

Linguaggi di Programmazione

Roberta Gori

CCS bisimulazione forte-11.4.3-11.5

CCS: sintassi

```
p,q::= \min processo inattivo variabile di processo (per la ricorsione) \mu.p prefisso azione p \setminus \alpha canale ristretto p[\phi] rietichettatura del canale p+q scelta nondeterministica (somma) p|q composizione parallela p \cdot q ricorsione
```

(gli operatori sono elencati in ordine di precedenza)

CCS semantica operazionale

Act)
$$\frac{}{\mu.p \xrightarrow{\mu} p}$$

$$\operatorname{Act}) \frac{p \xrightarrow{\mu} q \quad \mu \not\in \{\alpha, \overline{\alpha}\}}{\mu.p \xrightarrow{\mu} p} \qquad \operatorname{Res}) \frac{p \xrightarrow{\mu} q \quad \mu \not\in \{\alpha, \overline{\alpha}\}}{p \backslash \alpha \xrightarrow{\mu} q \backslash \alpha} \qquad \operatorname{Rel}) \frac{p \xrightarrow{\mu} q}{p[\phi] \xrightarrow{\phi(\mu)} q[\phi]}$$

$$\operatorname{Rel}) \frac{p \xrightarrow{\mu} q}{p[\phi] \xrightarrow{\phi(\mu)} q[\phi]}$$

$$\begin{array}{ccc} & & \frac{p_1 \xrightarrow{\mu} q}{p_1 + p_2 \xrightarrow{\mu} q} & & \text{SumR)} & \frac{p_2 \xrightarrow{\mu} q}{p_1 + p_2 \xrightarrow{\mu} q} \end{array}$$

SumR)
$$\frac{p_2 \xrightarrow{\mu} q}{p_1 + p_2 \xrightarrow{\mu} q}$$

ParL)
$$\dfrac{p_1 \xrightarrow{\mu} q_1}{p_1 | p_2 \xrightarrow{\mu} q_1 | p_2}$$

$$\operatorname{ParL})\frac{p_1 \xrightarrow{\mu} q_1}{p_1 | p_2 \xrightarrow{\mu} q_1 | p_2} \quad \operatorname{Com}) \frac{p_1 \xrightarrow{\lambda} q_1 \quad p_2 \xrightarrow{\overline{\lambda}} q_2}{p_1 | p_2 \xrightarrow{\tau} q_1 | q_2} \quad \operatorname{ParR}) \frac{p_2 \xrightarrow{\mu} q_2}{p_1 | p_2 \xrightarrow{\mu} p_1 | q_2}$$

ParR)
$$\xrightarrow{p_2} \xrightarrow{\mu} q_2$$
 $p_1 | p_2 \xrightarrow{\mu} p_1 | q_2$

Rec)
$$\frac{p[\mathbf{rec}\ x.\ p/_x] \xrightarrow{\mu} q}{\mathbf{rec}\ x.\ p \xrightarrow{\mu} q}$$

Gioco della bisimulazione

Il gioco della bisimulazione

due processi p,q e due giocatori uno contro l'altro

Alice, l'attaccante, mira a dimostrare che p e q non sono equivalenti

Bob, il difensore, mira a dimostrare che p e q sono equivalenti

il gioco è a turni, ad ogni turno:

Alice sceglie un processo e una delle sue transizioni in uscita Bob deve rispondere con una transizione del processo equivalente, l'etichetta della transizione scelta deve essere uguale a quella scelta da Alice

al prossimo turno, nel caso ci sia, i giocatori considereranno l'equivalenza dei processi a cui sono arrivati

