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Data compression 
X 

12 

12 

12 

12 

Memorizing the equation X = 12 we make data 

compression. Representing the table needs less space. 

Coding the equation we can come back finding exactly 

same data. 

Compression without loss of information. 

X 

12 

13 

10 

12 

Memorizing the equation X = 12 we make data 

compression again. But this coding is not perfectly 

invertible. Decoding, we find only an approximation of 

original data. 

Compression with loss of information. 
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coding: (12, 13, 10, 12) → “X = 12” 

decoding: “X = 12” → (12, 12, 12, 12) 

decode(code(original)) ≠ original 

There is some distortion. 

Distortion depends on the sample and the constant number 
we use as code for all elements of the original table. 

 

Problem: given a sample {x1, …, xn} find a constant 
representing it in the best way 

Intuitive answer: the mean. 

code({2, 9, 10}) = 7 

Neither 38 nor 2. 

 

The intuition is right and has a mathematical counterpart. 
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Using a constant k as code, the distortion can be defined 
as the sum of squared errors: 
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The distortion of estimate 5 for sample {2, 9, 10} is 

(2 - 5)2 + (9 - 5)2 + (10 – 5)2 = 9 + 16 + 25= 50. 

The distortion of estimate 8 is 

(2 - 8)2 + (9 - 8)2 + (10 – 8)2 = 36 + 1 + 4 = 41. 

Equation xi = 8 codes (represents, approximates) the 

sample better than equation xi = 5. 
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The distortion of estimate 7 is 

(2 - 7)2 + (9 - 7)2 + (10 – 7)2 = 25 + 4 + 9 = 38. 

No other constant can do better. 

Equation xi = 7 codes in the optimal way. 

 

More rigorously: 

Equation xi = 7 is the equation of form xi = k, 

being k a constant, 

that minimizes the distortion for sample {2, 9, 10}, being 

distortion defined as the sum of squared errors. 
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We are circumscribing ourselves to equations of form 

xi = k 

We have chosen a model, a form of equation giving us an 

estimate for each data point (each number in the data set). 

The equation xi  = 7 is not the best possible equation, only 

the best possible equation following this model. 

 

Modeling a data set means: 

1. Choosing a model, i.e. an equational form containing 

parameters like k; 

2. Choosing optimal parameters values, i.e. values that 

minimize the distortion. 
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Our model 

xi = k 

is a case of the general model 

xi = f(xi) 

where f(xi,), the estimation, is a function of the data point 

itself and a parameter , chosen by the analyst. 

In our case 

xi = f(xi ,k) = k 

Here the parameter is k and the estimation function f is 

independent on xi. 

Strange estimation function: it ignores data. 

But only apparently: the parameter k really exploits data, 

not point by point but as a whole set. 
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If k is the mean  

 

 

Then the average distortion is the variance 2 
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The best choice for parameter k in the model  

xi = k 

is the mean  (i.e. 7 for the sample {2, 9, 10}). 
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Our model 

xi = k 

is a case of the model family 

xi = anxi
n + an-1xi

n-1 + ... + a1xi
1 + a0xi

0 

 

This is the family of polynomial models of degree n. 

Set n = 0 and a0 = k. You obtain our equation. 

Indeed, the mean is the best choice of parameter value for 

a polynomial model of degree 0. 
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If you want to ignore data points, the best estimation 

equation you can build up is polynomial of degree 0 with 

the mean of the sample as parameter. 

 

Why to ignore data points? 

They could be not accessible, or too expensive to collect. 

Maybe you are not allowed to use them for privacy 

reasons. 

If you know their mean, you can build up a meaningful 

model, which sounds: 

Assume each point of the sample is equal to the sample 

mean. 
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You do not really have to believe this statement is true. 

A model is a tool: you use it as an estimation machine. 

Your are happy if it gives you useful estimations. 

Useful does not mean exact, only close enough to reality. 

 

Models bring additional value. They enable you to play 

games in a more profitable way. 

A model is better than another (for you and for a certain 

game) if playing rationally it gives you a greater expected 

additional profit. 

It brings added revenue and added cost. 

This concept is related to the concept of expected 

information value. 
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X Y 

2 7 

5 13 

6 15 

11 25 

If data is this and we memorize  

Y = 2X + 3 

then we have data compression without 

information loss.  

Decoding comes back to original values of Y. 

If data is this and we memorize 

Y = 2X + 3 

then we have data compression with 

information loss. 

Decoding gives an approximation of original 

values of Y. 

