Master Program in Data Science and Business Informatics

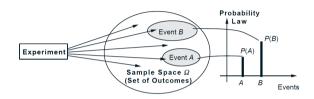
Statistics for Data Science

Lesson 04 - Discrete random variables

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

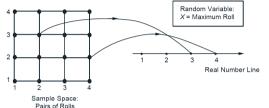
Experiments

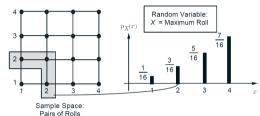


- **Experiment**: roll two independent 4 sided die.
- We are interested in probability of the maximum of the two rolls.
- Modeling so far

 - $A = \{ \text{maximum roll is 2} \} = \{ (1,2), (2,1), (2,2) \}$
 - $P(A) = P(\{(1,2),(2,1),(2,2)\}) = \frac{3}{16}$

Random variables

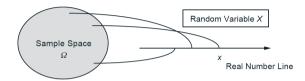




- Modeling $X: \Omega \to \mathbb{R}$
 - X((a,b)) = max(a,b)
 - $A = \{ \text{maximum roll is 2} \} = \{ (a, b) \in \Omega \mid X((a, b)) = 2 \} = X^{-1}(2)$
 - $P(A) = P(X^{-1}(2)) = 3/16$
 - We write $P_X(X=2) \stackrel{\text{def}}{=} P(X^{-1}(2))$

[Induced probability]

(Discrete) Random variables



- A random variable is a function $X:\Omega \to \mathbb{R}$
 - lacktriangle it transforms Ω into a more tangible sample space $\mathbb R$
 - \Box from (a, b) to min(a, b)
 - \blacktriangleright it decouples the details of a specific Ω from the probability of events of interest
 - $\ \ \Box \ \ \mathsf{from} \ \Omega = \{\mathsf{H}, \ \mathsf{T}\} \ \mathsf{or} \ \Omega = \{\mathsf{good}, \ \mathsf{bad}\} \ \mathsf{or} \ \Omega = \dots \ \mathsf{to} \ \{0,1\}$
 - ▶ it is not 'random' nor 'variable'

DEFINITION. Let Ω be a sample space. A discrete random variable is a function $X:\Omega\to\mathbb{R}$ that takes on a finite number of values a_1,a_2,\ldots,a_n or an infinite number of values a_1,a_2,\ldots

Probability Mass Function (PMF)

DEFINITION. The *probability mass function* p of a discrete random variable X is the function $p: \mathbb{R} \to [0,1]$, defined by

$$p(a) = P(X = a)$$
 for $-\infty < a < \infty$.

- Support or domain of X is $dom(X)=\{a\in\mathbb{R}\mid P(X=a)>0\}=\{a_1,a_2,\dots a_i,\dots\}$
 - ▶ $p(a_i) > 0$ for i = 1, 2, ...
 - $ightharpoonup p(a_1) + p(a_2) + \ldots = 1$
 - ▶ p(a) = 0 if $a \notin dom(X)$

Cumulative Distribution Function (CDF) and CCDF

DEFINITION. The distribution function F of a random variable X is the function $F: \mathbb{R} \to [0, 1]$, defined by

$$F(a) = P(X \le a)$$
 for $-\infty < a < \infty$.

- $F(a) = P(X \in \{a_i \mid a_i \le a\}) = P(X \le a) = \sum_{a_i \le a} p(a_i)$
- if $a \le b$ then $F(a) \le F(b)$
- $P(a < X \le b) = F(b) F(a) = \sum_{a \le a_i \le b} p(a_i)$

[Non-decreasing]

Complementary cumulative distribution function (CCDF)

$$\bar{F}(a) = P(X > a) = 1 - P(X \le a) = 1 - F(a)$$

•
$$\bar{F}(a) = P(X \in \{a_i \mid a_i > a\}) = P(X > a) = \sum_{a_i > a} p(a_i)$$

$X \sim U(m, M)$

Uniform discrete distribution

A discrete random variable X has the *uniform distribution* with parameters $m, M \in \mathbb{Z}$ such that $m \leq M$, if its pmf is given by

$$p(a) = \frac{1}{M - m + 1}$$
 for $a = m, m + 1, ..., M$

We denote this distribution by U(m, M).

