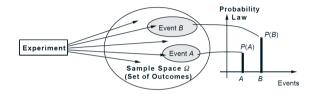
Master Program in *Data Science and Business Informatics* **Statistics for Data Science** Lesson 04 - Discrete random variables

Salvatore Ruggieri

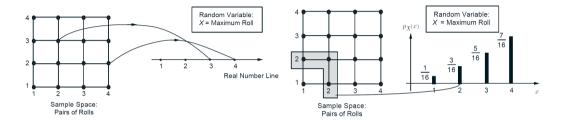
Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

Experiments



- Experiment: roll two independent 4 sided die.
- We are interested in probability of the maximum of the two rolls.
- Modeling so far
 - $\Omega = \{1, 2, 3, 4\} \times \{1, 2, 3, 4\} = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), \dots, (4, 4)\}$
 - $A = \{ \text{maximum roll is } 2 \} = \{ (1,2), (2,1), (2,2) \}$
 - $P(A) = P(\{(1,2), (2,1), (2,2)\}) = \frac{3}{16}$

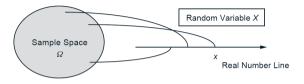
Random variables



- Modeling $X : \Omega \to \mathbb{R}$
 - X((a, b)) = max(a, b)
 - $A = \{ \text{maximum roll is } 2 \} = \{ (a, b) \in \Omega \mid X((a, b)) = 2 \} = X^{-1}(2)$
 - $P(A) = P(X^{-1}(2)) = \frac{3}{16}$
 - We write $P_X(X=2) \stackrel{\text{def}}{=} P(X^{-1}(2))$

[Induced probability]

(Discrete) Random variables



- A random variable is a function $X : \Omega \to \mathbb{R}$
 - it transforms Ω into a more tangible sample space $\mathbb R$

 \Box from (a, b) to min(a, b)

- it decouples the details of a specific Ω from the probability of events of interest
 □ from Ω = {H, T} or Ω = {good, bad} or Ω = ... to {0,1}
- it is not 'random' nor 'variable'

DEFINITION. Let Ω be a sample space. A discrete random variable is a function $X : \Omega \to \mathbb{R}$ that takes on a finite number of values a_1, a_2, \ldots, a_n or an infinite number of values a_1, a_2, \ldots .

(Machine Learning) Binary Classifiers

- $\Omega = \{f,\,m\} \times \mathbb{N} \times \{+,-\}$
- Features as Random Variables:
 - G((g, a, c)) = g gender, G = f is $G^{-1}(f) = \{\omega \in \Omega \mid \omega = (f, ..., .)\}$
 - ► A((g, a, c)) = a gender, A = a is $A^{-1}(a) = \{\omega \in \Omega \mid \omega = (_, a, _)\}$
 - Y((g, a, c)) = y gender, Y = c is $Y^{-1}(c) = \{\omega \in \Omega \mid \omega = (-, -, c)\}$
- Binary Classifier as Random Variable: $\hat{Y}:\{\mathsf{f},\,\mathsf{m}\}\times\mathbb{N}\to\{+,-\}$ predicted class
 - $\hat{Y} = +$ is { $\omega \in \Omega \mid \hat{Y}(G(\omega), A(\omega)) = +$ }, e.g., predicted Covid-19 positive • $\hat{Y} = -$ is { $\omega \in \Omega \mid \hat{Y}(G(\omega), A(\omega)) = -$ }, e.g., predicted Covid-19 negative
- $P(Y = \hat{Y})$, i.e., $P(Y = + \cap \hat{Y} = +) + P(Y = \cap \hat{Y} = -)$ [True Accuracy]
- $P(Y = +|\hat{Y} = +)$ [True Precision]
- $P(\hat{Y} = +|Y = +)$ [True Recall]
- Such probabilities are unknown! They can only be estimated on a sample (*test set*)

Probability Mass Function (PMF)

DEFINITION. The *probability mass function* p of a discrete random variable X is the function $p : \mathbb{R} \to [0, 1]$, defined by

$$p(a) = P(X = a)$$
 for $-\infty < a < \infty$.