Il gioco della bisimulazione

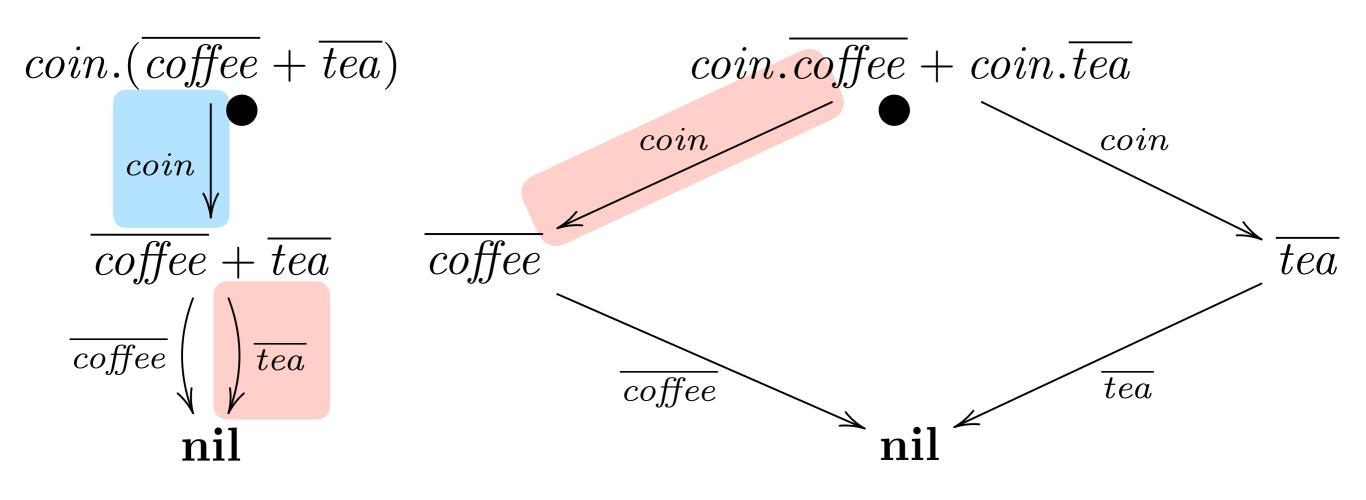
Alice vince se, ad un certo punto, può fare una mossa che Bob non può fare

Bob vince in tutti gli altri casi se Alice non riesce a trovare una mossa se il gioco non termina

Alice ha una strategia vincente se può fare una mossa che Bob non può fare; o se può fare una mossa che non importa cosa risponde Bob, al prossimo turno lei vince o così via dopo un qualsiasi numero (finito) di mosse...

Alice ha una strategia vincente se può confutare l'equivalenza di p e q in un numero finito di mosse

Il gioco della bisimulazione



Alice gioca

Bob puo' rispondere

Alice gioca

Bob non puo' rispondere

$$\begin{array}{l} coin.\overline{coffee} + coin.\overline{tea} \xrightarrow{coin} \overline{coffee} \\ \hline coin.(\overline{coffee} + \overline{tea}) \xrightarrow{coin} \overline{coffee} + \overline{tea} \\ \hline \overline{coffee} + \overline{tea} \xrightarrow{\overline{tea}} \mathbf{nil} \\ \hline \overline{coffee} \xrightarrow{\overline{tea}} & \hline \end{array}$$

$$\begin{array}{l} Alice \text{ vince!} \\ \hline \end{array}$$

7

CCS Strong bisimulation

Bisimulazione forte

la nozione di bisimulazione non è limitata ai processi CCS si applica a qualsiasi LTS

di seguito ricordiamo la definizione originale di Milner di relazione di bisimulazione forte

da tenere a mente

ci sono molte relazioni di bisimulazione forti siamo interessati alla più grande relazione di questo tipo, chiamata *bisimilarità forte*

per dimostrare che due processi sono fortemente bisimili è sufficiente mostrare che sono legati da una bisimulazione forte

Bisimulazione forte

 ${\mathcal P}$ insieme di processi

 $\mathbf{R} \subseteq \mathcal{P} \times \mathcal{P}$ una relazione binaria

scriviamo $p \mathbf{R} q$ quando $(p,q) \in \mathbf{R}$

R e' una bisimulazione forte se

$$\forall p, q. \ (p, q) \in \mathbf{R} \Longrightarrow \left\{ \begin{array}{ll} \forall \mu, p'. \ p \xrightarrow{\mu} p' \quad \Rightarrow \quad \exists q'. \ q \xrightarrow{\mu} q' \wedge p' \ \mathbf{R} \ q' \\ \land \\ \forall \mu, q'. \ q \xrightarrow{\mu} q' \quad \Rightarrow \quad \exists p'. \ p \xrightarrow{\mu} p' \wedge p' \ \mathbf{R} \ q' \end{array} \right.$$

