6 Information Theory

In this chapter, we introduce a few basic concepts from the field of information theory. More
details can be found in other books such as [Mac03; CT06], as well as the sequel to this book, [Mur22].

6.1 Entropy

The entropy of a probability distribution can be interpreted as a measure of uncertainty, or lack
of predictability, associated with a random variable drawn from a given distribution, as we explain
below.

We can also use entropy to define the information content of a data source. For example,
suppose we observe a sequence of symbols X,, ~ p generated from distribution p. If p has high
entropy, it will be hard to predict the value of each osbervation X,,. Hence we say that the dataset
D =(Xy,...,X,) has high information content. By contrast, if p is a degenerate distribution with 0
entropy (the minimal value), then every X,, will be the same, so D does not contain much information.
(All of this can be formalized in terms of data compression, as we discuss in the sequel to this book.)

6.1.1 Entropy for discrete random variables
The entropy of a discrete random variable X with distribution p over K states is defined by

K

H(X) 2 =" p(X = k)logy p(X = k) = —Ex [log p(X)] (6.1)
k=1

(Note that we use the notation H (X) to denote the entropy of the rv with distribution p, just as
people write V [X] to mean the variance of the distribution associated with X; we could alternatively
write H (p).) Usually we use log base 2, in which case the units are called bits (short for binary
digits). For example, if X € {1,...,5} with histogram distribution p = [0.25,0.25,0.2,0.15,0.15], we
find H = 2.29 bits. If we use log base e, the units are called nats.

The discrete distribution with maximum entropy is the uniform distribution. Hence for a K-ary
random variable, the entropy is maximized if p(x = k) = 1/K; in this case, H (X) = log, K. To see
this, note that

K
H(X)=-) % log(1/K) = —log(1/K) = log(K) (6.2)
k=1
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Figure 6.1: Entropy of a Bernoulli random variable as a function of 8. The maximum entropy is log, 2 = 1.
Generated by code at figures.probml.ai/book1/6.1.
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Figure 6.2: (a) Some aligned DNA sequences. Each row is a sequence, each column is a location within the
sequence. (b) The corresponding position weight matrix represented as a sequence logo. Fach column
represents a probablity distribution over the alphabet { A, C, G, T} for the corresponding location in the sequence.
The size of the letter is proportional to the probability. The height of column t is given by 2 — Hy, where
0 < H¢ < 2 is the entropy (in bits) of the distribution py. Thus deterministic distributions (with an entropy
of 0, corresponding to highly conserved locations) have height 2, and uniform distributions (with an entropy
of 2) have height 0. Generated by code at figures.probml.ai/bookl1/6.2.

Conversely, the distribution with minimum entropy (which is zero) is any delta-function that puts all
its mass on one state. Such a distribution has no uncertainty.

For the special case of binary random variables, X € {0,1}, we can write p(X = 1) = 6 and
p(X =0) =1 — 6. Hence the entropy becomes

H (X) = =[p(X = 1)log, p(X = 1) + p(X = 0)log, p(X = 0)] (6.3)

= —[flog, 0+ (1 — 6)logy(1 — 6)] (6.4)

This is called the binary entropy function, and is also written H (6). We plot this in Figure 6.1.
We see that the maximum value of 1 bit occurs when the distribution is uniform, § = 0.5. A fair coin
requires a single yes/no question to determine its state.

As an interesting application of entropy, consider the problem of representing DNA sequence
motifs, which is a distribution over short DNA strings. We can estimate this distribution by aligning
a set of DNA sequences (e.g., from different species), and then estimating the empirical distribution
of each possible nucleotide from the 4 letter alphabet X ~ {A,C,G, T} at each location ¢ in the ith
sequence as follows:
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N N N N
N = (ZH(Xit =A) > 1(Xu=C),» I(Xu=G),> I(Xy = T)) (6.5)
0, = Nt;N ; (6.6)

This N; is a length four vector counting the number of times each letter appears at each location
amongst the set of sequences. This 0, distribution is known as a motif. We can also compute the
most probable letter in each location; this is called the consensus sequence.

One way to visually summarize the data is by using a sequence logo, as shown in Figure 6.2(b).
We plot the letters A, C, G and T, with the most probable letter on the top; the height of the t’th
bar is defined to be 0 < 2 — H; < 2, where H, is the entropy of 9t (note that 2 is the maximum
possible entropy for a distribution over 4 letters). Thus tall bars correspond to nearly deterministic
distributions, which are the locations that are conserved by evolution (e.g., because they are part of
a gene coding region). In this example, we see that column 13 is all G’s, and hence has height 2.

Estimating the entropy of a random variable with many possible states requires estimating its
distribution, which can require a lot of data. For example, imagine if X represents the identity of
a word in an English document. Since there is a long tail of rare words, and since new words are
invented all the time, it can be difficult to reliably estimate p(X) and hence H (X). For one possible
solution to this problem, see [VV13].

