Master Program in Data Science and Business Informatics Statistics for Data Science

Lesson 03 - Bayes' rule and applications

Salvatore Ruggieri
Department of Computer Science
University of Pisa, Italy salvatore.ruggieri@unipi.it

Exercise at home from Lesson 01

Exercise at home.Prove or disprove:

- If A is independent of B then A is conditionally independent of B given C In formula, if $P(A \cap B)=P(A) P(B)$ then $P(A \cap B \mid C)=P(A \mid C) P(B \mid C)$

Exercise at home from Lesson 01

Exercise at home.Prove or disprove:

- If A is independent of B then A is conditionally independent of B given C In formula, if $P(A \cap B)=P(A) P(B)$ then $P(A \cap B \mid C)=P(A \mid C) P(B \mid C)$

Counterexample.

- $\Omega=\{H, T\} \times\{H, T\}$ two coin tosses
- $A=\{$ first coin is H$\}=\{(H, H),(H, T)\} \quad P(A)=1 / 2$
- $B=\{$ second coin is H$\}=\{(H, H),(T, H)\} \quad P(B)=1 / 2$

$$
P(A \cap B)=1 / 4=P(A) P(B)
$$

Exercise at home from Lesson 01

Exercise at home.Prove or disprove:

- If A is independent of B then A is conditionally independent of B given C In formula, if $P(A \cap B)=P(A) P(B)$ then $P(A \cap B \mid C)=P(A \mid C) P(B \mid C)$

Counterexample.

- $\Omega=\{H, T\} \times\{H, T\}$ two coin tosses
- $A=\{$ first coin is H$\}=\{(H, H),(H, T)\} \quad P(A)=1 / 2$
- $B=\{$ second coin is H$\}=\{(H, H),(T, H)\} \quad P(B)=1 / 2$

$$
P(A \cap B)=1 / 4=P(A) P(B)
$$

- $C=\{$ both coins have same result $\}=\{(H, H),(T, T)\} \quad P(C)=1 / 2$

$$
P(A \cap B \mid C)=\frac{P(A \cap B \cap C)}{P(C)}=1 / 2 \neq P(A \mid C) P(B \mid C)=\frac{P(A \cap C)}{P(C)} \cdot \frac{P(B \cap C)}{P(C)}=1 / 4
$$

Same counterexample shows that pairwise independence is weaker than independence: A, B, C are pairwise independent, but not independent!

Exercise

Exercise. Prove or disprove:

- If A, B and C are independent, then A is conditionally independent of B given C

Exercise

Exercise. Prove or disprove:

- If A, B and C are independent, then A is conditionally independent of B given C Proof. Independence implies $P(A \cap B \cap C)=P(A) P(B) P(C)$ and then:

$$
P(A \cap B \mid C)=\frac{P(A \cap B \cap C)}{P(C)}=\frac{P(A) P(B) P(C)}{P(C)}=P(A) P(B)
$$

Independence also implies $P(A \cap C)=P(A) P(C)$ and $P(B \cap C)=P(B) P(C)$, and then:

$$
P(A \mid C) P(B \mid C)=\frac{P(A \cap C) P(B \cap C)}{P(C)^{2}}=\frac{P(A) P(C) P(B) P(C)}{P(C)^{2}}=P(A) P(B)
$$

An application to machine learning classifiers

In formula, if $P(A \cap B)=P(A) P(B)$ and $P(A \cap B \mid C) \neq P(A \mid C) P(B \mid C)$
Can be rewritten as if $P(A \mid B)=P(A)$ and $P(A \mid B \cap C) \neq P(A \mid C)$
How do we read the result above?

An application to machine learning classifiers

In formula, if $P(A \cap B)=P(A) P(B)$ and $P(A \cap B \mid C) \neq P(A \mid C) P(B \mid C)$
Can be rewritten as if $P(A \mid B)=P(A)$ and $P(A \mid B \cap C) \neq P(A \mid C)$

- $\Omega=\{$ summer, winter $\} \times\{$ long-hair, short-hair $\} \times\{$ eat-icecream, dont-eat-icecream $\}$
- $A=\{(-$, , like-icecream $)\}$
- $B=\{($-,short-hair, -$)\}$
- $C=\{($ summer,, , -$)\}$

How do we read the result above?