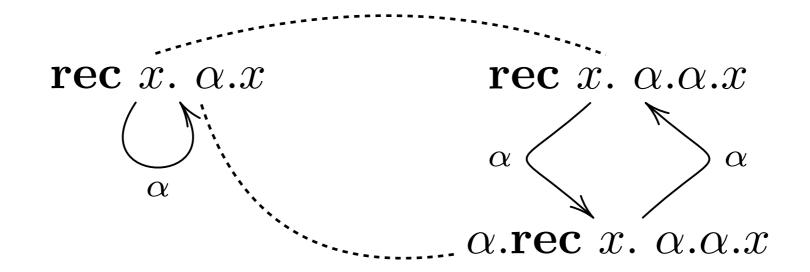
iintuitivamente: se due processi sono in relazione, allora per qualsiasi mossa di Alice, Bob può trovare una mossa che porta a processi in relazione, cioè, Bob ha una strategia vincente

Ø e'una bisimulazione forte

 $Id \triangleq \{(p,p) \mid p \in \mathcal{P}\}$ e' una bisimulazione forte

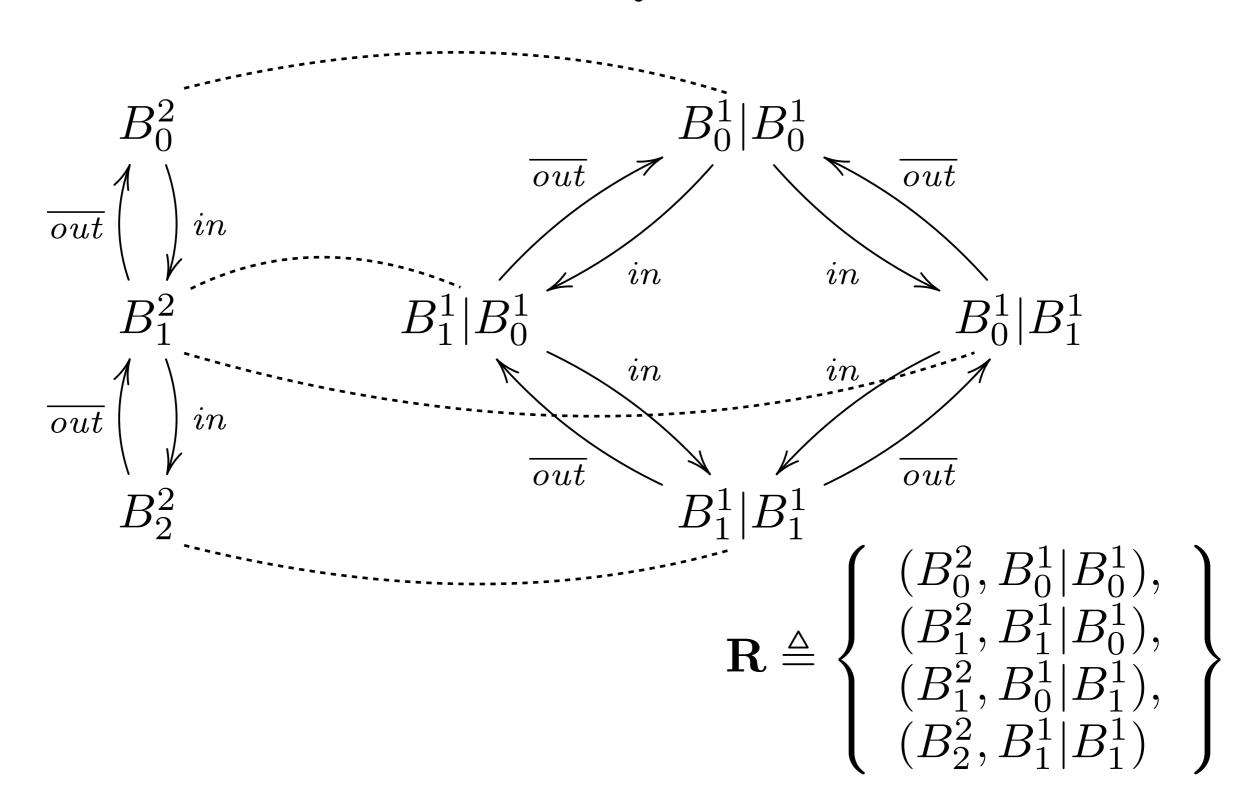
ogni isomorfismo tra grafi definisce una bisimulazione forte