• Intuition: all integers in [m, M] have equal chances of being observed.

$$F(a) = \frac{\lfloor a \rfloor - m + 1}{M - m + 1}$$
 for $m \le a \le M$

• Example: classic 6-faces (fair) die (m = 1, M = 6)

$X\sim B$ en

Benford's law

A discrete random variable X has the Benford's distribution, if its pmf is given by

$$p(a) = \log_{10}\left(1 + \frac{1}{a}\right)$$
 for $a = 1, 2, \dots, 9$

We denote this distribution by Ben.

- X models the frequency distribution of leading digits in many real-life numerical datasets.
- **Example:** leading digits of 2ⁿ
- See Wikipedia for its interesting history and applications!

$X \sim Ber(p)$

DEFINITION. A discrete random variable X has a Bernoulli distribution with parameter p, where $0 \le p \le 1$, if its probability mass function is given by

$$p_X(1) = P(X = 1) = p$$
 and $p_X(0) = P(X = 0) = 1 - p$.

We denote this distribution by Ber(p).

- X models success/failure
- **Example:** getting head (H,T) when tossing a coin, testing for a disease (infected, not infected), membership in a set (member, non-member), etc.
- p_X is the pmf (to distinguish from parameter p)
- Alternative definition: $p_X(a) = p^a \cdot (1-p)^{1-a}$ for $a \in \{0,1\}$

i.d. random variables

Identically distributed random variables

Two random variables X and Y are said identically distributed (in symbols, $X \sim Y$), if $F_X = F_Y$, i.e.,

$$F_X(a) = F_Y(a)$$
 for $a \in \mathbb{R}$

- Identically distributed does **not** mean equal
- Toss a fair coin
 - ▶ let X be 1 for H and 0 for T
 - ▶ let Y be 1 X
- $X \sim Ber(0.5)$ and $Y \sim Ber(0.5)$
- Thus, $X \sim Y$ but are clearly always different.

Joint p.m.f.

- For a same Ω , several random variables can be defined
 - ▶ Random variables related to the same experiment often influence one another
 - ▶ $\Omega = \{(i,j) \mid i,j \in 1,...,6\}$ rolls of two dies

 □ X((i,j)) = i+j and Y((i,j)) = max(i,j)□ $P(X = 4, Y = 3) = P(X^{-1}(4) \cap Y^{-1}(3)) = P(\{(3,1),(1,3)\}) = \frac{2}{36}$
- In general:

$$P_{XY}(X = a, Y = b) = P(\{\omega \in \Omega \mid X(\omega) = a \text{ and } Y(\omega) = b\}) = P(X^{-1}(a) \cap Y^{-1}(b))$$

DEFINITION. The *joint probability mass function* p of two discrete random variables X and Y is the function $p: \mathbb{R}^2 \to [0, 1]$, defined by

$$p(a,b) = P(X = a, Y = b)$$
 for $-\infty < a, b < \infty$.

Joint and marginal p.m.f.

Joint distribution function $F : \mathbb{R} \times \mathbb{R} \to [0, 1]$:

$$F_{XY}(a,b) = P(X \le a, Y \le b) = \sum_{a_i \le a, b_i \le b} p(a_i,b_i)$$

• By generalized additivity, the **marginal p.m.f.**'s can be derived:

By generalized additivity, the **marginal p.m.f.**'s can be derived: [Tabular method]
$$p_X(a) = P_X(X = a) = \sum_b P_{XY}(X = a, Y = b) \quad p_Y(b) = P_Y(Y = b) = \sum_a P_{XY}(X = a, Y = b)$$

and the marginal distribution function of X as:

$$F_X(a) = P_X(X \le a) = \lim_{b \to \infty} F_{XY}(a, b)$$
 $F_Y(b) = P_Y(Y \le b) = \lim_{a \to \infty} F_{XY}(a, b)$

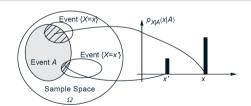
- Deriving the joint p.m.f. from marginal p.m.f.'s is not always possible!
 - **Exercise at home.** Prove it (hint: find two joint p.m.f.'s with the same marginals)
- Deriving the joint p.m.f. from marginal p.m.f.'s is possible for independent events!
 - \bullet $\Omega = \{1, 2, 3, 4\} \times \{1, 2, 3, 4\}, X((a, b)) = a, Y((a, b)) = b$
 - $P(X = 1, Y = 2) = 1/16 = 1/4 \cdot 1/4 = P(X = 1) \cdot P(Y = 2)$