An application to machine learning classifiers

In formula, if $P(A \cap B)=P(A) P(B)$ and $P(A \cap B \mid C) \neq P(A \mid C) P(B \mid C)$
Can be rewritten as if $P(A \mid B)=P(A)$ and $P(A \mid B \cap C) \neq P(A \mid C)$

- $\Omega=\{$ summer, winter $\} \times\{$ long-hair, short-hair $\} \times\{$ eat-icecream, dont-eat-icecream $\}$
- $A=\{(-$, , like-icecream $)\}$
- $B=\{($-,short-hair, -$)\}$
- $C=\{($ summer,, , -$)\}$

How do we read the result above?

- if $P(A \mid B)=P(A)$ read as "short-hair is not predictive of eating ice cream"
- if $P(A \mid B \cap C) \neq P(A \mid C)$ read as "in the summer, short-hair is predictive of eating ice cream"

An application to machine learning classifiers

In formula, if $P(A \cap B)=P(A) P(B)$ and $P(A \cap B \mid C) \neq P(A \mid C) P(B \mid C)$
Can be rewritten as if $P(A \mid B)=P(A)$ and $P(A \mid B \cap C) \neq P(A \mid C)$

- $\Omega=\{$ summer, winter $\} \times\{$ long-hair, short-hair $\} \times\{$ eat-icecream, dont-eat-icecream $\}$
- $A=\{(-$, , like-icecream $)\}$
- $B=\{($ (,short-hair, -$)\}$
- $C=\{($ summer,,,-$)\}$

How do we read the result above?

- if $P(A \mid B)=P(A)$ read as "short-hair is not predictive of eating ice cream"
- if $P(A \mid B \cap C) \neq P(A \mid C)$ read as "in the summer, short-hair is predictive of eating ice cream" What can we conclude in general for features of machine learning classifiers?
- A feature can be non-relevant in isolation, but relevant together other featurs
- We cannot do feature selection by looking at a single feature at a time!

Testing for Covid-19

A new test for Covid-19 (or Mad-Cow desease, or drug use) has been developed.

- $\Omega=\{$ people aged 18 or higher $\}$
- $+=\{$ people tested positive $\}-=\{$ people tested negative $\}=+^{c}$
- $C=\{$ people with Covid-19 $\} \quad C^{c}=\{$ people without Covid-19 $\}$

In lab experiments, a sample of people with and without Covid-19 tested

- $P(+\mid C)=0.99$
[Sensitivity/Recall/True Positive Rate]
[Specificity/True Negative Rate]
- $P\left(-\mid C^{c}\right)=0.99$

Testing for Covid-19

A new test for Covid-19 (or Mad-Cow desease, or drug use) has been developed.

- $\Omega=\{$ people aged 18 or higher \}
- $+=\{$ people tested positive $\} \quad-=\{$ people tested negative $\}=+^{c}$
- $C=\{$ people with Covid-19 $\} \quad C^{c}=\{$ people without Covid-19 $\}$

In lab experiments, a sample of people with and without Covid-19 tested

- $P(+\mid C)=0.99$
[Sensitivity/Recall/True Positive Rate] [Specificity/True Negative Rate]
- $P\left(-\mid C^{c}\right)=0.99$ [Precision] What is the probability I really have Covid-19 given that I tested positive?

$$
\begin{gathered}
P(C \mid+)=\frac{P(C \cap+)}{P(+)}=\frac{P(+\mid C) \cdot P(C)}{P(+)}=\frac{P(+\mid C) \cdot P(C)}{P(+\mid C) \cdot P(C)+P\left(+\mid C^{c}\right) \cdot P\left(C^{c}\right)} \\
P(C \mid+)=\frac{0.99 \cdot P(C)}{0.99 \cdot P(C)+0.01 \cdot(1-P(C))}
\end{gathered}
$$

$P(C)$ is unknown!

