
R: BASICS

Andrea Passarella

(plus some additions by Salvatore Ruggieri)

• R is an interpreted scripting
language

• Types of interactions
• Console based

• Input commands into the console

• Examine results

• Scripting

• Sequence of statements in a text file

• Use the ”source()” command to process the file

• Equivalent to provide the sequence of statements to the console

• How we will use it
• Variables to store data

• Functions (either existing in the packages or new ones written on purpose) to
process data

• (Limited) I/O with external files for

• Input/output of data

• scripting

BASIC CONCEPTS

a.passarella@iit.cnr.it 219/02/2024

• Launching the “R” application means
running the interpreter shell

LAUNCH, HELP, SAVE, EXIT

a.passarella@iit.cnr.it 319/02/2024

• RStudio is a front-end to the language
• Embeds the interpreter shell (Console)

• Visualisation of available variables

• Package installation

• Help

LAUNCH, HELP, SAVE, EXIT

a.passarella@iit.cnr.it 419/02/2024

• Help
• Search with the user interface

• help() function from the console

a.passarella@iit.cnr.it 519/02/2024

LAUNCH, HELP, SAVE, EXIT

• Workspace = set of
data, function, ...
defined during a session

• The elements of the
workspace are
shown in the
“Environment” pane

• or can be listed with
ls() from the console

LAUNCH, HELP, SAVE, EXIT

a.passarella@iit.cnr.it 619/02/2024

• Workspaces can be saved and restored from previous sessions
• Either through the UI in RStudio

• or via save.image() and load() functions from the R console

• Automatic actions (upon running/exiting from R/RStudio)
• Load workspace from a file “.RData” in the working directory upon launch

• Ask to save to “.RData” in the working directory upon exiting

LAUNCH, HELP, SAVE, EXIT

a.passarella@iit.cnr.it 719/02/2024

• For non-toys use, most likely you want to
• Write a script with a set of R statements

• Execute the script and get the results

• Writing a script
• Write the script as a text file in any text editor

• NOT using Word, using a real file text editor

• Use the file editor integrated in RStudio

• Execute the script
• Using the source()

function

• Loading the script file
into the editor and
“sourcing” from there

SCRIPTING

a.passarella@iit.cnr.it 819/02/2024

• Function data() list the set of available dataset provided by the
currently loaded packages

• data(iris) loads data from iris (the name of the dataset) in the
current workspace
• a variable (a dataframe, see later) called iris is added to the workspace

• Depending on the dataset format, it might be needed to access the
dataframe to “expand” it
• E.g., ls(iris)

LOADING DATASETS

a.passarella@iit.cnr.it 919/02/2024

• Defined as they are needed

• Assignment operator, <-, or =
• a = 15 defines variable a, with value 15

• From then on, a becomes available in the workspace

• Looking into variables
• Type the name in the console

• summary(variable_name) shows a summary, which depends on the type of
the variable

• e.g., if p is a set of values, summary(p) shows some reference percentiles of
these values

VARIABLES

a.passarella@iit.cnr.it 1019/02/2024

• Vectors are the most basic structure in R
• a collection of values of the same type

VECTORS, ARRAYS

a.passarella@iit.cnr.it 1119/02/2024

Function c(), returns a collection of the arguments

a is a vector of integers

b is a vector of character strings
• note the difference between

• 5 in a
• “5” in b

• Arrays are vectors with given dimensions

VECTORS, ARRAYS

a.passarella@iit.cnr.it 1219/02/2024

Collection of values
without any specific
dimension attribute

Now gets a single dimension

2 dimensions, 2 rows, 5 columns

• Arrays can be created more simply with array()

• Matrices are arrays with 2 dimensions only
• Note that arrays can have

more than 2 dimensions

VECTORS, ARRAYS

a.passarella@iit.cnr.it 1319/02/2024

seq() generates a sequence of values
between the given extremes

dim parameter of the function
to set the dimensions

• The [] operator
• Start counting from 1,

not from 0!

ACCESSING VECTOR/ARRAY ELEMENTS

a.passarella@iit.cnr.it 1419/02/2024

Element with index (1,3)

All elements of the first row

All elements of the second column

NB: c[,2] is itself a vector, thus one can further index it

First element of c[,2]
(equivalent to c[1,2])

• Negative indices
• c[,-2]: c with all columns but 2

• In general, negative indices are excluded,
e.g. c[,c(-1;-3)]

• Range indices
• c[,2:4]: all columns of matrix c between 2 and 4

• Expressions as indices
• c[c>5]: all values greater than 5

• c[c>5 & c<10]: all values between 5 and 10

• return value is a vector

ACCESSING VECTOR/ARRAY ELEMENTS

a.passarella@iit.cnr.it 1519/02/2024

variable c combination function c()