- Support of X is $\{a \in \mathbb{R} \mid P(X = a) > 0\} = \{a_1, a_2, \ldots\}$
 - $p(a_i) > 0$ for i = 1, 2, ...
 - ▶ $p(a_1) + p(a_2) + \ldots = 1$
 - p(a) = 0 if $a \notin \{a_1, a_2, \ldots\}$

Cumulative Distribution Function (CDF) and CCDF

DEFINITION. The distribution function F of a random variable X is the function $F : \mathbb{R} \to [0, 1]$, defined by

 $F(a) = P(X \le a) \quad \text{for } -\infty < a < \infty.$

•
$$F(a) = P(X \in \{a_i \mid a_i \le a\}) = P(X \le a) = \sum_{a_i \le a} p(a_i)$$

• if $a \le b$ then $F(a) \le F(b)$

[Non-decreasing]

• $P(a < X \le b) = F(b) - F(a) = \sum_{a < a_i \le b} p(a_i)$

Complementary cumulative distribution function (CCDF)

$$ar{F}(\mathsf{a}) = P(X > \mathsf{a}) = 1 - P(X \le \mathsf{a}) = 1 - F(\mathsf{a})$$

•
$$\bar{F}(a) = P(X \in \{a_i \mid a_i > a\}) = P(X > a) = \sum_{a_i > a} p(a_i)$$

Uniform discrete distribution

A discrete random variable X has the *uniform distribution* with parameters $m, M \in \mathbb{Z}$ such that $m \leq M$, if its pmf is given by

$$p(a)=rac{1}{M-m+1}$$
 for $a=m,m+1,\ldots,M$

We denote this distribution by U(m, M).

• Intuition: all integers in [m, M] have equal chances of being observed.

$$F(a) = rac{\lfloor a
floor - m + 1}{M - m + 1}$$
 for $m \le a \le M$

$X \sim Ben$

Benford's law

A discrete random variable X has the *Benford's distribution*, if its pmf is given by

$$p(a) = \log_{10}\left(1+rac{1}{a}
ight)$$
 for $a = 1, 2, \dots, 9$

We denote this distribution by Ben.

- Plausible and empirically adequate model for to the frequency distribution of leading digits in many real-life numerical datasets.
- See Wikipedia for its interesting history and applications!

$$X \sim Ber(p)$$

DEFINITION. A discrete random variable X has a *Bernoulli distribution* with parameter p, where $0 \le p \le 1$, if its probability mass function is given by

 $p_X(1) = P(X = 1) = p$ and $p_X(0) = P(X = 0) = 1 - p$.

We denote this distribution by Ber(p).

- X models success/failure in tossing a coin (H, T), testing for a disease (infected, not infected), membership in a set (member, non-member), etc.
- p_X is the *pmf* (to distinguish from parameter p)
- Alternative definition: $p_X(a) = p^a \cdot (1-p)^{1-a}$ for $a \in \{0,1\}$

Identically distributed random variables

Two random variables X and Y are said *identically distributed* (in symbols, $X \sim Y$), if $F_X = F_Y$, i.e.,

 $F_X(a) = F_Y(a)$ for $a \in \mathbb{R}$

- Identically distributed does **not** mean equal
- Toss a fair coin
 - let X be 1 for H and 0 for T
 - ▶ let Y be 1 X
- $X \sim Ber(0.5)$ and $Y \sim Ber(0.5)$
- Thus, $X \sim Y$ but are clearly always different.

Joint p.m.f.

- For a same Ω , several random variables can be defined
 - ▶ Random variables related to the same experiment often influence one another

• In general:

$$\mathcal{P}_{XY}(X=a,Y=b)=\mathcal{P}(\{\omega\in\Omega\mid X(\omega)=a ext{ and } Y(\omega)=b\})=\mathcal{P}(X^{-1}(a)\cap Y^{-1}(b))$$

DEFINITION. The *joint probability mass function* p of two discrete random variables X and Y is the function $p : \mathbb{R}^2 \to [0, 1]$, defined by p(a, b) = P(X = a, Y = b) for $-\infty < a, b < \infty$.

Joint and marginal p.m.f.