Testing for Covid-19

$P(C)$, the probability of having Covid-19, is unknown. Let's plot $P(C \mid+)$ over $P(C)$:

- For $P(C)=0.02, P(C \mid+)=.67$
- For $P(C)=0.06, P(C \mid+)=.86$
- For $P(C)=0.10, P(C \mid+)=.92$

Bayes' Rule

Bayes' RULE. Suppose the events $C_{1}, C_{2}, \ldots, C_{m}$ are disjoint and

 $C_{1} \cup C_{2} \cup \cdots \cup C_{m}=\Omega$. The conditional probability of C_{i}, given an arbitrary event A, can be expressed as:$$
\mathrm{P}\left(C_{i} \mid A\right)=\frac{\mathrm{P}\left(A \mid C_{i}\right) \cdot \mathrm{P}\left(C_{i}\right)}{\mathrm{P}\left(A \mid C_{1}\right) \mathrm{P}\left(C_{1}\right)+\mathrm{P}\left(A \mid C_{2}\right) \mathrm{P}\left(C_{2}\right)+\cdots+\mathrm{P}\left(A \mid C_{m}\right) \mathrm{P}\left(C_{m}\right)} .
$$

- It follows from $P\left(C_{i} \mid A\right)=\frac{P\left(A \mid C_{i}\right) \cdot P\left(C_{i}\right)}{P(A)}$ and the law of total probability
- Useful when:
- $P\left(C_{i} \mid A\right)$ not easy to calculate
- while $P\left(A \mid C_{j}\right)$ and $P\left(C_{j}\right)$ are known for $j=1, \ldots, m$
- E.g., in classification problems (see Bayesian classifiers from Data Mining)
- $P\left(C_{i}\right)$ is called the prior probability
- $P\left(C_{i} \mid A\right)$ is called the posterior probability (after seeing event A)

(Machine Learning) Binary Classifiers

- $\Omega=\{\mathrm{f}, \mathrm{m}\} \times \mathbb{N} \times\{+,-\}$
- Features:
- G gender, $G=f$ is $\{\omega \in \Omega \mid \omega=(f,-,-)\}$
- A age, $A=25$ is $\{\omega \in \Omega \mid \omega=(-, 25,-)\}$
- Y true class
$\square Y=+$ is $\{\omega \in \Omega \mid \omega=(-,-,+)\}$, e.g., Covid-19 positive
$\square Y=-$ is $\{\omega \in \Omega \mid \omega=(-,-,-)\}$, e.g., Covid-19 negative

(Machine Learning) Binary Classifiers

- $\Omega=\{\mathrm{f}, \mathrm{m}\} \times \mathbb{N} \times\{+,-\}$
- Features:
- G gender, $G=f$ is $\{\omega \in \Omega \mid \omega=(f,-,-)\}$
- A age, $A=25$ is $\{\omega \in \Omega \mid \omega=(-, 25,-)\}$
- Y true class
- $Y=+$ is $\{\omega \in \Omega \mid \omega=(-,-,+)\}$, e.g., Covid-19 positive
$\square Y=-$ is $\{\omega \in \Omega \mid \omega=(-,-,-)\}$, e.g., Covid-19 negative

$$
(Y=+)^{c}
$$

- Binary Classifier: $\hat{Y}:\{\mathrm{f}, \mathrm{m}\} \times \mathbb{N} \rightarrow\{+,-\}$ predicted class
- $\hat{Y}=+$ is $\{(g, a, c) \in \Omega \mid \hat{Y}((g, a))=+\}$, e.g, predicted Covid-19 positive
- $\hat{Y}=-$ is $\{(g, a, c) \in \Omega \mid \hat{Y}((g, a))=-\}$, e.g., predicted Covid-19 negative

(Machine Learning) Binary Classifiers

- $\Omega=\{\mathrm{f}, \mathrm{m}\} \times \mathbb{N} \times\{+,-\}$
- Features:
- G gender, $G=f$ is $\{\omega \in \Omega \mid \omega=(f,-,-)\}$
- A age, $A=25$ is $\{\omega \in \Omega \mid \omega=(-, 25,-)\}$
- Y true class
$\square Y=+$ is $\{\omega \in \Omega \mid \omega=(-,-,+)\}$, e.g., Covid-19 positive
$\square Y=-$ is $\{\omega \in \Omega \mid \omega=(-,-,-)\}$, e.g., Covid-19 negative