Conditional distribution

Conditional distribution

Consider the joint distribution P_{XY} of X and Y. The conditional distribution of X given $Y \in B$ with $P_Y(Y \in B) > 0$, is the function $F_{X|Y \in B} : \mathbb{R} \to [0,1]$:

$$F_{X|Y \in B}(a) = P_{X|Y}(X \le a|Y \in B) = \frac{P_{XY}(X \le a, Y \in B)}{P_{Y}(Y \in B)}$$
 for $-\infty < a < \infty$



- Distribution of X after knowing $Y \in B$.
- Chain rule: $P_{XY}(X \le a, Y \in B) = P_{X|Y}(X \le a|Y \in B)P_Y(Y \in B)$
- What if the distribution does not change w.r.t. the prior P_X ?

(Machine Learning) Binary Classifiers

- $\Omega = \{f, m\} \times \mathbb{N} \times \{+, -\}$
- Predictive Features and True-Class as Random Variables:
 - gender: G((g, a, c)) = 1 if g is f and 0 otherwise
 - age: A((g, a, c)) = a
 - ▶ has-covid: Y((g, a, c)) = 1 if c = + and 0 otherwise
- Binary Classifier as a Random Variable:
 - $\hat{Y}((g, a, c)) = 1$ if clf((g, a)) = + and 0 otherwise where $clf: \{f, m\} \times \mathbb{N} \to \{+, -\}$ is a function over predictive features

• $P(Y = \hat{Y})$, i.e., $P(\{\omega \in \Omega \mid Y(\omega) = \hat{Y}(\omega)\})$

[True Accuracy]

• $P(Y=1|\hat{Y}=1)$

[True Precision]

• $P(\hat{Y} = 1 | Y = 1)$

[True Recall]

• Such probabilities are unknown! They can only be estimated on a sample (test set)

Independence of two random variables

Independence $X \perp \!\!\! \perp Y$

A random variable X is independent from a random variable Y, if for all $P_Y(Y \le b) > 0$:

$$P_{X|Y}(X \le a|Y \le b) = P_X(X \le a)$$
 for $-\infty < a < \infty$

- Properties
 - $\blacktriangleright X \perp \!\!\!\perp Y \text{ iff } P_{XY}(X \leq a, Y \leq b) = P_X(X \leq a) \cdot P_Y(Y \leq b) \quad \text{ for } -\infty < a, b < \infty$
 - ► *X* ⊥⊥ *Y* iff *Y* ⊥⊥ *X*

[Symmetry]

- For *X*, *Y* **discrete** random variables:
 - \blacktriangleright $X \perp \!\!\! \perp Y$ iff $P_{XY}(X=a,Y=b) = P_X(X=a) \cdot P_Y(Y=b)$ for $-\infty < a,b < \infty$
 - ▶ Exercise at home. Prove it!
 - ► $X \perp \!\!\! \perp Y$ iff $P_{XY}(X \in A, Y \in B) = P_X(X \in A) \cdot P_Y(Y \in B)$ for $A, B \subseteq \mathbb{R}$
 - **Exercise at home.** Prove it!

Sum of independent discrete random variables

Adding two independent discrete random variables. Let X and Y be two independent discrete random variables, with probability mass functions p_X and p_Y . Then the probability mass function p_Z of Z=X+Y satisfies

$$p_Z(c) = \sum_j p_X(c - b_j) p_Y(b_j),$$

where the sum runs over all possible values b_j of Y.

Proof (sketch).

$$P(Z = c) = \sum_{j} P(Z = c | Y = b_j) \cdot P(Y = b_j)$$

$$= \sum_{j} P(X = c - b_j | Y = b_j) \cdot P(Y = b_j)$$

$$= \sum_{j} P(X = c - b_j) P(Y = b_j)$$

Independence of multiple random variables

Independence (factorization formula)

Random variables X_1, \ldots, X_n are independent, if:

$$P_{X_1,...,X_n}(X_1 \le a_1,...,X_n \le a_n) = \prod_{i=1}^n P_{X_i}(X_i \le a_i)$$
 for $-\infty < a_1,...,a_n < \infty$

• X_1, \ldots, X_n **discrete** random variables are independent iff:

$$P_{X_1,...,X_n}(X_1=a_1,...,X_n=a_n)=\prod_{i=1}^n P_{X_i}(X_i=a_i) \quad \text{ for } -\infty < a_1,...,a_n < \infty$$

• **Definition:** X_1, \ldots, X_n are **i.i.d.** (independent and identically distributed) if X_1, \ldots, X_n are independent and $X_i \sim F$ for $i = 1, \ldots, n$ for some distribution F

$X \sim Bin(n, p)$

DEFINITION. A discrete random variable X has a binomial distribution with parameters n and p, where $n=1,2,\ldots$ and $0\leq p\leq 1$, if its probability mass function is given by

$$p_X(k) = P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$
 for $k = 0, 1, ..., n$.