• Joint distribution function $F : \mathbb{R} \times \mathbb{R} \to [0, 1]$:

$$F_{XY}(a,b) = P(X \leq a, Y \leq b) = \sum_{a_i \leq a, b_i \leq b} p(a_i, b_i)$$

• By generalized additivity, the marginal p.m.f.'s can be derived:

$$p_X(a) = P_X(X = a) = \sum_b P_{XY}(X = a, Y = b)$$
 $p_Y(b) = P_Y(Y = b) = \sum_a P_{XY}(X = a, Y = b)$

and the marginal distribution function of X as:

$$F_X(a) = P_X(X \le a) = \lim_{b \to \infty} F_{XY}(a, b)$$
 $F_Y(b) = P_Y(Y \le b) = \lim_{a \to \infty} F_{XY}(a, b)$

• Deriving the joint p.m.f. from marginal p.m.f.'s is not always possible!

- Exercise at home. Prove it (hint: find two joint p.m.f.'s with the same marginals)
- Deriving the joint p.m.f. from marginal p.m.f.'s is possible for independent events!
 - $\Omega = \{1, 2, 3, 4\} \times \{1, 2, 3, 4\}, X((a, b)) = a, Y((a, b)) = b$

►
$$P(X = 1, Y = 2) = \frac{1}{16} = \frac{1}{4} \cdot \frac{1}{4} = P(X = 1) \cdot P(Y = 2)$$

See R script

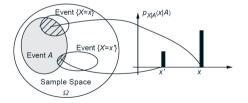
[Tabular method]

Conditional distribution

Conditional distribution

Consider the joint distribution P_{XY} of X and Y. The conditional distribution of X given $Y \in B$ with $P_Y(Y \in B) > 0$, is the function $F_{X|Y \in B} : \mathbb{R} \to [0, 1]$:

$$F_{X|Y \in B}(a) = P_{X|Y}(X \le a|Y \in B) = rac{P_{XY}(X \le a, Y \in B)}{P_Y(Y \in B)} \quad ext{ for } -\infty < a < \infty$$



- Distribution of X after knowing $Y \in B$.
- Chain rule: $P_{XY}(X \le a, Y \in B) = P_{X|Y}(X \le a|Y \in B)P_Y(Y \in B)$
- What if the distribution does not change w.r.t. the prior P_X ?

Independence $X \perp \!\!\!\perp Y$

A random variable X is independent from a random variable Y, if for all $P_Y(Y \le b) > 0$:

$$P_{X|Y}(X \le a|Y \le b) = P_X(X \le a) \quad \text{ for } -\infty < a < \infty$$

Properties

$$\blacktriangleright X \perp Y \text{ iff } P_{XY}(X \le a, Y \le b) = P_X(X \le a) \cdot P_Y(Y \le b) \quad \text{ for } -\infty < a, b < \infty$$

- $\blacktriangleright X \perp Y \text{ iff } Y \perp X \qquad [Symmetry]$
- For X, Y discrete random variables:
 - $\blacktriangleright X \perp Y \text{ iff } P_{XY}(X = a, Y = b) = P_X(X = a) \cdot P_Y(Y = b) \quad \text{ for } -\infty < a, b < \infty$
 - Exercise at home. Prove it!
 - $\blacktriangleright X \perp\!\!\!\!\perp Y \text{ iff } P_{XY}(X \in \mathcal{A}, Y \in \mathcal{B}) = P_X(X \in \mathcal{A}) \cdot P_Y(Y \in \mathcal{B}) \quad \text{ for } \mathcal{A}, \mathcal{B} \subseteq \mathbb{R}$
 - Exercise at home. Prove it!

Sum of independent discrete random variables

ADDING TWO INDEPENDENT DISCRETE RANDOM VARIABLES. Let X and Y be two independent discrete random variables, with probability mass functions p_X and p_Y . Then the probability mass function p_Z of Z = X + Y satisfies

$$p_Z(c) = \sum_j p_X(c - b_j) p_Y(b_j)$$

where the sum runs over all possible values b_i of Y.