6.1.2 Cross entropy

The cross entropy between distribution p and ¢ is defined by

K
H(p,q) £ =) prlogqx (6.7)
k=1

One can show that the cross entropy is the expected number of bits needed to compress some data
samples drawn from distribution p using a code based on distribution ¢q. This can be minimized by
setting ¢ = p, in which case the expected number of bits of the optimal code is H(p, p) = H(p) — this
is known as Shannon’s source coding theorem (see e.g., [CT06]).

6.1.3 Joint entropy

The joint entropy of two random variables X and Y is defined as

H(X,Y) =~ plz,y)log p(z,y) (6.8)
Ty
For example, consider choosing an integer from 1 to 8, n € {1,...,8}. Let X(n) =1 if n is even, and

Y(n) =1if n is prime:

n
X
Y
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The joint distribution is

p(X.Y)|Y=0 Y=1
X =0 1 3
3 i
X =1 ‘ 8 8
so the joint entropy is given by
1 1 3 3 3 1 1 .
H(X,Y)=- 3 log, A + 3 log, 3 + 3 log, 3 + A log, g} = 1.81 bits (6.9)

Clearly the marginal probabilities are uniform: p(X = 1) = p(X =0) = p(Y =0) = p(Y =
1) = 0.5, 80 H(X) = H(Y) = 1. Hence H(X,Y) = 1.81 bits < H(X) + H(Y) = 2 bits. In
fact, this upper bound on the joint entropy holds in general. If X and Y are independent, then
H(X,Y)=H(X)+H(), so the bound is tight. This makes intuitive sense: when the parts are
correlated in some way, it reduces the “degrees of freedom” of the system, and hence reduces the

overall entropy.
What is the lower bound on H (X,Y)? If Y is a deterministic function of X, then H (X,Y) = H (X).
So

H(X,Y) > max{H (X),H(Y)} >0 (6.10)

Intuitively this says combining variables together does not make the entropy go down: you cannot
reduce uncertainty merely by adding more unknowns to the problem, you need to observe some data,
a topic we discuss in Section 6.1.4.

We can extend the definition of joint entropy from two variables to n in the obvious way.

6.1.4 Conditional entropy

The conditional entropy of Y given X is the uncertainty we have in Y after seeing X, averaged
over possible values for X:

H(Y]X) £ Ep(x) [H ((Y\X))] (6.11)
—Zp (p(Y|X =) Zp Z (/) log plylx) (6.12)

(,y
=—> plz,y)logp(ylz) = Zp z,y) log 221 (6.13)
" p( )

== p(z,y)logp(z,y) Zp (6.14)

zy
=H(X,Y)-H(X) (6.15)
If Y is a deterministic function of X, then knowing X completely determines Y, so H (Y| X) = 0.
If X and Y are independent, knowing X tells us nothing about Y and H(Y|X) = H(Y). Since
H(X,Y) <H(Y)+H(X), we have
H((Y|X) <H(Y) (6.16)
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with equality iff X and Y are independent. This shows that, on average, conditioning on data never
increases one’s uncertainty. The caveat “on average” is necessary because for any particular observation
(value of X), one may get more “confused” (i.e., H (Y |x) > H(Y)). However, in expectation, looking
at the data is a good thing to do. (See also Section 6.3.8.)

We can rewrite Equation (6.15) as follows:

H (X1, Xz) = H(X1) + H (X2[X1) (6.17)

This can be generalized to get the chain rule for entropy:

H(X17X2a---aXn):ZH(Xi|X17'-'7Xi—1) (6.18)

i=1
6.1.5 Perplexity
The perplexity of a discrete probability distribution p is defined as
perplexity(p) £ 2 () (6.19)

This is often interpreted as a measure of predictability. For example, suppose p is a uniform
distribution over K states. In this case, the perplexity is K. Obviously the lower bound on perplexity
is 29 = 1, which will be achieved if the distribution can perfectly predict outcomes.

Now suppose we have an empirical distribution based on data D:

1 N
po(elD) = 3, (@) (6:20)
n=1

We can measure how well p predicts D by computing
perplexity (pp, p) 2 2H(po.p) (6.21)
Perplexity is often used to evaluate the quality of statistical language models, which is a generative

model for sequences of tokens. Suppose the data is a single long document x of length N, and
suppose p is a simple unigram model. In this case, the cross entropy term is given by

N
1
H=—-—5"1 . 22
an_:l og p(zn) (6.22)

and hence the perplexity is given by

perplexity(pp, p) = 27 = 9~ w log(Ilimy p(an)) — ¥ (6.23)

This is sometimes called the exponentiated cross entropy. We see that this is the geometric
mean of the inverse predictive probabilities.

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license
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In the case of language models, we usually condition on previous words when predicting the next
word. For example, in a bigram model, we use a second order Markov model of the form p(z;|z; 1).
We define the branching factor of a language model as the number of possible words that can
follow any given word. We can thus interpret the perplexity as the weighted average branching factor.
For example, suppose the model predicts that each word is equally likely, regardless of context, so
p(zi|r;_1) = 1/K. Then the perplexity is ((1/K)N)~/N = K. If some symbols are more likely than
others, and the model correctly reflects this, its perplexity will be lower than K. However, as we
show in Section 6.2, we have H (p*) < H (p*, p), so we can never reduce the perplexity below the
entropy of the underlying stochastic process p*.