• Standard set of operators of any programming language
• ! Unary not

• < Less than, binary

• > Greater than, binary

• == Equal to, binary

• >= Greater than or equal to, binary

• <= Less than or equal to, binary

• & And, binary, vectorized

• && And, binary, not vectorized

• | Or, binary, vectorized

• || Or, binary, not vectorized

LOGICAL OPERATORS

a.passarella@iit.cnr.it 1619/02/2024

• c[c>5 & c<10]: all values between 5 and 10

• Steps
• c>5: a matrix of the same dimensions of c,

with TRUE or FALSE values

• c<10

• c>5 & c<10: a matrix of the same
dimensions of c, with the logical AND
of the two expressions

• c[c>5 & c<10]: select from c only
the elements for which the indices
are TRUE

LOGICAL OPERATORS: VECTORISED VS

NON-VECTORISED

a.passarella@iit.cnr.it 1719/02/2024

• c[c>5 & c<10]: all values between 5 and 10

• Steps
• c>5: a matrix of the same dimensions of c,

with TRUE or FALSE values

• c<10

• c>5 & c<10: a matrix of the same
dimensions of c, with the logical AND
of the two expressions

• We need to do the logical AND on an
element-by-element of the two matrices

• This is obtained with the vectorised version
of the operator, “&”

• c>5 && c<10: non-vectorised version

• Applicable to single-element data

• In case of vectors stops at the first element

• Typically used for indices in control statements and loops

LOGICAL OPERATORS: VECTORISED VS

NON-VECTORISED

a.passarella@iit.cnr.it 1819/02/2024

• Sometimes useful to build matrices by stitching together existing
arrays or matrices
• cbind() joins together vectors/matrices by column

• rbind() joins together vectors/matrices by row

BUILDING MATRICES

a.passarella@iit.cnr.it 1919/02/2024

previous matrix c vector d

Do not assign names to columns

• Lists are collections of arbitrary data types

LISTS, DATA FRAMES

a.passarella@iit.cnr.it 2019/02/2024

character string

integer

vector of 3 elements

Function length()
• size of the variable
• different from dim()

• Data frames
• lists whose components are all of the same length

• If components are seen as columns of a matrix,
all columns must have the same size

• With respect to matrices, columns can be of different types

LISTS, DATA FRAMES

a.passarella@iit.cnr.it 2119/02/2024

Note the difference with the
definition of Lst!

• $ or [[]] operator
• Selection of elements in a list or data frame

• Either by position: df[[1]]

• Or by name: df[[“name”]], df$name

• Levels are the unique elements found,
if defined

ACCESSING ELEMENTS OF LISTS AND

DATAFRAMES

a.passarella@iit.cnr.it 2219/02/2024

• Assigning NULL to an element drops that element

• Create a new element by just assigning values to the name of the
new element

ADDING REMOVING ELEMENTS FROM

LISTS/DATA FRAMES

a.passarella@iit.cnr.it 2319/02/2024

• [[]] or $ operators return a vector
• Whose elements can be managed with the normal index operators

• E.g., []

MODIFYING ELEMENTS IN A LIST/DATA FRAME

a.passarella@iit.cnr.it 2419/02/2024

• Sometimes it is useful to access Data Frames as matrices

DATA FRAMES AS MATRICES

a.passarella@iit.cnr.it 2519/02/2024

Names of the rows
• Access and modify

via rownames(df)

Names of the columns
• Access and modify

via colnames(df)

Matrix part of the data frame

Select people whose age
is greater than 16

Access and modify via
the [,] operator

T/F index vectors can also
be applied to columns!
• Select only those columns

for which the condition
is true

• With arrays, element-by-element operation

• Same semantic with matrices

• Use “%*%” for the standard matrix product form

ARITHMETIC OPERATIONS

a.passarella@iit.cnr.it 2619/02/2024

• General form

• If (statement1)

statement2

else

statement3

• Example

• if (x > 0) {

count = count+1

x = x+1

print(x)

} else {

count = count-1

x = x-1

print(x)

}

CONDITIONAL STATEMENT

a.passarella@iit.cnr.it 2719/02/2024

• While loop
• while (expression)

statement

• For loop
• for (name in statement1) statement2

LOOP STATEMENT

a.passarella@iit.cnr.it 2819/02/2024

NB: statement1 is typically
a set of values

• General form
• name <- function(arg_1, arg_2, ...)

expression

• Return the max of two arguments

• Return the max and whether it was first or second argument

FUNCTIONS

a.passarella@iit.cnr.it 2919/02/2024

• Functions may be defined with default arguments

• Parameters can also be given by name (instead of by position)

DEFAULT AND NAMED ARGUMENTS

a.passarella@iit.cnr.it 3019/02/2024

• lapply(ls, f)
• Applies function f() to each element of list ls. Returns a list of results.

• sapply(ls, f)
• Applies function f() to each element of list ls. Returns an array of results.