We denote this distribution by Bin(n, p).

- X models the number of successes in n Bernoulli trials (How many H's when tossing n coins?)
- **Intuition**: for X_1, X_2, \dots, X_n such that $X_i \sim Ber(p)$ and independent (i.i.d.):

$$X = \sum_{i=1}^{n} X_i \sim Bin(n, p)$$

- ullet $p^k \cdot (1-p)^{n-k}$ is the probability of observing first k H's and then n-k T's
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ number of ways to choose the first k variables
- $p_X(k)$ computationally expensive to calculate (no closed formula, but approximation/bounds)
- Exercise at home. Prove $X_1 + X_2 \sim Bin(2, p)$ using the sum of independent random variables.

See R script

[Binomial coefficient]

$X \sim Bin(n, p)$

DEFINITION. A discrete random variable X has a binomial distribution with parameters n and p, where $n=1,2,\ldots$ and $0\leq p\leq 1$, if its probability mass function is given by

$$p_X(k) = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 for $k = 0, 1, \dots, n$.

We denote this distribution by Bin(n, p).

• Exercise: there are c bikes shared among n persons. Assuming that each person needs a bike with probability p, what is the probability that all bikes will be in use?

$$P(X=c) = \binom{n}{c} p^c \cdot (1-p)^{n-c} = \text{dbinom(c-1, n, p)}$$

$X \sim Geo(p)$

DEFINITION. A discrete random variable X has a geometric distribution with parameter p, where 0 , if its probability mass function is given by

$$p_X(k) = P(X = k) = (1 - p)^{k-1} p$$
 for $k = 1, 2, ...$

We denote this distribution by Geo(p).

- X models the number of Bernoulli trials before a success (how many tosses to have a H?)
- **Intuition**: for X_1, X_2, \ldots such that $X_i \sim Ber(p)$ i.i.d.:

$$X = min_i (X_i = 1) \sim Geo(p)$$

- $\bar{F}(a) = P(X > a) = (1 p)^{\lfloor a \rfloor}$
- $F(a) = P(X \le a) = 1 \bar{F}(a) = 1 (1 p)^{\lfloor a \rfloor}$

You cannot always lose

- H is 1, T is 0, 0 < p < 1
- $B_n = \{ T \text{ in the first } n\text{-th coin tosses} \}$
- $P(\cap_{n>1}B_i) = ?$
- *X* ∼ *Geom*(*p*)
- $P(B_n) = P(X > n) = (1 p)^n$
- $P(\cap_{n\geq 1}B_n) = \lim_{n\to\infty}P(B_n) = \lim_{n\to\infty}(1-p)^n = 0$
- $P(\cap_{n\geq 1}B_n)=\lim_{n\to\infty}P(B_n)$ for B_n non-increasing

[σ -additivity, see Lesson 01]

But if you lost so far, you can lose again

Memoryless property

For
$$X \sim Geo(p)$$
, and $n, k = 0, 1, 2, \dots$

$$P(X > n + k | X > k) = P(X > n)$$

Proof

$$P(X > n + k | X > k) = \frac{P(\{X > n + k\} \cap \{X > k\})}{P(\{X > k\})}$$

$$= \frac{P(\{X > n + k\})}{P(\{X > k\})}$$

$$= \frac{(1 - p)^{n + k}}{(1 - p)^k}$$

$$= (1 - p)^n = P(X > n)$$

Sum of independent random variables (repetita iuvant)

Adding two independent discrete random variables. Let X and Y be two independent discrete random variables, with probability mass functions p_X and p_Y . Then the probability mass function p_Z of Z=X+Y satisfies

$$p_Z(c) = \sum_j p_X(c - b_j) p_Y(b_j),$$

where the sum runs over all possible values b_j of Y.