See [JMO08, p96] for further discussion of perplexity and its uses in language models.

6.1.6 Differential entropy for continuous random variables *

If X is a continuous random variable with pdf p(x), we define the differential entropy as
h(X) 2 — / da p(x) log p(x) (6.24)
x
assuming this integral exists. For example, suppose X ~ U(0,a). Then
@1 1
MX)=— / dx = log — =loga (6.25)
Jo a a

Note that, unlike the discrete case, differential entropy can be negative. This is because pdf’s can be
bigger than 1. For example if X ~ U(0,1/8), we have h(X) = log,(1/8) = —3.

One way to understand differential entropy is to realize that all real-valued quantities can only be
represented to finite precision. It can be shown [CT91, p228] that the entropy of an n-bit quantization
of a continuous random variable X is approximately h(X) + n. For example, suppose X ~ U (0, %)
Then in a binary representation of X, the first 3 bits to the right of the binary point must be 0 (since
the number is < 1/8). So to describe X to n bits of accuracy only requires n — 3 bits, which agrees
with h(X) = —3 calculated above.

6.1.6.1 Example: Entropy of a Gaussian

The entropy of a d-dimensional Gaussian is

1 1 1
RN (p, X)) = B In |27eX| = 5 In[(27e)?| 2] = g + gln(%’) + B In |X| (6.26)
In the 1d case, this becomes
h(N (i,0%)) = %ln [2meo?] (6.27)

6.1.6.2 Connection with variance

The entropy of a Gaussian increases monotonically as the variance increases. However, this is not
always the case. For example, consider a mixture of two 1d Gaussians centered at -1 and +1. As we
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move the means further apart, say to -10 and +10, the variance increases (since the average distance
from the overall mean gets larger). However, the entropy remains more or less the same, since we are
still uncertain about where a sample might fall, even if we know that it will be near -10 or +10. (The
exact entropy of a GMM is hard to compute, but a method to compute upper and lower bounds is
presented in [Hub-+08].)

6.1.6.3 Discretization

In general, computing the differential entropy for a continuous random variable can be difficult. A
simple approximation is to discretize or quantize the variables. There are various methods for this
(see e.g., [DKS95; KKO06] for a summary), but a simple approach is to bin the distribution based on
its empirical quantiles. The critical question is how many bins to use [LM04]. Scott [Sco79] suggested
the following heuristic:

max (D) — min(D)

B=N'3
3.50(D)

(6.28)

where (D) is the empirical standard deviation of the data, and N = |D| is the number of datapoints
in the empirical distribution. However, the technique of discretization does not scale well if X is a
multi-dimensional random vector, due to the curse of dimensionality.

6.2 Relative entropy (KL divergence) *

Given two distributions p and ¢, it is often useful to define a distance metric to measure how “close”

or “similar” they are. In fact, we will be more general and consider a divergence measure D(p, q)
which quantifies how far ¢ is from p, without requiring that D be a metric. More precisely, we say
that D is a divergence if D(p,q) > 0 with equality iff p = ¢, whereas a metric also requires that D be
symmetric and satisfy the triangle inequality, D(p,r) < D(p, q)+ D(g,r). There are many possible
divergence measures we can use. In this section, we focus on the Kullback-Leibler divergence
or KL divergence, also known as the information gain or relative entropy, between two
distributions p and gq.

6.2.1 Definition

For discrete distributions, the KL divergence is defined as follows:

K
Pk
D (pllg) £ prlog = (6.29)
k=1 ax
This naturally extends to continuous distributions as well:

Dxw (pllg) £ /dw p(z) log % (6.30)
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6.2.2 Interpretation

We can rewrite the KL as follows:

Dy (plla) = Zm Ingk_Zpk 10g i (6.31)

— H(p) H(p,q)

We recognize the first term as the negative entropy, and the second term as the cross entropy. It can
be shown that the cross entropy H(p, ¢) is a lower bound on the number of bits needed to compress
data coming from distribution p if your code is designed based on distribution ¢; thus we can interpret
the KL divergence as the “extra number of bits” you need to pay when compressing data samples
if you use the incorrect distribution g as the basis of your coding scheme compared to the true
distribution p.

There are various other interpretations of KL divergence. See the sequel to this book, [Mur22|, for
more information.