IMPLICIT LOOPS

a.passarella@iit.cnr.it 3119/02/2024

• R includes a family of functions to manage the most popular
distributions

• Given a specific distribution (e.g., normal, named “norm” in R)
• rnorm(100, mean=0, std=1)

• Generates 100 samples from a normal distribution with mean 0 and standard
deviation 1

• dnorm(3, mean=0, std=1)

• Density function computed at 3 (f(3))

• pnorm(3, mean=0, std=1)

• Distribution function computed at 3
(F(3) = P(X<=3) = 0.9986501)

• qnorm(0.9986501, mean=0, std=1)

• Quantile corresponding to 0.9986501 (t s.t. P(X<=t)= 0.9986501)

• Given a set of values in a vector x
• mean(x) gives the average

• sd(x) gives the standard deviation

• Summary(x) gives a summary of the main percentiles of the distribution

PROBABILITY DISTRIBUTIONS

a.passarella@iit.cnr.it 3219/02/2024

1

0

k

F(k)

x = pnorm(t)

t = qnorm(x)

• Parameters to the p,q,r,d functions depend on the particular
distribution
• See also https://CRAN.R-project.org/view=Distributions

PROBABILITY DISTRIBUTIONS

a.passarella@iit.cnr.it 3319/02/2024

https://cran.r-project.org/view=Distributions

• Read values into a vector
• scan() function

BASIC I/O

a.passarella@iit.cnr.it 3419/02/2024

File “sample.txt”

A path to the file to read
• if relative, the working directory is assumed
• Use getwd() for the name of the working directory
• Equivalent to paste(getwd(),”/sample.txt”,sep=“”)

Initial lines to skip

By default, elements are separated by white spaces or end-of-line
• can be modified through the sep argument

• Read structured data into data frames
• read.table() function

BASIC I/O

a.passarella@iit.cnr.it 3519/02/2024

File “sample.txt”

Whether the first
line should be used
to get the column
names

• write.table() function

WRITING DATA FRAMES TO FILES

a.passarella@iit.cnr.it 3619/02/2024

Data frame to write Where to write it

Whether to put row names
(usually numbers) in front of rows

Whether to put quotes around character strings

Use tab as separator

File “out_df.txt”

• write() function

WRITING VECTORS, LISTS, OR MATRICES

a.passarella@iit.cnr.it 3719/02/2024

Object to write Where to write it

Use tab as separator Number of columns in the output file
• Here equal to the number of columns of the

matrix
• Same with function ncol(c)

File “out_matrix.txt”

1. Install (if needed) the MASS package and load it

2. Load the “Animals” data set

3. Calculate the ratio between animals' brain size and their body
size, adding the result as a new column called “proportions” to
the Animals data frame

4. Calculate average and standard deviation of the “proportions”

5. Remove the column “proportions” from the data frame

6. Select animals with body size > 100

7. Get a list of animals' names with body size > 100 and brain size >
100

EXERCISE

a.passarella@iit.cnr.it 3819/02/2024

8. Find the average body and brain size for the first 10 animals in the dataset

9. Write a function that returns a list of two elements containing the mean
value and the standard deviation of a vector of elements

• Apply this to the body and brain sizes of Animals

10. Create a vector called body_norm with 100 samples from a Normal random
variable with average and standard deviation equal to those of body sizes in
the Animals dataset

• print the summary of the generated dataset

• compare the summary with another dataset of 100 samples with same average and sd = 1

11. Save the Animals data frame to a file named “animals_a.txt” with row
and column names

12. Create a copy of the file named “animals_b.txt”, then
• modify some data in it

• Read the file into a new data frame, Animals_b

• Write a function that returns the rows that differ between Animals and Animals_b

13. Save the workspace to a file, clean the workspace, restore the workspace
from the file

EXERCISE

a.passarella@iit.cnr.it 3919/02/2024

	Slide 1: R: Basics
	Slide 2: Basic Concepts
	Slide 3: Launch, Help, Save, Exit
	Slide 4: Launch, Help, Save, Exit
	Slide 5: Launch, Help, Save, Exit
	Slide 6: Launch, Help, Save, Exit
	Slide 7: Launch, Help, Save, Exit
	Slide 8: Scripting
	Slide 9: Loading Datasets
	Slide 10: Variables
	Slide 11: Vectors, Arrays
	Slide 12: Vectors, Arrays
	Slide 13: Vectors, Arrays
	Slide 14: Accessing Vector/Array Elements
	Slide 15: Accessing Vector/Array Elements
	Slide 16: Logical Operators
	Slide 17: Logical Operators: Vectorised vs Non-vectorised
	Slide 18: Logical Operators: Vectorised vs Non-vectorised
	Slide 19: Building Matrices
	Slide 20: Lists, Data Frames
	Slide 21: Lists, Data Frames
	Slide 22: Accessing Elements of Lists and DataFrames
	Slide 23: Adding removing elements from Lists/Data Frames
	Slide 24: Modifying elements in a List/Data Frame
	Slide 25: Data Frames as Matrices
	Slide 26: Arithmetic Operations
	Slide 27: Conditional Statement
	Slide 28: Loop Statement
	Slide 29: Functions
	Slide 30: Default and Named Arguments
	Slide 31: Implicit Loops
	Slide 32: Probability Distributions
	Slide 33: Probability Distributions
	Slide 34: Basic I/O
	Slide 35: Basic I/O
	Slide 36: Writing Data Frames to Files
	Slide 37: Writing Vectors, Lists, or Matrices
	Slide 38: Exercise
	Slide 39: Exercise