E.g. the third row assigns Y = 2 * 6 + 3 = 15 

instead of 13. 

X Y 

2 8 

5 13 

6 13 

11 26 
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We code the attribute Y with a function f of another attribute 

X. 

In general, we define 
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or simply 

 

f(x) is called regression function. 

The regression function gives an estimate of the value of 

attribute Y for each observation in the sample, using the 

value of attribute X. 
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The sample is called the training set. 

The regression function  is built choosing the general 
model, then computing the “best” parameters exploiting 
information in the training set. 

The regression function is an estimator of known data, or a 
predictor of already observed data. 

The idea is: if this equation can reconstruct the training set 
with good approximation, then it is likely to reconstruct 
unknown samples as well. 

The real goal is to estimate or predict new unknown data. 
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Interpolation 

We are in search for a function f(X) estimating Y while 
minimizing distortion. 

In these terms the problem is not well-posed. There are 
infinite functions doing what we want. 

Il problema non è ben posto. Ce ne sono infinite. One is the 
interpolation polynomial. 

Given a set of points 

{(x1, y1), …, (xn, yn)} 

You can always get a polynomial in X touching all points: 
P(xi) = yi. 

The interpolation polynomial generally has degree n – 1, 
i.e. the biggest power is xi

n-1. 
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A first problem is that substituting n values of Y with n 
coefficients of the polynomial gives no real benefit (tehre is 
no compression). 
Note: a polynomial of degree n – 1 has n coefficients, including the constant 

an-1x
n-1 + ... + a1x

1 + a0 

 

A second problem (deriving form the first) is that a 
polynomial of high degree is a geometric curve with wild 
oscillations. See the next figure for an example. 

Yet, real phenomena (including economic ones) generally 
do not oscillate in such a way. 

If we get a slightly different sample, the polynomial can 
change greatly. Thus. Our predictions about observations 
outside the sample change radically. 

Such an unstable regression function is not useful. 
 

The figure shows how polynomials of increasing degree are closer and closer 
to data, but also more and more oscillating. 

Some graphs are represented for a small part only, because too big. 
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We have two contrasting needs: 

• f(X) must fit well to data in training set, i.e. it must have small 

distortion (property of accuracy); 

• f(X) must not oscillate very much and not change much if the training 

set change slightly, i.e. it must have small variance (property of 

stability). 

There is a trade-off between the distortion with respect to the training 

set and the intrinsic variance. 

When the degree of the regression polynomial increases, generally the 

distortion decreases but the variance increases. 

The polynomial tracks random oscillations of data, often increasing the 

variance with negligible gain in distortion. 

This phenomenon is named overfitting: the polynomial learns “too well”. 

It adapts to features of the sample which are not real features of the 

population which the sample is extracted from. It learns form “noise”. 

So, it is not very generalizable outside the sample and not very useful 

for prediction. 
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Measuring the fitness 
Fitness (accuracy, low distortion) is good thing, but it is 
about already known data. We also need generalization, 
capability to be appleid to unknown data. The regression 
function is required to predict the future, not only to explain 
the past. 

We accept some distortion in order to avoid overfitting. 

We saw how to measure absolute distortion, We can also 
measure relative distortion, using a benchmark. 

The benchmark is classical variance, which is the distortion 
of this polynomial function of degree zero: 

f(xi) =  

where  is the mean of the training dataset. 

The prediction rule is: given any xi value, predict y = , 
without any consideration of xi features. 

This is the best possible constant (blind) prediction rule. 



19 

Let 2 be the average distortion (sum of square errors 
divided by the number of points). 

A regression function f is really useful if 2 < 2. 

The measure 2 is named residual variance and 2- 2 
explained variance (or absorbed variance). 

The explained variance measures the effectiveness of f(X) 
when predicting the value of Y for an observed xi. 

For example, if 2 = ½ 2 means that the oscillation of true 
yi values around the predicted values is half the oscillation 
around the mean. 
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Classes of regression functions 
We do not search “the best regression function”. This 

would be an ill-posed problem: infinite functions are the 

best ones. 

First, we design a model for regression functions, a 

structure, a formula with parameters to be assigned. 

Then we search for the optimal values of these parameters. 

After assigning these values, we have the best funciton in 

the chosen class. 

If we choose the model y = , then the best assignment for 

parameter  is the mean of the training dataset. This is a 

limit case of polynomial regression functions (here with  

degree zero). 

We can choose polynomial models of degree n or any 

other functional form. 