6.2.3 Example: KL divergence between two Gaussians

For example, one can show that the KL divergence between two multivariate Gaussian distributions
is given by

Dgr (N (x| p1, Zn) [NV (x| p2, X2))

_ _ det(X
~ tr(2518) + (po — p1) 25 (o — pa) — D+ log (ﬁ)} (6.32)
In the scalar case, this becomes
o o? + — 21
D (N (2|1, 01) | N (]2, 02)) = log 22 4 TLT AL~ F2) (’“2 Ha)” L (6.33)
g1 20’2 2

6.2.4 Non-negativity of KL

In this section, we prove that the KL divergence is always non-negative.
To do this, we use Jensen’s inequality. This states that, for any convex function f, we have
that

Z i) < Zn: (6.34)

where \; > 0 and )1 | A\; = 1. In words, this result says that f of the average is less than the

average of the f’s. This is clearly true for n = 2, since a convex function curves up above a straight

line connecting the two end points (see Section 8.1.3). To prove for general n, we can use induction.
For example, if f(z) = log(x), which is a concave function, we have

log(E,g(x)) > E, log(g(z)) (6.35)

We use this result below.
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Theorem 6.2.1. (Information inequality) Dxy, (pllq) > 0 with equality iff p = q.

Proof. We now prove the theorem following [CT06, p28]. Let A = {z : p(z) > 0} be the support of
p(z). Using the concavity of the log function and Jensen’s inequality (Section 6.2.4), we have that

D (plla) = — 3 ple) = 3 o) 1og1@ (6.36)

€A ) T€EA 1})
q x)
<log ) p(x —T) =log ¥ q(x (6.37)
T€EA TC€A
< log Z qg(x) =logl=0 (6.38)
zeEX

Since log(z) is a strictly concave function (—log(x) is convex), we have equality in Equation (6.37) iff
p(z) = cq(x) for some c that tracks the fraction of the whole space X contained in A. We have equality
in Equation (6.38) iff ) 4 q(x) = > .y q(x) = 1, which implies ¢ = 1. Hence Dxy (p|lq) = 0 iff
p(z) = g(x) for all . O

This theorem has many important implications, as we will see throughout the book. For example,
we can show that the uniform distribution is the one that maximizes the entropy:

Corollary 6.2.1. (Uniform distribution mazimizes the entropy) H(X) <log|X|, where |X| is the
number of states for X, with equality iff p(x) is uniform.

Proof. Let u(z) = 1/|X|. Then

LE
0 < Di (pl|u) Zp ) = log ¥l —H(X) (6.39)

6.2.5 KL divergence and MLE

Suppose we want to find the distribution ¢ that is as close as possible to p, as measured by KL
divergence:

' = argmin Dec. (pl) = argmin [ p(o)logp(e)ds [ pla)loga(e)ds (6.40)

Now suppose p is the empirical distribution, which puts a probability atom on the observed training
data and zero mass everywhere else:

N
po(z) =+ > 8 —x,) (6.41)
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Using the sifting property of delta functions we get

Dxw (pollg) = — /pv(x) log q(z)dz + C (6.42)
= / l% Z d(x —zy,)| logg(z)dx + C (6.43)
= —% Z log q(z,,) +C (6.44)

where C' = f p(x)log p(x)dx is a constant independent of ¢q. This is called the cross entropy
objective, and is equal to the average negative log likelihood of ¢ on the training set. Thus we see
that minimizing KL divergence to the empirical distribution is equivalent to maximizing likelihood.

This perspective points out the flaw with likelihood-based training, namely that it puts too
much weight on the training set. In most applications, we do not really believe that the empirical
distribution is a good representation of the true distribution, since it just puts “spikes” on a finite
set of points, and zero density everywhere else. Even if the dataset is large (say 1M images), the
universe from which the data is sampled is usually even larger (e.g., the set of “all natural images” is
much larger than 1M). We could smooth the empirical distribution using kernel density estimation
(Section 16.3), but that would require a similar kernel on the space of images. An alternative,
algorithmic approach is to use data augmentation, which is a way of perturbing the observed
data samples in way that we believe reflects plausible “natural variation”. Applying MLE on this
augmented dataset often yields superior results, especially when fitting models with many parameters
(see Section 19.1).

6.2.6 Forward vs reverse KL

Suppose we want to approximate a distribution p using a simpler distribution gq. We can do this by
minimizing Dxg, (q||p) or Dgw (p|/q). This gives rise to different behavior, as we discuss below.
First we consider the forwards KL, also called the inclusive KL, defined by

Dxw (pllg) = / p(z)log ‘;%dm (6.45)

Minimizing this wrt ¢ is known as an M-projection or moment projection.

We can gain an understanding of the optimal ¢ by considering inputs x for which p(z) > 0 but
g(z) = 0. In this case, the term log p(x)/q(z) will be infinite. Thus minimizing the KL will force ¢
to include all the areas of space for which p has non-zero probability. Put another way, ¢ will be
zero-avoiding or mode-covering, and will typically over-estimate the support of p. Figure 6.3(a)
illustrates mode covering where p is a bimodal distribution but ¢ is unimodal.

Now consider the reverse KL, also called the exclusive KL:

Dy (qllp) = / q(z)log %dw (6.46)

Minimizing this wrt ¢ is known as an I-projection or information projection.
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(b) (c)

Figure 6.3: Illustrating forwards vs reverse KL on a bimodal distribution. The blue curves are the contours of
the true distribution p. The red curves are the contours of the unimodal approzimation q. (a) Minimizing
forwards KL, Dxu (p|lq), wrt q causes q to “cover” p. (b-¢) Minimizing reverse KL, Dxu (q||p) wrt q causes
q to “lock onto” one of the two modes of p. Adapted from Figure 10.3 of [Bis06]. Generated by code at
figures.probml.ai/book1/6.5.