$$
(Y=+)^{c}
$$

- Binary Classifier: $\hat{Y}:\{\mathrm{f}, \mathrm{m}\} \times \mathbb{N} \rightarrow\{+,-\}$ predicted class
- $\hat{Y}=+$ is $\{(g, a, c) \in \Omega \mid \hat{Y}((g, a))=+\}$, e.g, predicted Covid-19 positive
- $\hat{Y}=-$ is $\{(g, a, c) \in \Omega \mid \hat{Y}((g, a))=-\}$, e.g., predicted Covid-19 negative
- $P(Y=\hat{Y})$, i.e., $P(Y=+\cap \hat{Y}=+)+P(Y=-\cap \hat{Y}=-)$
- $P(Y=+\mid \hat{Y}=+)$
- $P(\hat{Y}=+\mid Y=+)$
- Such probabilities are unknown! They can only be estimated on a sample (test set)

Precision of classifiers

Confusion matrix over the test set!

set.		+	-	Total PP PN
Predicted \hat{Y}	+	TP	$F P$	
	-	FN	TN	
		P	N	

- $P(\hat{Y}=+\mid Y=+) \approx T P / P$
[Sensitivity/Recall/TPR] [Specificity/TNR]
- " \approx " reads as "approximatively" [Probability estimation] What is the probability I really am positive given that I was predicted positive? [Precision]

Precision of classifiers

Confusion matrix over the test set!

- $P(\hat{Y}=+\mid Y=+) \approx T P / P$
[Sensitivity/Recall/TPR] [Specificity/TNR]
- $P(\hat{Y}=-\mid Y=-) \approx T N / N$
- " \approx " reads as "approximatively" [Probability estimation] What is the probability I really am positive given that I was predicted positive? [Precision]

$$
P(Y=+\mid \hat{Y}=+)=\frac{T P}{T P+F P} \quad \text { ?sure? }
$$

Precision of classifiers

Confusion matrix over the test set!

set.		+	-	Total PP PN
Predicted \hat{Y}	+	TP	$F P$	
	-	FN	TN	
		P	N	

- $P(\hat{Y}=+\mid Y=+) \approx T P / P$
[Sensitivity/Recall/TPR] [Specificity/TNR]
- " \approx " reads as "approximatively" [Probability estimation] What is the probability I really am positive given that I was predicted positive? [Precision]

Precision of classifiers

True Y
Confusion matrix over the test set!

- $P(\hat{Y}=+\mid Y=+) \approx T P / P$
[Sensitivity/Recall/TPR] [Specificity/TNR]
- $P(\hat{Y}=-\mid Y=-) \approx T N / N$
- " \approx " reads as "approximatively" [Probability estimation]
What is the probability I really am positive given that I was predicted positive? [Precision]

$$
\begin{aligned}
& P(Y=+\mid \hat{Y}=+)=\frac{P(\hat{Y}=+\mid Y=+) \cdot P(Y=+)}{P(\hat{Y}=+\mid Y=+) \cdot P(Y=+)+(1-P(\hat{Y}=-\mid Y=-)) \cdot P(Y=-)} \\
& \approx \frac{T P / P \cdot P(Y=+)}{T P / P \cdot P(Y=+)+(1-T N / N) \cdot(1-P(Y=+))} \\
& \quad \approx{ }^{(\star)} \frac{T P / P \cdot P /(P+N)}{T P / P \cdot P /(P+N)+(1-T N / N) \cdot(1-P /(P+N))}=\frac{T P}{T P+F P}
\end{aligned}
$$

(\star) if $P(Y=+) \approx P /(P+N)$, i.e., if fraction of positives in the test set is same as population

Dataset selection

- Let $\Omega=\{\mathrm{f}, \mathrm{m}\} \times \mathbb{N} \times\{+,-\} \times\{0,1\}$, where:
- $S=v$ is $\{\omega \in \Omega \mid \omega=(-,-,-, v)\}$
- selected $(S=1)$ or not $(S=0)$ in the observed dataset