• **Proof (sketch).** $P(Z = c) = \sum_{j} P(Z = c | Y = b_j) \cdot P(Y = b_j) = \sum_{j} P(X = c - b_j | Y = b_j) \cdot P(Y = b_j) = \sum_{j} P(X = c - b_j) P(Y = b_j)$

Independence of multiple random variables

Independence (factorization formula)

Random variables X_1, \ldots, X_n are independent, if:

$$P_{X_1,\ldots,X_n}(X_1 \leq a_1,\ldots,X_n \leq a_n) = \prod_{i=1}^n P_{X_i}(X_i \leq a_i) \quad \text{ for } -\infty < a_1,\ldots,a_n < \infty$$

• X_1, \ldots, X_n **discrete** random variables are independent iff:

$$P_{X_1,...,X_n}(X_1 = a_1,...,X_n = a_n) = \prod_{i=1}^n P_{X_i}(X_i = a_i) \quad \text{ for } -\infty < a_1,...,a_n < \infty$$

• **Definition:** X_1, \ldots, X_n are **i.i.d.** (independent and identically distributed) if X_1, \ldots, X_n are independent and $X_i \sim F$ for $i = 1, \ldots, n$ for some distribution F

$X \sim Bin(n, p)$

DEFINITION. A discrete random variable X has a *binomial distribution* with parameters n and p, where $n = 1, 2, \ldots$ and $0 \le p \le 1$, if its probability mass function is given by

$$p_X(k) = P(X = k) = {n \choose k} p^k (1-p)^{n-k}$$
 for $k = 0, 1, \dots, n$.

We denote this distribution by Bin(n, p).

- X models the number of successes in n Bernoulli trials (How many H's when tossing n coins?)
- Intuition: for X_1, X_2, \ldots, X_n such that $X_i \sim Ber(p)$ and independent (i.i.d.):

$$X = \sum_{i=1}^{n} X_i \sim Bin(n, p)$$

- p^k · (1 p)^{n-k} is the probability of observing first k H's and then n k T's

 ⁿ

 ^{n!}

 ⁿ

 ⁿ
- [Binomial coefficient]
- $p_X(k)$ computationally expensive to calculate (no closed formula, but approximation/bounds)
- Exercise at home. Prove $X_1 + X_2 \sim Bin(2, p)$ using the sum of independent random variables.

DEFINITION. A discrete random variable X has a binomial distribution with parameters n and p, where n = 1, 2, ... and $0 \le p \le 1$, if its probability mass function is given by $p_X(k) = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \quad \text{for } k = 0, 1, ..., n.$

We denote this distribution by Bin(n, p).

• **Exercise**: there are *c* bikes shared among *n* persons. Assuming that each person needs a bike with probability *p*, what is the probability that all bikes will be in use?

$$P(X=c)={n \choose c}p^c\cdot(1-p)^{n-c}= ext{dbinom(c-1, n, p)}$$

$$X \sim Geo(p)$$

DEFINITION. A discrete random variable X has a <u>geometric distribution</u> with parameter p, where 0 , if its probability mass function is given by

$$p_X(k) = P(X = k) = (1 - p)^{k-1} p$$
 for $k = 1, 2, ...$

We denote this distribution by Geo(p).

- X models the number of Bernoulli trials before a success (how many tosses to have a H?)
- Intuition: for X_1, X_2, \ldots such that $X_i \sim Ber(p)$ i.i.d.:

$$X = min_i \, (X_i = 1) \sim {\it Geo}(p)$$

•
$$\bar{F}(a) = P(X > a) = (1 - p)^{\lfloor a \rfloor}$$

• $F(a) = P(X \le a) = 1 - \bar{F}(a) = 1 - (1 - p)^{\lfloor a \rfloor}$

You cannot always loose

- H is 1, T is 0, 0
- $B_n = \{T \text{ in the first } n\text{-th coin tosses}\}$
- $P(\cap_{n\geq 1}B_i) = ?$
- *X* ∼ *Geom*(*p*)
- $P(B_n) = P(X > n) = (1 p)^n$

•
$$P(\cap_{n\geq 1}B_n) = \lim_{n\to\infty} P(B_n) = \lim_{n\to\infty} (1-p)^n = 0$$

•
$$P(\cap_{n\geq 1}B_n)=\textit{lim}_{n
ightarrow\infty}P(B_n)$$
 for B_n non-increasing

[σ -additivity, see Lesson 01]

But if you lost so far, you can lose again

Memoryless property

For
$$X \sim Geo(p)$$
, and $n, k = 0, 1, 2, \dots$
 $P(X > n + k | X > k) = P(X > n)$

