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e Experiment: roll two independent 4 sided die.

® We are interested in probability of the maximum of the two rolls.

® Modeling so far
» Q=1{1,2,3,4} x {1,2,3,4} = {(1,1),(1,2),(1,3),(1,4),(2,1),...,(4,4)}
» A= {maximum roll is 2} = {(1,2),(2,1),(2,2)}
> P(A) = P({(1,2),(2,1),(2,2)}) = 316
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Random variables
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® Modeling X : Q - R

X((a, b)) = max(a, b)

» A= {maximum roll is 2} = {(a, b) € Q | X((a, b)) =2} = X71(2)
P(A) = P(X71(2)) = 316

We write Px (X = 2) def P(X71(2)) |Induced probability]
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(Discrete) Random variables

Random Variable X

Sample Space
Q

X
Real Number Line

® A random variable is a function X : Q —» R
» it transforms 2 into a more tangible sample space R
0 from (a, b) to min(a, b)
» it decouples the details of a specific 2 from the probability of events of interest
O from Q = {H, T} or Q = {good, bad} or @ = ... to {0,1}
» it is not 'random’ nor 'variable’

DEFINITION. Let Q be a sample space. A discrete random variable
is a function X :  — R that takes on a finite number of values
ay,as,...,a, or an infinite number of values ay,as, . ...
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Probability Mass Function (PMF)

DEFINITION. The probability mass function p of a discrete random
variable X is the function p : R — [0, 1], defined by

pla) =P(X =a) for —oco<a< oco.

® Supportof X is {ae R | P(X =a)>0}={a1,a,...}
» p(a;)>0fori=12 ...
> p(a) +p(az) +...=1
» p(a) =0if a ¢ {a1,a,...}

5/26



Cumulative Distribution Function (CDF) and CCDF

DEFINITION. The distribution function F' of a random variable X
is the function F': R — [0, 1], defined by

F(a)=P(X <a) for —o0o<a< 0.

Fa)=P(X efai|a <a})=P(X<a)=)_,,p(a)
e if a < bthen F(a) < F(b) - [Non-decreasing]
P(a <X < b)=F(b) — Fa) = > ,c.<pP(ai)

Complementary cumulative distribution function (CCDF)

Fla)=P(X>a)=1-P(X<a)=1-F(a)

F(a)=P(X €{aj|ai>a})=P(X>a)= Y asaPai)
See R script
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X ~ U(m, M)

Uniform discrete distribution

A discrete random variable X has the uniform distribution with
parameters m, M € Z such that m < M, if its pmf is given by

1
p(a):m fora:m,m—i—l,...,l\/l

We denote this distribution by U(m, M).

¢ Intuition: all integers in [m, M] have equal chances of being observed.

— 1
F(a):m form<a<M

—m

See R script
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Benford's law
A discrete random variable X has the Benford’s distribution, if its pmf is

given by
1
p(a) = logy, <1+ 5) fora=1,2,...,9

We denote this distribution by Ben.

® Plausible and empirically adequate model for to the frequency distribution of leading
digits in many real-life numerical datasets.
® See Wikipedia for its interesting history and applications!

See R script
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DEFINITION. A discrete random variable X has a Bernoulli distri-
bution with parameter p, where 0 < p < 1, if its probability mass
function is given by

px(1)=P(X=1)=p and px(0)=PX =0)=1-—p.

We denote this distribution by Ber(p).

® X models success/failure in tossing a coin (H, T), testing for a disease (infected, not
infected), membership in a set (member, non-member), etc.

® px is the pmf (to distinguish from parameter p)
e Alternative definition: px(a) = p?- (1 — p)!=2 for a € {0, 1}

See R script
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i.d. random variables

Identically distributed random variables

Two random variables X and Y are said identically distributed (in
symbols, X ~ Y), if Fx = Fy, i.e.,

Fx(a) = Fy(a) foraeR

Identically distributed does not mean equal
Toss a fair coin

» let X be1for Hand 0 for T
» let Ybel—X

X ~ Ber(0.5) and Y ~ Ber(0.5)
Thus, X ~ Y but are clearly always different.
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® For a same (2, several random variables can be defined

» Random variables related to the same experiment often influence one another
» Q={(i,j) | i,jel,...,6} rolls of two dies

O X((i,4)) = i+j and Y((i,j)) = max(i, j)

OPX=4Y=3)=PX 1 4)nY3)=P{(3,1),(1,3)}) =23
» Q={f, m} x N x {+,—} (testing for Covid-19 - multivariate)

U G((g,a,c)) =1if g=1f and 0 otherwise A((g,a,c))=a

U Y((g,a,¢)) =1if c =+ and 0 otherwise

® |n general:
Pxy(X =a,Y =b)=P({w e Q |X(w) =aand Y(w) = b}) = P(XL(a)n Y 1(b))

DEFINITION. The joint probability mass function p of two discrete
random variables X and Y is the function p : R? — [0, 1], defined by

pla,b) =P(X =a,Y =0) for —oo<a,b< 0.
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Joint and marginal p.m.f.