$$\mathbf{R}_f \triangleq \{(p, f(p))\}$$



$$\mathbf{R} \triangleq \left\{ \begin{array}{l} (\mathbf{rec} \ x. \ \alpha.x, \mathbf{rec} \ x. \ \alpha.\alpha.x), \\ (\mathbf{rec} \ x. \ \alpha.x, \alpha.\mathbf{rec} \ x. \ \alpha.\alpha.x) \end{array} \right\}$$

a differenza degli isomorfismi tra grafi, lo stesso processo può essere in relazione con molti processi



Unione

Lemma Se ${f R}_1$ e ${f R}_2$ sono bisimulazioni forti, allora ${f R}_1 \cup {f R}_2$ e' una bisimulazione forte

prova. prendiamo $(p,q) \in \mathbf{R}_1 \cup \mathbf{R}_2$

se $p \xrightarrow{\mu} p'$ vogliamo trovare $q \xrightarrow{\mu} q'$ con $(p', q') \in \mathbf{R}_1 \cup \mathbf{R}_2$ dal momento che

 $(p,q)\in \mathbf{R}_1\cup \mathbf{R}_2$ abbiamo p \mathbf{R}_i q per qualche $i\in\{1,2\}$

dal momento che

 \mathbf{R}_i e' una bisimulazione forte e $p \xrightarrow{\mu} p'$

abbiamo $q \xrightarrow{\mu} q'$ con $p' \mathbf{R}_i \ q'$ e quindi $(p', q') \in \mathbf{R}_1 \cup \mathbf{R}_2$

se $q \xrightarrow{\mu} q'$ vogliamo trovare $p \xrightarrow{\mu} p'$ con $(p', q') \in \mathbf{R}_1 \cup \mathbf{R}_2$ analogo al caso precedente

Inversa

Lemma Se \mathbf{R} e' una bisimulazione forte, allora $\mathbf{R}^{-1} \triangleq \{(q,p) \mid p \ \mathbf{R} \ q\}$ e' una bisimulazione forte

prova. prendiamo $(q, p) \in \mathbf{R}^{-1}$

se $q \xrightarrow{\mu} q'$ vogliamo trovare $p \xrightarrow{\mu} p'$ con $(q',p') \in \mathbf{R}^{-1}$ dal momento che $(q,p) \in \mathbf{R}^{-1}$ abbiamo $p \mathbf{R} q$ dal momento che \mathbf{R} e' una bisimulazione forte e $q \xrightarrow{\mu} q'$ abbiamo $p \xrightarrow{\mu} p'$ con $p' \mathbf{R} q'$ e per questo $(q',p') \in \mathbf{R}^{-1}$

se $p\xrightarrow{\mu} p'$ vogliamo trovare $q\xrightarrow{\mu} q'$ con $(q',p')\in \mathbf{R}^{-1}$ analogo al caso precedente