We can gain an understanding of the optimal ¢ by consider inputs x for which p(x) = 0 but
g(z) > 0. In this case, the term log ¢(z)/p(z) will be infinite. Thus minimizing the exclusive KL will
force q to exclude all the areas of space for which p has zero probability. One way to do this is for g
to put probability mass in very few parts of space; this is called zero-forcing or mode-seeking
behavior. In this case, ¢ will typically under-estimate the support of p. We illustrate mode seeking
when p is bimodal but ¢ is unimodal in Figure 6.3(b-c).

6.3 Mutual information *

The KL divergence gave us a way to measure how similar two distributions were. How should we
measure how dependant two random variables are? One thing we could do is turn the question
of measuring the dependence of two random variables into a question about the similarity of their
distributions. This gives rise to the notion of mutual information (MI) between two random
variables, which we define below.

6.3.1 Definition

The mutual information between rv’s X and Y is defined as follows:

I(X:Y) 2 Dyw (p(e,9) p(2)p(y)) = Z; 3 vheog % (6.47)

(We write I(X;Y") instead of I(X,Y), in case X and/or Y represent sets of variables; for example, we
can write [(X; Y, Z) to represent the MI between X and (Y, Z).) For continuous random variables,
we just replace sums with integrals.

It is easy to see that MI is always non-negative, even for continuous random variables, since

[(X;Y) = Dgw (p(z,y)|lp(z)p(y)) > 0 (6.48)
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We achieve the bound of 0 iff p(z,y) = p(x)p(y).

6.3.2 Interpretation

Knowing that the mutual information is a KL. divergence between the joint and factored marginal
distributions tells us that the MI measures the information gain if we update from a model that
treats the two variables as independent p(x)p(y) to one that models their true joint density p(x,y).

To gain further insight into the meaning of MI, it helps to re-express it in terms of joint and
conditional entropies, as follows:

1(X;Y)=H(X)-H(X|Y)=H(Y)-H(Y|X) (6.49)

Thus we can interpret the MI between X and Y as the reduction in uncertainty about X after
observing Y, or, by symmetry, the reduction in uncertainty about Y after observing X. Incidentally,
this result gives an alternative proof that conditioning, on average, reduces entropy. In particular, we
have 0 <I(X;Y)=H(X)-H(X|Y), and hence H(X|Y) < H(X).

We can also obtain a different interpretation. One can show that

I(X;Y)=H(X,Y)-H(X|Y)-H(Y|X) (6.50)
Finally, one can show that
I(X;YV)=HX)+H(Y)-H(X,Y) (6.51)

See Figure 6.4 for a summary of these equations in terms of an information diagram. (Formally,
this is a signed measure mapping set expressions to their information-theoretic counterparts [Yeu91].)

6.3.3 Example

As an example, let us reconsider the example concerning prime and even numbers from Section 6.1.3.
Recall that H (X) =H (Y) = 1. The conditional distribution p(Y|X) is given by normalizing each
row:

| Y=0 Y=1
X=0 | 1 2
STEN
Hence the conditional entropy is
1 3 3 1
H(Y|X)= 1og2 log2 log2 1og2 = 0.81 bits (6.52)
4 4 4 4
and the mutual information is
I(X;Y)=H(Y)-H(Y]|X)=(1-0.81) bits = 0.19 bits (6.53)
You can easily verify that
HX,V)=HX|Y)+I(X;Y)+H(Y|X) (6.54)
= (0.81 +0.19 + 0.81) bits = 1.81 bits (6.55)
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Entropy Joint Enteopy
. .
) = % H) =Y HExH) = XUY
Mutuel Information Conditiono.|l Entropy
| : : :Y @
T(xY) = xny H(xINY = x-¥ HYIR) 2 Y-x

Figure 6.4: The marginal entropy, joint entropy, conditional entropy and mutual information represented as
information diagrams. Used with kind permission of Katie Everett.

6.3.4 Conditional mutual information

We can define the conditional mutual information in the obvious way

1(X;Y|Z) £ Epz) [[(X;Y)|Z] (6.56)
p(x,y|z)

=Epay.2) [log m} (6.57)

=H(X|Z)+H(Y|Z)-H(X,Y|Z) (6.58)

—H(X|Z)-H(X|Y,Z)=H(Y|Z)-H(Y|X, Z) (6.59)

=H(X,Z2)+H(Y,Z)-H(Z) - H(X,Y,Z) (6.60)

—I(Y;X,Z) - 1(Y; Z) (6.61)

The last equation tells us that the conditional MI is the extra (residual) information that X tells us
about Y, excluding what we already knew about Y given Z alone.
We can rewrite Equation (6.61) as follows:

I(Z,Y; X)=1(Z; X))+ 1(V; X|2) (6.62)
Generalizing to N variables, we get the chain rule for mutual information:

N
1(Zy,. o 28 X) = Y W Zn; X| 2, Zn1) (6.63)

n=1
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6.3.5 MI as a “generalized correlation coefficient”

Suppose that (z,y) are jointly Gaussian:

()~ (%)) o

We now show how to compute the mutual information between X and Y.
Using Equation (6.26), we find that the entropy is

h(X,Y) = %log [(2me)* det B] = %1og [(2me)?0* (1 — p?)] (6.65)
Since X and Y are individually normal with variance o2, we have
MX)=hY)= %log [2mea?] (6.66)
Hence
I(X,)Y)=h(X)+ 1Y) - h(X,)Y) (6.67)
— log[2meo?] — %log[(2W6)204(1 — ) (6.68)
= %10g[(2ﬂ'60’2)2] — %10g[(27‘l’60’2)2(1 —p?)] (6.69)
= %1og 1——1p2 = —% log[1 — p?] (6.70)

We now discuss some interesting special cases.

1. p=1. In this case, X =Y, and I(X,Y) = oo, which makes sense. Observing Y tells us an infinite
amount of information about X (as we know its real value exactly).

2. p=0. In this case, X and Y are independent, and I(X,Y) = 0, which makes sense. Observing YV’
tells us nothing about X.

3. p=—1. In this case, X = =Y, and I(X,Y) = oo, which again makes sense. Observing Y allows
us to predict X to infinite precision.

Now consider the case where X and Y are scalar, but not jointly Gaussian. In general it can be
difficult to compute the mutual information between continuous random variables, because we have
to estimate the joint density p(X,Y"). For scalar variables, a simple approximation is to discretize
or quantize them, by dividing the ranges of each variable into bins, and computing how many values
fall in each histogram bin [Sco79]. We can then easily compute the MI using the empirical pmf.

Unfortunately, the number of bins used, and the location of the bin boundaries, can have a
significant effect on the results. One way to avoid this is to use K-nearest neighbor distances to
estimate densities in a non-parametric, adaptive way. This is the basis of the KSG estimator for MI
proposed in [KSGO04]. This is implemented in the sklearn.feature selection.mutual info regression
function. For papers related to this estimator, see [GOV18; HN19].
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6.3.6 Normalized mutual information

For some applications, it is useful to have a normalized measure of dependence, between 0 and 1. We
now discuss one way to construct such a measure.
First, note that

1(X;Y)=H(X)—H(X[Y) < H(X) (6.71)
—H(Y) - H(Y|X) <H(Y) (6.72)
0 <I(X;Y) < min (H(X),H(Y)) (6.73)

Therefore we can define the normalized mutual information as follows:

[(X;Y)
min (HL (X)) H (V) = (6.74)

NMI(X,Y) =

This normalized mutual information ranges from 0 to 1. When NMI(X,Y) = 0, we have
I(X;Y)=0,s0X and Y are independent. When NMI(X,Y) =1, and H(X) < H(Y'), we have

I(X;Y)=H(X)-HX|Y)=H(X) = H(X[Y)=0 (6.75)

and so X is a deterministic function of Y. For example, suppose X is a discrete random variable
with pmf [0.5,0.25,0.25]. We have MI(X,X) = 1.5 (using log base 2), and H(X) = 1.5, so the
normalized MI is 1, as is to be expected.

For continuous random variables, it is harder to normalize the mutual information, because of
the need to estimate the differential entropy, which is sensitive to the level of quantization. See
Section 6.3.7 for further discussion.

6.3.7 Maximal information coefficient

As we discussed in Section 6.3.6, it is useful to have a normalized estimate of the mutual information,
but this can be tricky to compute for real-valued data. One approach, known as the maximal
information coefficient (MIC) [Res+11], is to define the following quantity:

I(X,Y)|e)

MIC(X,Y) = max
(XY = max = Tl

(6.76)
where G is the set of 2d grids, and (X, Y)|¢ represents a discretization of the variables onto this
grid, and |G| is min(G,, Gy), where G, is the number of grid cells in the = direction, and G, is
the number of grid cells in the y direction. (The maximum grid resolution depends on the sample
size n; they suggest restricting grids so that G, G, < B(n), where B(n) = n®, where a = 0.6.) The
denominator is the entropy of a uniform joint distribution; dividing by this ensures 0 < MIC < 1.
The intuition behind this statistic is the following: if there is a relationship between X and Y,
then there should be some discrete gridding of the 2d input space that captures this. Since we don’t
know the correct grid to use, MIC searches over different grid resolutions (e.g., 2x2, 2x3, etc), as well
as over locations of the grid boundaries. Given a grid, it is easy to quantize the data and compute
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Figure 6.5: Illustration of how the maximal information coefficient (MIC) is computed. (a) We search over
different grid resolutions, and grid cell locations, and compute the MI for each. (b) For each grid resolution
(k,1), we define set M(k,l) to be the mazimum MI for any grid of that size, normalized by log(min(k,1)). (c)
We wvisualize the matriz M. The maximum entry (denoted by a star) is defined to be the MIC. From Figure 1
of [Res+11]. Used with kind permission of David Reshef.