Proof

$$P(X > n + k | X > k) = \frac{P(\{X > n + k\} \cap \{X > k\})}{P(\{X > k\})}$$
$$= \frac{P(\{X > n + k\})}{P(\{X > k\})}$$
$$= \frac{(1 - p)^{n + k}}{(1 - p)^{k}}$$
$$= (1 - p)^{n} = P(X > n)$$

$X \sim NBin(n, p)$

Negative binomial (or Pascal distribution)

A discrete random variable X has a negative binomial with parameters n and p, where n = 0, 1, 2, ... and 0 , if its probability mass function is given by

$$p_X(k) = P(X = k) = {\binom{k+n-1}{k}}(1-p)^k \cdot p^n$$
 for $k = 0, 1, 2, ...$

- X models the number of failures before the *n*-th success in Bernoulli trials (how many T's to have *n* H's?)
- Intuition: for X_1, X_2, \ldots, X_n such that $X_i \sim Geo(p)$ i.i.d.:

$$X = \sum_{i=1}^{n} X_i - n \sim NBin(n, p)$$

(1 − p)^k · pⁿ is the probability of observing first k T's and then n H's
 (^{k+n-1})_k = ((k+n-1)!)/(k!(n-1)!) number of ways to choose the first k variables among k + n − 1 (the last one must be a success!)

$X \sim Poi(\mu)$

DEFINITION. A discrete random variable X has a Poisson distribution with parameter μ , where $\mu > 0$ if its probability mass function p is given by

$$p(k) = P(X = k) = \frac{\mu^k}{k!} e^{-\mu}$$
 for $k = 0, 1, 2, \dots$

We denote this distribution by $Pois(\mu)$.

- X models the number of events in a fixed interval if these events occur with a known constant mean rate μ and independently of the last event
 - telephone calls arriving in a system
 - number of patients arriving at an hospital
 - customers arriving at a counter
- μ denotes the mean number of events
- $Bin(n, \mu/n)$ is the number of successes in *n* trials, assuming $p = \mu/n$, i.e., $p \cdot n = \mu$
- When $n \to \infty$: $Bin(n, \mu/n) \to Poi(\mu)$ [Law of rare events]
 - Number of typos in a book, number of cars involved in accidents, etc.

The discrete Bayes' rule

BAYES' RULE. Suppose the events C_1, C_2, \ldots, C_m are disjoint and $C_1 \cup C_2 \cup \cdots \cup C_m = \Omega$. The conditional probability of C_i , given an arbitrary event A, can be expressed as:

$$P(C_i | A) = \frac{P(A | C_i) \cdot P(C_i)}{P(A | C_1) P(C_1) + P(A | C_2) P(C_2) + \dots + P(A | C_m) P(C_m)}.$$

• **Definition.** Conditional p.m.f. of X given Y = b with $P_Y(Y = b) > 0$

$$p_{X|Y}(a|b) = \frac{p_{XY}(a,b)}{p_Y(b)}$$
 i.e., $P_{X|Y}(X=a|Y=b) = \frac{P_{XY}(X=a,Y=b)}{P_Y(Y=b)}$

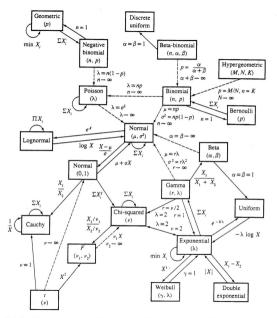
• Discrete Bayes' rule:

$$p_{X|Y}(x|y) = \frac{p_{Y|X}(y|x)p_X(x)}{p_Y(y)} = \frac{p_{Y|X}(y|x)p_X(x)}{\sum_{a \in dom(X)} p_{Y|X}(y|a)p_X(a)}$$

Exercise at home. A machine fails after n days with a p.m.f. X ~ Geo(p). p is known to be either p = 0.1 or 0.05 with equal probability. What can we say about the distribution of p given n? Code your solution in R.

Common distributions

- Probability distributions at Wikipedia
- Probability distributions in R
- C. Forbes, M. Evans, N. Hastings, B. Peacock (2010) Statistical Distributions, 4th Edition Wiley



Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986). 26