Composizione

Lemma Se \mathbf{R}_1 e \mathbf{R}_2 sono bisimulazioni forti, allora $\mathbf{R}_2 \circ \mathbf{R}_1 \triangleq \{(p,q) \mid \exists r. \ p \ \mathbf{R}_1 \ r \wedge r \ \mathbf{R}_2 \ q\}$ e' una bisimulazione forte prova. prendiamo $(p,q) \in \mathbf{R}_2 \circ \mathbf{R}_1$

se $p \xrightarrow{\mu} p'$ vogliamo trovare $q \xrightarrow{\mu} q'$ con $(p',q') \in \mathbf{R}_2 \circ \mathbf{R}_1$ dal momento che $(p,q) \in \mathbf{R}_2 \circ \mathbf{R}_1$ abbiamo $p \ \mathbf{R}_1 \ r \wedge r \ \mathbf{R}_2 \ q$ per qualche r dal momento che \mathbf{R}_1 e' una bisimulazione forte e $p \xrightarrow{\mu} p'$

abbiamo $r \xrightarrow{\mu} r' \operatorname{con} p' \mathbf{R}_1 r'$

dal momento che \mathbf{R}_2 e' una bisimulazione forte e $r \xrightarrow{\mu} r'$ abbiamo $q \xrightarrow{\mu} q'$ con $r' \mathbf{R}_2 \ q'$ e percio' $(p',q') \in \mathbf{R}_2 \circ \mathbf{R}_1$ se $q \xrightarrow{\mu} q'$ vogliamo trovare $p \xrightarrow{\mu} p'$ con $(p',q') \in \mathbf{R}_2 \circ \mathbf{R}_1$

analogo al caso precedente

Notazione

$$\mathbf{R}_2 \circ \mathbf{R}_1 \triangleq \{(p,q) \mid \exists r. \ p \ \mathbf{R}_1 \ r \wedge r \ \mathbf{R}_2 \ q\}$$

qualche volta scritto come

$$\mathbf{R}_1\mathbf{R}_2$$

CCS Bisimilarita' forte

Bisimilarita' forte

spesso indicato \sim in letteratura usiamo \simeq per sottolineare che è una congruenza

 $p \simeq q \quad \mathrm{sse} \quad \exists \mathbf{R}$ una bisimulazione forte tale che $(p,q) \in \mathbf{R}$

cioè Bob ha una strategia vincente

$$\simeq riangleq extstyle e$$

la bisimilarità forte e' una relazione di equivalenza?

Relazione di equivalenza

Riflessiva $\forall p \in \mathcal{P}$ $p \equiv p$

Simmetrica $\forall p, q \in \mathcal{P}$ $p \equiv q \Rightarrow q \equiv p$

Transitiva $\forall p, q, r \in \mathcal{P}$ $p \equiv q \land q \equiv r \Rightarrow p \equiv r$

Equivalenza indotta

Qualsiasi relazione ${f R}$ induce una relazione di equivalenza $\equiv_{f R}$

 $\equiv_{\mathbf{R}}$ è la più piccola equivalenza che contiene \mathbf{R}

$$\frac{p \mathbf{R} q}{p \equiv_{\mathbf{R}} q} \qquad \frac{p \equiv_{\mathbf{R}} q}{p \equiv_{\mathbf{R}} p} \qquad \frac{p \equiv_{\mathbf{R}} q}{q \equiv_{\mathbf{R}} p} \qquad \frac{p \equiv_{\mathbf{R}} q}{p \equiv_{\mathbf{R}} r}$$

Lemma se \mathbb{R} e' una bisimulazione forte, allora $\equiv_{\mathbb{R}}$ e' bisimulazione forte