MI. We define the characteristic matrix M (k,[) to be the maximum MI achievable by any grid
of size (k,l), normalized by log(min(k,1)). The MIC is then the maximum entry in this matrix,
maxy<p(n) M(k,l). See Figure 6.5 for a visualization of this process.

In [Res+11], they show that this quantity exhibits a property known as equitability, which means
that it gives similar scores to equally noisy relationships, regardless of the type of relationship (e.g.,
linear, non-linear, non-functional).

In [Res+16], they present an improved estimator, called MICe, which is more efficient to compute,
and only requires optimizing over 1d grids, which can be done in O(n) time using dynamic program-
ming. They also present another quantity, called TICe (total information content), that has higher
power to detect relationships from small sample sizes, but lower equitability. This is defined to be
> ki< B(n) M (K,1). They recommend using TICe to screen a large number of candidate relationships,
and then using MICe to quantify the strength of the relationship. For an efficient implementation of
both of these metrics, see [Alb-+18].

We can interpret MIC of 0 to mean there is no relationship between the variables, and 1 to represent
a noise-free relationship of any form. This is illustrated in Figure 6.6. Unlike correlation coefficients,
MIC is not restricted to finding linear relationships. For this reason, the MIC has been called “a
correlation for the 21st century” |Spell].

In Figure 6.7, we give a more interesting example, from [Res+11]. The data consists of 357 variables
measuring a variety of social, economic, health and political indicators, collected by the World Health
Organization (WHO). On the left of the figure, we see the correlation coefficient (CC) plotted against
the MIC for all 63,546 variable pairs. On the right of the figure, we see scatter plots for particular
pairs of variables, which we now discuss:

e The point marked C (near 0,0 on the plot) has a low CC and a low MIC. The corresponding
scatter plot makes it clear that there is no relationship between these two variables (percentage of
lives lost to injury and density of dentists in the population).

e The points marked D and H have high CC (in absolute value) and high MIC, because they
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Figure 6.6: Plots of some 2d distributions and the corresponding estimate of correlation coefficient R?
and the mazimal information coefficient (MIC). Compare to Figure 3.1. Generated by code at f[ig-
ures.probml.ai/book1/6.6.

represent nearly linear relationships.

e The points marked E, F, and G have low CC but high MIC. This is because they correspond
to non-linear (and sometimes, as in the case of E and F, non-functional, i.e., one-to-many)
relationships between the variables.

6.3.8 Data processing inequality

Suppose we have an unknown variable X, and we observe a noisy function of it, call it Y. If we
process the noisy observations in some way to create a new variable 7, it should be intuitively obvious
that we cannot increase the amount of information we have about the unknown quantity, X. This is
known as the data processing inequality. We now state this more formally, and then prove it.

Theorem 6.3.1. Suppose X —Y — Z forms a Markov chain, so that X | Z|Y. Then1(X;Y) >
I1(X;7).

Proof. By the chain rule for mutual information (Equation (6.62)), we can expand the mutual
information in two different ways:

1(X;Y,2) = 1(X; 2) + 1 (X;Y|2) (6.77)
=I(X;Y)+I(X;2]Y) (6.78)

Since X L Z|Y, we have I (X;Z|Y) =0, so
I(X;2)+1(X;Y|Z2)=1(X;Y) (6.79)

Since I(X;Y|Z) > 0, we have [ (X;Y) > I(X;Z). Similarly one can prove that I (Y;2) > I1(X;Z2).
O
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Figure 6.7: Left: Correlation coefficient vs mazimal information criterion (MIC) for all pairwise relationships
in the WHO data. Right: scatter plots of certain pairs of variables. The red lines are non-parametric
smoothing regressions fit separately to each trend. From Figure 4 of [Res+11]. Used with kind permission of
David Reshef.

6.3.9 Sufficient Statistics

An important consequence of the DPI is the following. Suppose we have the chain § — D — s(D).
Then

I(6;s(D)) <1(6;D) (6.80)

If this holds with equality, then we say that s(D) is a sufficient statistic of the data D for the
purposes of inferring #. In this case, we can equivalently write § — s(D) — D, since we can
reconstruct the data from knowing s(D) just as accurately as from knowing 6.

An example of a sufficient statistic is the data itself, s(D) = D, but this is not very useful, since
it doesn’t summarize the data at all. Hence we define a minimal sufficient statistic s(D) as one
which is sufficient, and which contains no extra information about ; thus s(D) maximally compresses
the data D without losing information which is relevant to predicting 6. More formally, we say s is a
minimal sufficient statistic for D if for all sufficient statistics s'(D) there is some function f such that
s(D) = f(s'(D)). We can summarize the situation as follows:

0 — s(D) — s (D) —» D (6.81)

Here s'(D) takes s(D) and adds redundant information to it, thus creating a one-to-many mapping.