¢ Joint distribution function F : R x R — [0, 1]:
Fxy(a,b)=P(X <a Y <b)= > p(a,b)

a;<a,bi<b

® By generalized additivity, the marginal p.m.f.'s can be derived: | Tabular method]
px(a) =Px(X =a) =) Pxy(X=2a,Y =b) py(b)=Py(Y=b)=> Pxy(X=aY =b)
b a

and the marginal distribution function of X as:
Fx(a) = Px(X S a) = blim ny(a, b) Fy(b) = Py(y S b) = lim ny(a, b)
— 00

a—oo
® Deriving the joint p.m.f. from marginal p.m.f.’s is not always possible!
» Exercise at home. Prove it (hint: find two joint p.m.f.'s with the same marginals)

® Deriving the joint p.m.f. from marginal p.m.f.’s is possible for independent events!
» 0 ={1,2,3,4} x {1,2,3,4}, X((a,b)) = a Y((a,b)) = b
» P(X=1,Y=2)=116=1s-1s=P(X=1)-P(Y =2)

See R script 12/26



Conditional distribution

Conditional distribution

Consider the joint distribution Pxy of X and Y. The conditional distribution of X
given Y € B with Py(Y € B) > 0, is the function Fxycg : R — [0,1]:

ny(X < a, Y € B)
Py(Y € B)

Fx|ves(a) = Pxjy(X < alY € B) = for —oco<a< o

P)qA(X|A)

Sample Space
Q

® Distribution of X after knowing Y € B.
® Chain rule: Pxy(X <a,Y € B) = Pxjy(X < a|Y € B)Py(Y € B)
® \What if the distribution does not change w.r.t. the prior Px? 13/26



(Machine Learning) Binary Classifiers

Q={f m} x Nx {+, -}
Predictive Features and True-Class as Random Variables:

» gender: G((g,a,c)) =1if gis f and 0 otherwise

> age: A((g,a,c)) =a

» has-covid: Y((g,a,c)) =1if c =+ and 0 otherwise
Binary Classifier as a Random Variable:

» Y((g,a,¢)) =1if cIf((g,a)) = + and 0 otherwise
where clf : {f, m} x N — {+ —} is a function over predictive features

P(Y=Y), ie, PHwe Q| Y(w)= Y(w)}) [True Accuracy]
P(Y =1]Y =1) [True Precision]
P(Y =1]Y =1) [True Recall]

Such probabilities are unknown! They can only be estimated on a sample (test set)
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Independence of two random variables

Independence X 1L Y

A random variable X is independent from a random variable Y, if for all Py (Y < b) > 0:

Pxiy(X <alY <b)=Px(X <a) for —co<a<oo

® Properties
» X UL Y iff Pxy(X<a,Y<b)=Px(X<a) -Py(Y<b) for—oco<ab<oo
» X L YiffYy 1L X [Symmetry]
® For X, Y discrete random variables:
X WL Yiff Pxy(X=aY=b)=Px(X=a)-Py(Y=5b) for—oco<ab<oo
» Exercise at home. Prove it!
» X UL Yiff Pxy(XeA Y eB)=Px(XeA) -Py(YeB) forAABCR
» Exercise at home. Prove it!

v

See R script
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Sum of independent discrete random variables

® Proof (sketch).

ADDING TWO INDEPENDENT DISCRETE RANDOM VARIABLES. Let X
and Y be two independent discrete random variables, with probabil-
ity mass functions px and py. Then the probability mass function
pz of Z = X +Y satisfies

z(c) = ZPX(C —bj)py (b)),

where the sum runs over all possible values b; of Y.

3
N
[

2
[

Y P(Z=clY =b)-P(Y = b)
- ZP(X:c—bj\Yzbj)-P(Yzbj)

= Y P(X=c—b)P(Y =b)
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Independence of multiple random variables

Independence (factorization formula)

Random variables Xi, ..., X, are independent, if:

n
'DX17---,Xn(X1 < a, ... ,X,, < a,,) = HPXi(Xi < a,-) for —oo < a,...,ap <00
i=1

® Xi,...,X, discrete random variables are independent iff:

n
Px,..x,(X1=a1,....,. X, =a,) = HPX,.(X,- =3;) for —oco<ap,...,a, <0
i=1

® Definition: Xi,..., X, are i.i.d. (independent and identically distributed) if Xi,..., X, are
independent and X; ~ F for i = 1,..., n for some distribution F
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DEFINITION. A discrete random variable X has a binomial distri-
bution with parameters n and p, where n = 1,2,... and 0 < p < 1,
if its probability mass function is given by

n

px(k)=P(X = k) = (k>pk (1=—p)" " fork=0.1,....n

We denote this distribution by Bin(n, p).

® X models the number of successes in n Bernoulli trials (How many H's when tossing n coins?)

® Intuition: for Xi, Xz, ..., X, such that X; ~ Ber(p) and independent (i.i.d.):
X = ZX,- ~ Bin(n, p)
i=1
e pk.(1— p)"¥ is the probability of observing first k H's and then n — k T's

(1) = Wik), number of ways to choose the first k variables [Binomial coefficient]

px (k) computationally expensive to calculate (no closed formula, but approximation/bounds)
Exercise at home. Prove X; + X; ~ Bin(2, p) using the sum of independent random variables.