Partizione indotta

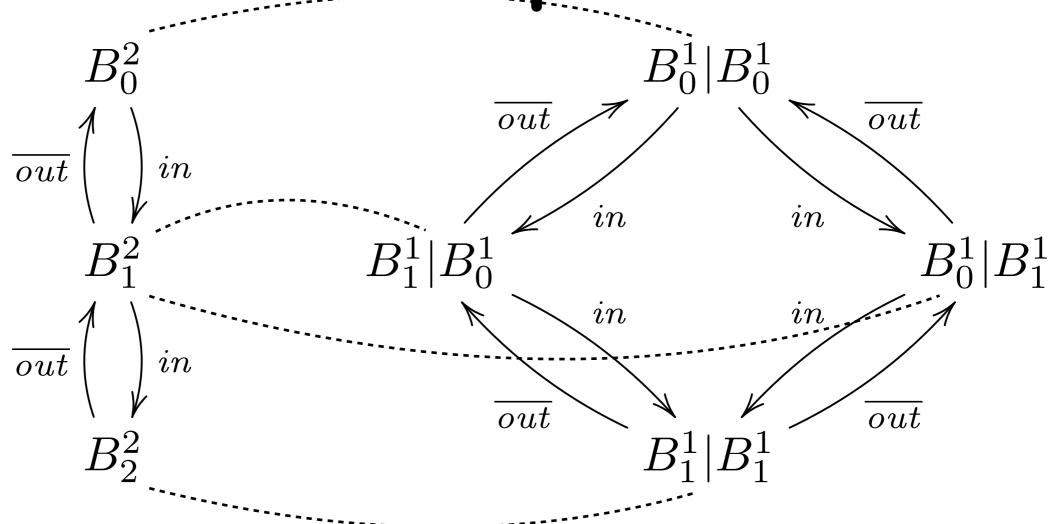
Ogni relazione di equivalenza induce una partizione dei processi in classi di equivalenza

$$[p]_{\equiv} = \{q \mid p \equiv q\}$$

se \equiv R e' una bisimulazione forte

$$q \in [p]_{\equiv_{\mathbf{R}}} \land p \xrightarrow{\mu} p' \Rightarrow \exists q' \in [p']_{\equiv_{\mathbf{R}}}. \ q \xrightarrow{\mu} q'$$

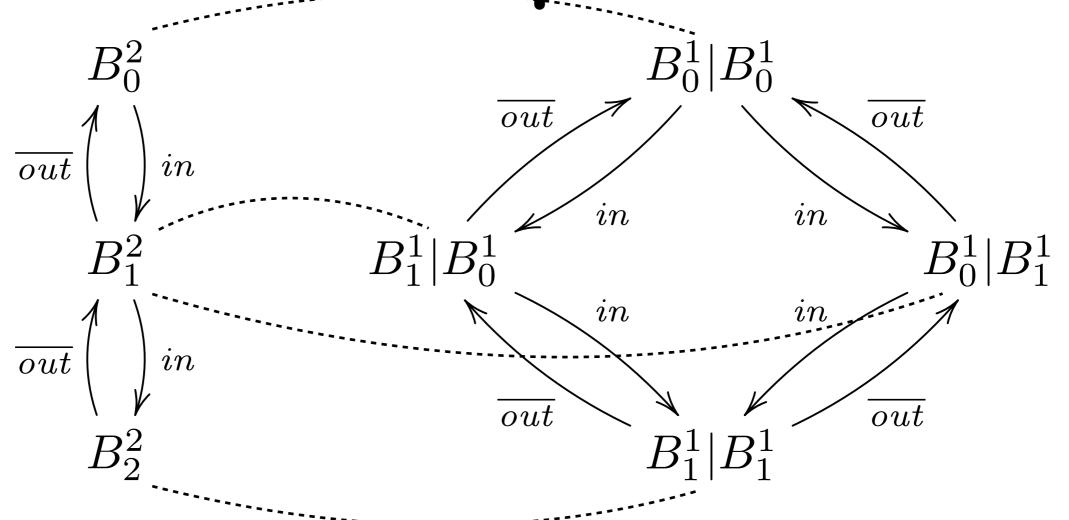
invece di elencare tutte le coppie di $\equiv_{\mathbf{R}}$ elenchiamo solo le sue classi di equivalenza



$$\mathbf{R} \triangleq \left\{ \begin{array}{l} (B_0^2, B_0^1 | B_0^1), \\ (B_1^2, B_1^1 | B_0^1), \\ (B_1^2, B_0^1 | B_1^1), \\ (B_2^2, B_1^1 | B_1^1) \end{array} \right\}$$

$$\equiv_{\mathbf{R}} \triangleq \begin{cases} (B_0^2, B_0^2), \\ (B_0^2, B_0^1 | B_0^1), \\ (B_0^1 | B_0^1, B_0^2), \\ (B_0^1 | B_0^1, B_0^1 | B_0^1), \\ (B_1^2, B_1^2), \\ \dots \end{cases}$$