Dataset selection

- Let $\Omega=\{\mathrm{f}, \mathrm{m}\} \times \mathbb{N} \times\{+,-\} \times\{0,1\}$, where:
- $S=v$ is $\{\omega \in \Omega \mid \omega=(-,-,-v)\}$
- selected $(S=1)$ or not $(S=0)$ in the observed dataset
- Typical assumption: class independent selection:

$$
P(S=1)=P(S=1 \mid Y=+)=P(S=1 \mid Y=-)
$$

Dataset selection

- Let $\Omega=\{\mathrm{f}, \mathrm{m}\} \times \mathbb{N} \times\{+,-\} \times\{0,1\}$, where:
- $S=v$ is $\{\omega \in \Omega \mid \omega=(-,-,-v)\}$
- selected $(S=1)$ or not $(S=0)$ in the observed dataset
- Typical assumption: class independent selection:

$$
P(S=1)=P(S=1 \mid Y=+)=P(S=1 \mid Y=-)
$$

- Reasons for class dependent selection:
- Bias in data collection
- Change of distribution over time/domain

Confusion matrix (over test set) is unpredictive of true precision/accuracy (over the population)!

Dataset selection

- Let $\Omega=\{\mathrm{f}, \mathrm{m}\} \times \mathbb{N} \times\{+,-\} \times\{0,1\}$, where:
- $S=v$ is $\{\omega \in \Omega \mid \omega=(-,-,-v)\}$
- selected $(S=1)$ or not $(S=0)$ in the observed dataset
- Typical assumption: class independent selection:

$$
P(S=1)=P(S=1 \mid Y=+)=P(S=1 \mid Y=-)
$$

- Reasons for class dependent selection:
- Bias in data collection
- Change of distribution over time/domain
[Selection bias] [Distribution shift]

Confusion matrix (over test set) is unpredictive of true precision/accuracy (over the population)!

- Forms of class dependent selection
- Under-sampling negatives: $P(S=1 \mid Y=-)<P(S=1 \mid Y=+)=P(S=1)$
- Over-sampling positives: $P(S=1 \mid Y=+)>P(S=1 \mid Y=-)=P(S=1)$
- Prior probability shift: $P(S=1 \mid Y=-) \neq P(S=1 \mid Y=+) \neq P(S=1)$

Dataset selection

What is the probability I really am positive given that I was predicted positive? [Precision]

$$
P(Y=+\mid \hat{Y}=+) \approx \frac{T P / P \cdot P(Y=+)}{T P / P \cdot P(Y=+)+(1-T N / N) \cdot(1-P(Y=+))}
$$

Unfortunately, we only know $P(Y=+\mid S=1) \approx P /(P+N)$. However, by the Bayes' rule:

Dataset selection

What is the probability I really am positive given that I was predicted positive? [Precision]

$$
P(Y=+\mid \hat{Y}=+) \approx \frac{T P / P \cdot P(Y=+)}{T P / P \cdot P(Y=+)+(1-T N / N) \cdot(1-P(Y=+))}
$$

Unfortunately, we only know $P(Y=+\mid S=1) \approx P /(P+N)$. However, by the Bayes' rule:

$$
\begin{gathered}
P(Y=+\mid S=1)=\frac{P(S=1 \mid Y=+) \cdot P(Y=+)}{P(S=1 \mid Y=+) \cdot P(Y=+)+P(S=1 \mid Y=-) \cdot P(Y=-)} \\
=\frac{P(Y=+)}{P(Y=+)+\frac{P(S=1 \mid Y=-)}{P(S=1 \mid Y=+)} \cdot(1-P(Y=+))}=\frac{P(Y=+)}{P(Y=+)+\frac{P(Y=-\mid S=1)}{P(Y=+\mid S=1)} / \frac{P(Y=-)}{P(Y=+)} \cdot(1-P(Y=+))}
\end{gathered}
$$

Dataset selection

What is the probability I really am positive given that I was predicted positive? [Precision]

$$
P(Y=+\mid \hat{Y}=+) \approx \frac{T P / P \cdot P(Y=+)}{T P / P \cdot P(Y=+)+(1-T N / N) \cdot(1-P(Y=+))}
$$