See R script
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DEFINITION. A discrete random variable X has a binomial distri-
bution with parameters n and p, where n = 1,2,...and 0 < p < 1,
if its probability mass function is given by

n

px(k)=P(X =k) = <L>pk (L—p)™ " fork=0.1,....n.

We denote this distribution by Bin(n, p).

® Exercise: there are c¢ bikes shared among n persons. Assuming that each person needs a bike with
probability p, what is the probability that all bikes will be in use?

P(X=c)= (Z) p¢-(1—p)"~ ¢ =dbinom(c-1, n, p)
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DEFINITION. A discrete random variable X has a geometric distri-
bution with parameter p, where 0 < p < 1, if its probability mass
function is given by

px(k)=P(X =k)=(1 —p)kilp for k=1,2,....

We denote this distribution by Geo(p).
X models the number of Bernoulli trials before a success (how many tosses to have a H?)
Intuition: for X1, Xy, ... such that X; ~ Ber(p) i.i.d.:

X = min; (X; = 1) ~ Geo(p)
F(a) = P(X > a) = (1 p)Le!
Fa)=P(X<a)=1-F(a)=1-(1-p)la!
See R script
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You cannot always loose

e Hisl1l, Tis0,0<p<1

B, = {T in the first n-th coin tosses}

P(Np>1Bi) =7

® X ~ Geom(p)

P(Ba) = P(X > n) = (1— p)"

P(Nn1Bn) = liMn—ys P(Bn) = limn_yse(1 — p)" = 0

P(Np>1Bn) = limp_oo P(By) for B, non-increasing [o-additivity, see Lesson 01]
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But if you lost so far, you can lose again

Memoryless property
For X ~ Geo(p), and n,k =0,1,2,...

P(X > n+ kX > k) = P(X > n)

Proof

P{X >n+k}n{X > k})
P{X > k})
P({X > n+ k})
P({X > k})
(1—p)mt*
(1-p)*
= (1-p)"=P(X>n)

P(X >n+klX>k) =
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Negative binomial (or Pascal distribution)

A discrete random variable X has a negative binomial with parameters n and p,
where n =0,1,2,... and 0 < p < 1, if its probability mass function is given by

px(K) = P(X = k) = <k+Zl>(lp)k-p" for k=0,1,2,...

X models the number of failures before the n-th success in Bernoulli trials (how many T's to have
n H's?)
Intuition: for X1, Xy, ..., X, such that X; ~ Geo(p) i.i.d.:

X = ZX,- — n ~ NBin(n, p)
i=1
(1 — p)k - p" is the probability of observing first k T's and then n H's
() = (:!J(“::ll))!! number of ways to choose the first k variables among k + n — 1 (the last one
must be a success!)

See R script
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DEFINITION. A discrete random variable X has a Poisson distribu-
tion with parameter p, where p > 0 if its probability mass function p
is given by

X
p(k) = P(X =k) = %e*ﬂ for k=0,1,2,....

We denote this distribution by Pois(pu).

X models the number of events in a fixed interval if these events occur with a known
constant mean rate p and independently of the last event
> telephone calls arriving in a system
» number of patients arriving at an hospital
» customers arriving at a counter
1 denotes the mean number of events
Bin(n,#/n) is the number of successes in n trials, assuming p = #/n, i.e., p-n=p
When n — oo: Bin(n,#/n) — Poi(L) [Law of rare events]
» Number of typos in a book, number of cars involved in accidents, etc.

See R script 2426



The discrete Bayes' rule

BAYES’ RULE. Suppose the events C, Ca, ..., C,, are disjoint and
C1UCyU--- U, = Q. The conditional probability of C;, given an
arbitrary event A, can be expressed as:

P(A|C:) - P(Cy)

P(Ci|A) = P

® Definition. Conditional p.m.f. of X given Y = b with Py(Y = b) >0

pxiy(alb) = ”XPYY(("”[;)") e Pxy(X=aly = b) = 2 (‘Yiyb)‘ b)
® Discrete Bayes' rule:
ley(X‘y) _ pY\X(Y|X)pX(X) _ PY\X(Y|X)pX(X)
py(y) > acdom(x) Py1x(yla)px(a)

® Exercise at home. A machine fails after n days with a p.m.f. X ~ Geo(p). p is known to be
either p = 0.1 or 0.05 with equal probability. What can we say about the distribution of p given

- S
n? Code your solution in R. 2526



Common distributions

® Probability distributions at Wikipedia
® Probability distributions in R

° @ C. Forbes, M. Evans,
N. Hastings, B. Peacock (2010)
Statistical Distributions, 4th Edition

Wiley

min X, Negative a=f=1 Beta-binomial
binomial (n,a,B)
(n, p)

-1 Hypergeometric
P= %8 (M, K)

a+f—

_—"p=MIN,n=K

Relationships among common distributions. Solid lines represent transformations and special
cases, dashed lines represent limits. Adapted from Leemis (1986). 26 /26
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