For example, a minimal sufficient statistic for a set of N Bernoulli trials is simply N and N; =
>, I(X, =1), ie., the number of successes. In other words, we don’t need to keep track of the
entire sequence of heads and tails and their ordering, we only need to keep track of the total number
of heads and tails. Similarly, for inferring the mean of a Gaussian distribution with known variance
we only need to know the empirical mean and number of samples.

Draft of “Probabilistic Machine Learning: An Introduction”. February 8, 2022



6.3. Mutual information * 219

6.3.10 Fano’s inequality *

A common method for feature selection is to pick input features Xz which have high mutual
information with the response variable Y. Below we justify why this is a reasonable thing to do.
In particular, we state a result, known as Fano’s inequality, which bounds the probability of
misclassification (for any method) in terms of the mutual information between the features X and
the class label Y.

Theorem 6.3.2. (Fano’s inequality) Consider an estimator Y = f(X) such thatY — X — Y forms
a Markov chain. Let E be the eventY # Y, indicating that an error occured, and let P. = P(Y #Y)
be the probability of error. Then we have

H(Y|X) < H (Y|Y) <H(E) + P.log|Y| (6.82)

Since H(FE) < 1, as we saw in Figure 6.1, we can weaken this result to get

1+ P.log|Y| > H(Y|X) (6.83)
and hence
H(Y|X)-1
> 7 6.84
log [V| (6.84)

Thus minimizing H (Y| X) (which can be done by mazimizing 1(X;Y)) will also minimize the lower
bound on P,.

Proof. (From [CT06, p38].) Using the chain rule for entropy, we have

H (E,Y\Y) —H (Y|Y) +H (E_|z/ Y) (6.85)
—H (E|Y) T H (Y|E, Y/) (6.86)

Since conditioning reduces entropy (see Section 6.2.4), we have H (E |Y) < H(E). The final term

can be bounded as follows:

H <Y|E, Y) — P(E=0)H (Y|Y,E = o) +P(E=1)H (Y|Y,E - 1) (6.87)
< (1-P)0+ P.log|V| (6.88)
Hence
H <Y|Y) <H (E|Y) +H (Y|E,Y) (6.89)
<H(E) Pe log |Y|

Finally, by the data processing inequality, we have I(Y;Y) < I(Y; X), so H(Y|X) < H (YDA/)7 which
establishes Equation (6.82). |
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6.4 Exercises

Exercise 6.1 [Expressing mutual information in terms of entropies *|

Prove the following identities:

Chapter 6. Information Theory

I(X;Y) = HX) - HX|Y) = HY) — H(Y|X) (6.90)
and
H(X,Y)=H(X|Y)+ H(Y|X) + I(X;Y) (6.91)
Exercise 6.2 [Relationship between D(p||q) and x? statistic|
(Source: [CT91, Q12.2].)
Show that, if p(z) =~ q(z), then
L o
D (pllg) ~ 5x (6.92)
where
2 (p(z) — q(x))°
= RS L2 6.93
X Ex: q(x) (9%
Hint: write
p(z) = A(z) + q(z) (6.94)
p(z) A(z)
——< =14 —= 6.95
@) @ (6:29)
and use the Taylor series expansion for log(1 + x).
A
for -1 <z < 1.
Exercise 6.3 [Fun with entropies *|
(Source: Mackay.) Consider the joint distribution p(X,Y)
x
1 2 3 4
T[1/8 1/16 1/32 1/32
y 2|1/16 1/8 1/32 1/32
301/16 1/16 1/16 1/16
401/4 0 0 0
a. What is the joint entropy H(X,Y)?
b. What are the marginal entropies H(X) and H(Y)?
c. The entropy of X conditioned on a specific value of y is defined as
H(X|Y =y) == p(z|y)logp(z[y) (6.97)

T

Compute H(X|y) for each value of y. Does the posterior entropy on X ever increase given an observation

of Y?
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d. The conditional entropy is defined as

HX|Y) = Y pu) HX]Y =) (6.98)

Compute this. Does the posterior entropy on X increase or decrease when averaged over the possible
values of Y7

e. What is the mutual information between X and Y?

Exercise 6.4 [Forwards vs reverse KL divergence]

(Source: Exercise 33.7 of [Mac03].) Consider a factored approximation g(z,y) = q(z)q(y) to a joint distribution
p(z,y). Show that to minimize the forwards KL Dy (p||q) we should set ¢(x) = p(z) and q(y) = p(y), i.e.,
the optimal approximation is a product of marginals
Now consider the following joint distribution, where the rows represent y and the columns z.
| 1 2 3 4

1]1/8 1/8 0 0

2(1/8 1/8 0 0

3o 0o 14 o0

4o 0o 0o 14

Show that the reverse KL Dxku (¢||p) for this p has three distinct minima. Identify those minima and evaluate
Dk (qllp) at each of them. What is the value of Dxp (¢||p) if we set ¢(z,y) = p(z)p(y)?
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