Unfortunately, we only know $P(Y=+\mid S=1) \approx P /(P+N)$. However, by the Bayes' rule:

$$
\begin{gathered}
P(Y=+\mid S=1)=\frac{P(S=1 \mid Y=+) \cdot P(Y=+)}{P(S=1 \mid Y=+) \cdot P(Y=+)+P(S=1 \mid Y=-) \cdot P(Y=-)} \\
=\frac{P(Y=+)}{P(Y=+)+\frac{P(S=1 \mid Y=-)}{P(S=1 \mid Y=+)} \cdot(1-P(Y=+))}=\frac{P(Y=+)}{P(Y=+)+\frac{P(Y=-\mid S=1)}{P(Y=+\mid S=1)} / \frac{P(Y=-)}{P(Y=+)} \cdot(1-P(Y=+))}
\end{gathered}
$$

By solving back w.r.t. $P(Y=+)$, we have:

$$
P(Y=+)=\frac{P(Y=+\mid S=1)}{P(Y=+\mid S=1)+P(Y=-\mid S=1) \cdot \frac{P(Y=-)}{P(Y=+)} / \frac{P(Y=-\mid S=1)}{P(Y=+\mid S=1)}} \approx P /(P+\gamma N)
$$

where $\gamma=\frac{P(Y=-)}{P(Y=+)} / \frac{P(Y=-\mid S=1)}{P(Y=+\mid S=1)} \approx\left(N_{\text {orig }} / P_{\text {orig }}\right) /(N / P)$ with $N_{\text {orig }}$ and $P_{\text {orig }}$ from an unbiased dataset.

Precision of classifiers: correction under shift

When class dependent selection can occur?

- Prior shift $P(Y=+) \approx P /(P+\gamma N)$ with $\gamma=\beta / \alpha=\left(N_{\text {orig }} / P_{\text {orig }}\right) /(N / P)$
- Undersampling $P(Y=+) \approx P /(P+\beta N)$ with $\beta=N_{\text {orig }} / N \geq 1$
- Oversampling $P(Y=+) \approx P /(P+N / \alpha)$ with $\alpha=P_{\text {orig }} / P \leq 1$

What is the probability I really am positive given that I was predicted positive?

Precision of classifiers: correction under shift

When class dependent selection can occur?

- Prior shift $P(Y=+) \approx P /(P+\gamma N)$ with $\gamma=\beta / \alpha=\left(N_{\text {orig }} / P_{\text {orig }}\right) /(N / P)$
- Undersampling $P(Y=+) \approx P /(P+\beta N)$ with $\beta=N_{\text {orig }} / N \geq 1$
- Oversampling $P(Y=+) \approx P /(P+N / \alpha)$ with $\alpha=P_{\text {orig }} / P \leq 1$

What is the probability \mathbf{I} really am positive given that \mathbf{I} was predicted positive?
[Precision]

$$
P(Y=+\mid \hat{Y}=+) \approx \frac{T P / P \cdot P /(P+\gamma N)}{T P / P \cdot P /(P+\gamma N)+(1-T N / N) \cdot(1-P /(P+\gamma N))}=\frac{T P}{T P+\gamma F P}
$$

Called Prec $=T P /(T P+F P)$, we have:

$$
P(Y=+\mid \hat{Y}=+) \approx \frac{\text { Prec }}{\operatorname{Prec}+\gamma(1-\operatorname{Prec})}
$$

Example: for $\gamma=5$, Prec $=0.9$, we have $P(Y=+\mid \hat{Y}=+) \approx 0.9 /(0.9+5 \cdot 0.1) \approx 0.642$

Accuracy of classifiers

- $P(\hat{Y}=+\mid Y=+) \approx T P / P$
- $P(\hat{Y}=-\mid Y=-) \approx T N / N$
[Sensitivity/Recall/TPR] [Specificity/TNR]
[Accuracy]
What is the probability that prediction is correct?

Accuracy of classifiers

- $P(\hat{Y}=+\mid Y=+) \approx T P / P$
[Sensitivity/Recall/TPR] [Specificity/TNR]
- $P(\hat{Y}=-\mid Y=-) \approx T N / N$ [Accuracy]
What is the probability that prediction is correct?

$$
\begin{gathered}
P(\hat{Y}=Y)=P(\hat{Y}=+\mid Y=+) P(Y=+)+P(\hat{Y}=-\mid Y=-) P(Y=-) \approx \approx^{(\star)} \\
\approx^{(\star)} \frac{T P}{P} \frac{P}{P+N}+\frac{T N}{N} \frac{N}{P+N}=\frac{T P+T N}{P+N}
\end{gathered}
$$

(\star) if $P(Y=+) \approx P /(P+N)$, i.e., if dataset selection is class independent!

