[(X 4+ Y — E[X + Y])?] = E[((X — E[X]) + (Y — E[Y]))?]
E[(X — E[X])’] + E[(Y — E[Y])*] + 2E[(X — E[X])(Y — E[Y])]
Var(X) + Var(Y) + 2Cov(X, Y)

Covariance

The covariance Cov(X, Y) of two random variables X and Y is the number:

Cov(X,Y) = E[(X — EIX])(Y — E[Y])]

Uncorrelated Positively correlated Negatively correlated
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Covariance

Theorem. Cov(X,Y) = E[XY]|— E[X]E[Y] Prove it!
e If X and Y are independent (X 1L Y):
Cov(X,Y)=0 Var(X +Y) = Var(X) + Var(Y)

® But there are X and Y uncorrelated (ie., Cov(X, Y) = 0) that are dependent!
® Variances of some discrete distributions
> X ~ Ber(p) Var(X)=p(1-p)
» X ~ Bin(n,p) Var(X)=np(l—p)
O Because X = »_" | X; for Xi,..., X, ~ Ber(p) and independent
» X ~ Geo(p) Var(X)= 1;—2"
» X ~ NBin(n,p) Var(X)= nl;—f
O Because X = Y7, X; — n for X1, ..., X, ~ Geo(p) and independent
® Variances of some continuous distributions
» X ~ Exp(\) Var(X) =1
» X~ Erl(n,A)  Var(X) =
O Because X =) ", X for Xi,..., X, ~ Exp()\) and independent
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Covariance and covariance matrix

COVARIANCE UNDER CHANGE OF UNITS. Let X and Y be two
random variables. Then

Cov(rX + s,tY +u) = rt Cov(X,Y)

for all numbers 7, s,t, and u.

® Hence, Var(rX + sY +t) = r?Var(X) + s?Var(Y) + 2rsCov(X, Y)

® Bivariate Normal/Gaussian distribution:

O ¥)~ NG, (7570 ))

gxy 0’%/
» where marginals are X ~ N(ux,0%), Y ~ N(uy,0%), and Cov(X,Y) = oxy
» Covariance matrix X;; = Cov(X;, X;) for a vector X = (Xq,...,X,) of r.v.’s

® Covariance depends on the unit of measure!

See R script lesson 08
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Correlation coefficient

DEFINITION. Let X and Y be two random variables. The correlation
coefficient p(X,Y) is defined to be 0 if Var(X) = 0 or Var(Y) = 0,

and otherwise
Cov(X,Y)

pPXT) = v/ Var(X) Var(Y)
® Correlation coefficient is dimensionless (not affected by change of units)

» E.g., if X and Y are in Km, then Cov(X, Y), Var(X) and Var(Y) are in Km?
® Moreover: —1 < p(X,Y) <1

» The bounds are derived from the Cauchy—Schwarz’s inequality:

E[IXY[] < VE[X?]VE[Y?]
Proof. For any u, w € R, we have 2|uw| < u? + w?. Therefore, 2|UW| < U? + W2 for r.v.’s
U and V. By defining U = X/,\/E[x?] and W = Y/\/E[v3] *), we have
2 - IXYI/\JEX3/JE[Y?] < X*/E[x?] + Y*/E[v?]. Taking the expectations, we conclude:
2. E“XY”/\/ E[X2]\/E[Y?] < 2. (*) The case E[X?] = 0 or E[Y?] = 0 is left as an exercise. [l
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Bivariate Normal /Gaussian distribution

(X, Y)NN((MX,/JY),< (jji/ (;X%:’ ))

where marginals are X ~ N(ux,0%), Y ~ N(uy,0%), and Cov(X,Y) = oxy
® Since oxy = p(X, Y) O0X -0y

2
~ TX p(X,Y)-ox-oy
OO N (R S i’ )
® Density of N((O, 0)7 (1, OXY,0XY, 1))
Flxy) = — L Ty Y T2

2m\/1 — 0%y
e Useful facts for (X, Y') bivariate Normal:

» for (X, Y) bivariate Normal: p(X, Y) =0 iff X 1L Y, i.e., uncorrelation equals independence
» (X, Y) bivariate Normal iff aX + bY is Normal for any a, b € R
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Sum of independent Normal random variables

® See Lesson 04 and Lesson 08 for convolution formulas

ADDING TWO INDEPENDENT CONTINUOUS RANDOM VARIABLES.
Let X and Y be two independent continuous random variables, with
probability density functions fx and fy. Then the probability den-
sity function fz of Z = X + Y is given by

falz) = / Fx(z — 9P ) dy
for —o00 < 2 < 0.

Theorem. If X ~ N(ux,0%) and Y ~ N(uy,0%) and X L Y, then:
Z=X+Y~ N(Mx-Htv,Ug( +0%/)
Proof. See [T, Sect. 11.2] O

® Ingeneral: Z=rX+sY +t~ N(rux + suy + t, r’ox + s?0%)
® The converse of the theorem also holds: [Lévy-Cramér theorem|
» If X 1L Y and Z = X+ Y is normally distributed, then X and Y follow a normal distribution.
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https://arxiv.org/pdf/1810.01768.pdf

Extremes of independent random variables

THE DISTRIBUTION OF THE MAXIMUM. Let Xy, Xo,.... X, be n
independent random variables with the same distribution function
F, and let Z = max{Xy, Xo,...,X,}. Then

P(Z<a)=P(Xi<a,....,X,<a)=[[, P(X; <a)=((F(a))"

Example: maximum water level over 365 days assuming water level on a day is U(0,1)

Example: maximum of two rolls of a die with 4 sides

THE DISTRIBUTION OF THE MINIMUM. Let Xy, Xs,..., X, be n
independent random variables with the same distribution function
F, and let V = min{ X, X,..., X,,}. Then

Fy(a) =1-(1— F(a))™

o P(V<a)=1-P(Xy>a ... Xp>23)=1—[]",(1— P(X; < a)=1—((1— F(a))"
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https://en.wikipedia.org/wiki/Four-sided_die

Product and quotient of independent random variables

PRODUCT OF INDEPENDENT CONTINUOUS RANDOM VARIABLES. Let
X and Y be two independent continuous random variables with prob-
ability densities fx and fy. Then the probability density function
fz of Z = XY is given by

fz(z) = /"; fr (f) fx(T)ﬁ dx

for —o00 < 2 < 0.

QUOTIENT OF INDEPENDENT CONTINUOUS RANDOM VARIABLES.
Let X and Y be two independent, continuous random variables with
probability densities fx and fy. Then the probability density func-
tion fz of Z = X/Y is given by

f20) = [ fxtea)iv(aialdo

for —oco < z < 0.

® X,Y ~ N(0,1) independent, Z = X/Y ~ Cau(0,1) where:

1

fz(x) = 013
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