- Examples:
 - ▶ For $X \sim Bin(n, p)$ and $Y \sim Bin(m, p)$, $Z \sim Bin(n + m, p)$
 - ▶ For $X \sim Geo(p)$ (days radio 1 breaks) and $Y \sim Geo(p)$ (days radio 2 breaks):

$$p_Z(X+Y=k)=\sum_{l=1}^{k-1}p_X(l)\cdot p_Y(k-l)=(k-1)p^2(1-p)^{k-2}$$

$X \sim NBin(n, p)$

Negative binomial (or Pascal distribution)

A discrete random variable X has a negative binomial with parameters n and p, where $n=0,1,2,\ldots$ and $0< p\leq 1$, if its probability mass function is given by

$$p_X(k) = P(X = k) = {k+n-1 \choose k} (1-p)^k \cdot p^n \text{ for } k = 0, 1, 2, \dots$$

- X models the number of failures before the n-th success in Bernoulli trials (how many T's to have n H's?)
- **Intuition**: for X_1, X_2, \dots, X_n such that $X_i \sim Geo(p)$ i.i.d.:

$$X = \sum_{i=1}^{n} X_i - n \sim NBin(n, p)$$

- $(1-p)^k \cdot p^n$ is the probability of observing first k T's and then n H's
- $\binom{k+n-1}{k} = \frac{(k+n-1)!}{k!(n-1)!}$ number of ways to choose the first k variables among k+n-1 (the last one must be a success!)

$X \sim Poi(\mu)$

DEFINITION. A discrete random variable X has a Poisson distribution with parameter μ , where $\mu>0$ if its probability mass function p is given by

$$p(k) = P(X = k) = \frac{\mu^k}{k!} e^{-\mu}$$
 for $k = 0, 1, 2, ...$

We denote this distribution by $Pois(\mu)$.

- X models the number of events in a fixed interval if these events occur with a known constant mean rate μ and independently of the last event
 - ► telephone calls arriving in a system
 - number of patients arriving at an hospital
 - customers arriving at a counter
- \bullet μ denotes the mean number of events
- $Bin(n, \mu/n)$ is the number of successes in n trials, assuming $p = \mu/n$, i.e., $p \cdot n = \mu$
- When $n \to \infty$: $Bin(n, \mu/n) \to Poi(\mu)$ [Law of rare events]
 - ▶ Number of typos in a book, number of cars involved in accidents, etc.

The discrete Bayes' rule

BAYES' RULE. Suppose the events C_1, C_2, \ldots, C_m are disjoint and $C_1 \cup C_2 \cup \cdots \cup C_m = \Omega$. The conditional probability of C_i , given an arbitrary event A, can be expressed as:

$$P(C_i | A) = \frac{P(A | C_i) \cdot P(C_i)}{P(A | C_1)P(C_1) + P(A | C_2)P(C_2) + \dots + P(A | C_m)P(C_m)}.$$

Definition. Conditional p.m.f. of X given Y = b with $P_Y(Y = b) > 0$

$$p_{X|Y}(a|b) = \frac{p_{XY}(a,b)}{p_{Y}(b)}$$
 i.e., $P_{X|Y}(X=a|Y=b) = \frac{P_{XY}(X=a,Y=b)}{P_{Y}(Y=b)}$

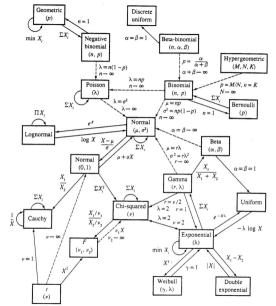
Discrete Bayes' rule:

$$p_{X|Y}(x|y) = \frac{p_{Y|X}(y|x)p_X(x)}{p_Y(y)} = \frac{p_{Y|X}(y|x)p_X(x)}{\sum_{a \in dom(X)} p_{Y|X}(y|a)p_X(a)}$$

Exercise at home. A machine fails after n days with a p.m.f. $X \sim Geo(p)$. p is known to be either p=0.1 or 0.05 with equal probability. What can we say about the distribution of p given p? Code your solution in p.

Common distributions

- Probability distributions at Wikipedia
- Probability distributions in R
- C. Forbes, M. Evans,
 N. Hastings, B. Peacock (2010)
 Statistical Distributions, 4th Edition
 Wiley



Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986). 27 / 27