Accuracy of classifiers: correction under shift

- Prior shift $P(Y=+) \approx P /(P+\gamma N)$ with $\gamma=\beta / \alpha=\left(N_{\text {orig }} / P_{\text {orig }}\right) /(N / P)$

What is the probability that prediction is correct?

Accuracy of classifiers: correction under shift

- Prior shift $P(Y=+) \approx P /(P+\gamma N)$ with $\gamma=\beta / \alpha=\left(N_{\text {orig }} / P_{\text {orig }}\right) /(N / P)$

What is the probability that prediction is correct?

$$
\begin{gathered}
P(\hat{Y}=Y)=P(\hat{Y}=+\mid Y=+) P(Y=+)+P(\hat{Y}=-\mid Y=-) P(Y=-) \approx \\
\approx \frac{T P}{P} \frac{P}{P+\gamma N}+\frac{T N}{N} \frac{\gamma N}{P+\gamma N}=\frac{T P+\gamma T N}{P+\gamma N}
\end{gathered}
$$

Example: for $\gamma=10, P=N=1000, T P=950, T N=800$:

$$
A c c=(T P+T N) /(P+N)=.875
$$

$$
P(\hat{Y}=Y)=(T P+\gamma T N) /(P+\gamma N) \approx .814
$$

Probabilistic classifier predictions: correction under shift

A probabilistic classifier predicts the posterior probability $P(Y=+\mid G=g, A=a)$
[predict_proba in Python]

Assume a biased posterior probability $\hat{S}((g, a)) \approx P(Y=+\mid S=1, G=g, A=a)$, due to data shift How to compute unbiased prediction $P(Y=+\mid G=g, A=a)$?

Probabilistic classifier predictions: correction under shift

A probabilistic classifier predicts the posterior probability $P(Y=+\mid G=g, A=a)$ [predict_proba in Python]
Assume a biased posterior probability $\hat{S}((g, a)) \approx P(Y=+\mid S=1, G=g, A=a)$, due to data shift How to compute unbiased prediction $P(Y=+\mid G=g, A=a)$?

- Class dependent selection, but feature independent selection:

$$
P(S=1) \neq P(S=1 \mid Y=+)=P(S=1 \mid Y=+, G=g, A=a)
$$

- Correction under prior probability shift:

$$
\frac{\hat{S}((g, a))}{\hat{S}((g, a))+\gamma(1-\hat{S}((g, a)))}
$$

Same formula as for precision!

Probabilistic classifier predictions: correction under shift

A probabilistic classifier predicts the posterior probability $P(Y=+\mid G=g, A=a)$ [predict_proba in Python]
Assume a biased posterior probability $\hat{S}((g, a)) \approx P(Y=+\mid S=1, G=g, A=a)$, due to data shift How to compute unbiased prediction $P(Y=+\mid G=g, A=a)$?

- Class dependent selection, but feature independent selection:

$$
P(S=1) \neq P(S=1 \mid Y=+)=P(S=1 \mid Y=+, G=g, A=a)
$$

From Bayes rule applied to $P^{\prime}(\cdot)=P(\cdot \mid G=g, A=a) \approx \hat{S}((g, a))$, and following the same reasoning as per precision:

- Correction under prior probability shift:

$$
\frac{\hat{S}((g, a))}{\hat{S}((g, a))+\gamma(1-\hat{S}((g, a)))}
$$

Same formula as for precision!

Optional references

Optional readings:

- [Sipka et al., 2022] survey methods for prior-shift adaptation (also when γ is unknown!).
- [Pozzolo et al., 2015] apply correction to the study of effectiveness of undersampling.
- Tomás Šipka, Milan Šulc, and Jirí Matas (2022)

The Hitchhiker's Guide to Prior-Shift Adaptation.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 1516-1524.
https://arxiv.org/abs/2106.11695
Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi (2015)
When is Undersampling Effective in Unbalanced Classification Tasks?
ECML/PKDD (1) 200-215.
Lecture Notes in Computer Science, volume 9284.
https://doi.org/10.1007/978-3-319-23528-8_13

