
DDAM, 2019
MAPREDUCE PATTERNS

Patrizio Dazzi

A DESIGN PATTERN

A design pattern is a general reusable solution to a commonly occurring problem
within a given context in software design. A design pattern is not a finished design
that can be transformed directly into source or machine code. It is a description
or template for how to solve a problem that can be used in many different
situations. Patterns are formalized best practices that the programmer can use to
solve common problems when designing an application or system.

DISTINCT VALUES

Problem Statement: There is a set of records that contain fields F and G.
Count the total number of unique values of field F for each subset of records
that have the same G (grouped by G).

Applications:

• Log Analysis, Unique Users Counting

DISTINCT VALUES

The first approach is to solve the problem in two
stages. At the first stage Mapper emits dummy
counters for each pair of F and G; Reducer calculates a
total number of occurrences for each such pair. The
main goal of this phase is to guarantee uniqueness of F
values.At the second phase pairs are grouped by G and
the total number of items in each group is calculated.

CROSS-CORRELATION

Problem Statement: There is a set of tuples of items. For each possible pair of
items calculate a number of tuples where these items co-occur. If the total
number of items is N then N*N values should be reported.

This problem appears in text analysis (say, items are words and tuples are
sentences), market analysis (customers who buy this tend to also buy that). If
N*N is quite small and such a matrix can fit in the memory of a single machine,
then implementation is straightforward.

Applications:

• Text Analysis, Market Analysis

CROSS-CORRELATION (SOLUTION 1)

The first approach is to emit all pairs and dummy
counters from Mappers and sum these counters on
Reducer. The shortcomings are:

• The benefit from combiners is limited, as it is likely
that all pair are distinct

• There is no in-memory accumulations

CROSS-CORRELATION (SOLUTION 2)

The second approach is to group data by the first item in
pair and maintain an associative array (“stripe”) where
counters for all adjacent items are accumulated. Reducer
receives all stripes for leading item i, merges them, and
emits the same result as in the Pairs approach.

• Generates fewer intermediate keys. Hence the
framework has less sorting to do.

• Greately benefits from combiners.

• Performs in-memory accumulation. This can lead to
problems, if not properly implemented.

• More complex implementation.

• In general, “stripes” is faster than “pairs”

ITERATIVE MESSAGE PASSING

Problem Statement: There is a network of entities and relationships between
them. It is required to calculate a state of each entity on the basis of properties
of the other entities in its neighborhood. This state can represent a distance to
other nodes, indication that there is a neighbor with the certain properties,
characteristic of neighborhood density and so on.

Applications:

• Graph Processing

ITERATIVE MESSAGE PASSING
(SOLUTION)

• Solution: A network is stored as a set of nodes and
each node contains a list of adjacent node IDs.
Conceptually, MapReduce jobs are performed in
iterative way and at each iteration each node sends
messages to its neighbors. Each neighbor updates its
state on the basis of the received messages. From
the technical point of view, Mapper emits messages
for each node using ID of the adjacent node as a key.
As result, all messages are grouped by the incoming
node and reducer is able to recompute state and
rewrite node with the new state.

REPLICATED JOIN (MAP JOIN, HASH
JOIN)

Let’s assume that we join two sets – R and L, R is relative small. If so, R can be distributed to all Mappers and each
Mapper can load it and index by the join key. The most common and efficient indexing technique here is a hash
table. After this, Mapper goes through tuples of the set L and joins them with the corresponding tuples from R that
are stored in the hash table. This approach is very effective because there is no need in sorting or transmission of
the set L over the network, but set R should be quite small to be distributed to the all Mappers.