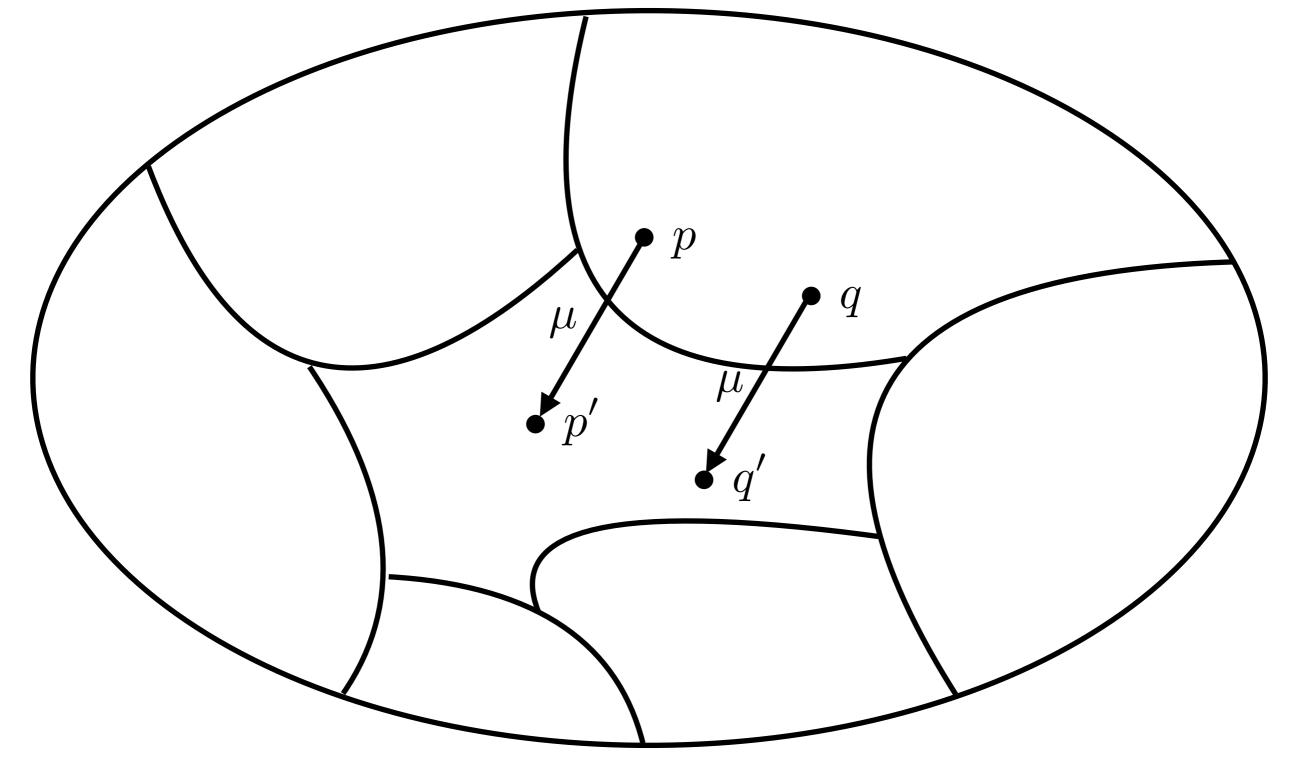
Lsempio

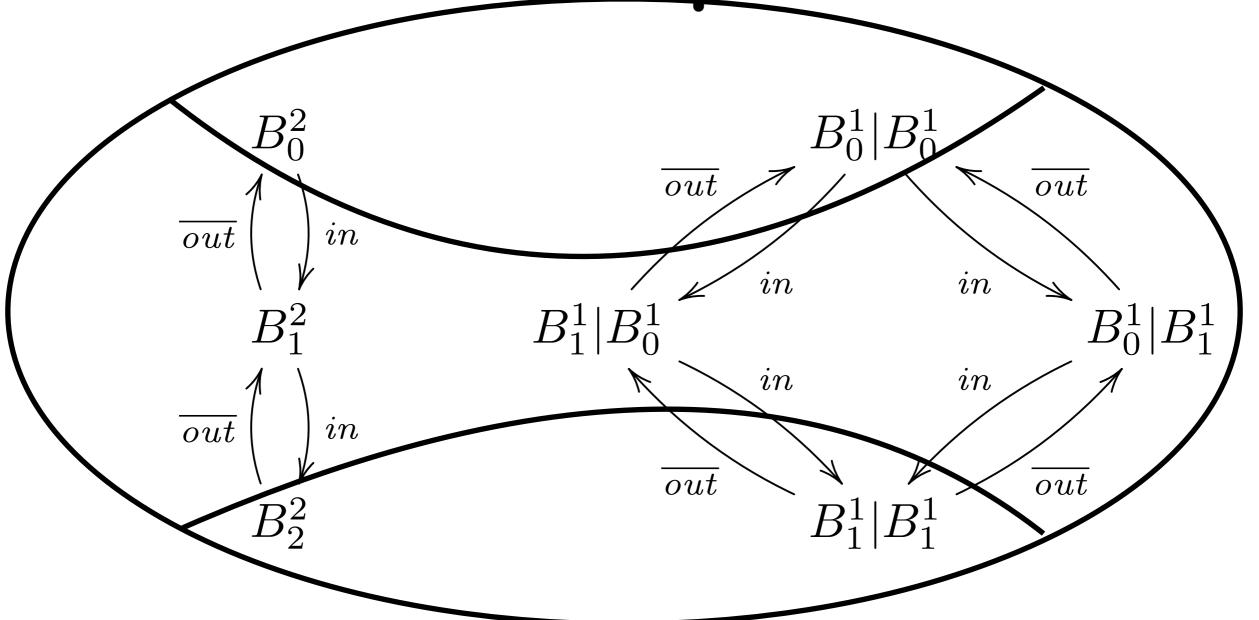


$$\mathbf{R} \triangleq \begin{cases} (B_0^2, B_0^1 | B_0^1), \\ (B_1^2, B_1^1 | B_0^1), \\ (B_1^2, B_0^1 | B_1^1), \\ (B_2^2, B_1^1 | B_1^1) \end{cases}$$

$$\mathbf{R} \triangleq \left\{ \begin{array}{l} (B_0^2, B_0^1 | B_0^1), \\ (B_1^2, B_1^1 | B_0^1), \\ (B_1^2, B_0^1 | B_1^1), \\ (B_2^2, B_1^1 | B_1^1) \end{array} \right\} = \mathbf{R} \triangleq \left\{ \begin{array}{l} \{B_0^2, B_0^1 | B_0^1\}, \\ \{B_1^2, B_0^1 | B_1^1, B_1^1 | B_0^1\}, \\ \{B_2^2, B_1^1 | B_1^1\} \end{array} \right\}$$

Controllo di bisimulazione





$$\equiv_{\mathbf{R}} \triangleq \left\{ \begin{array}{l} \{B_0^2, B_0^1 | B_0^1 \}, \\ \{B_1^2, B_0^1 | B_1^1, B_1^1 | B_0^1 \}, \\ \{B_2^2, B_1^1 | B_1^1 \} \end{array} \right\}$$

TH. la bisimilarita' forte e' una relazione di equivalenza

proof.

riflessiva $Id\subseteq \simeq$

simmetrica assumiamo $p \simeq q$ vogliamo provare $q \simeq p$

 $p\simeq q$ significa che esiste una b.f. \mathbf{R} con $(p,q)\in\mathbf{R}$ allora $(q,p)\in\mathbf{R}^{-1}$ e \mathbf{R}^{-1} e' una b.f. quindi $(q,p)\in\mathbf{R}^{-1}\subseteq \simeq$ cioe' $q\simeq p$

transitiva assumiamo $p \simeq q - q \simeq r$ vogliamo provare $p \simeq r$

 $p\simeq q$ significa che c'e' una b.f \mathbf{R}_1 con $(p,q)\in \mathbf{R}_1$ $q\simeq r$ significa che c'e' una b.f \mathbf{R}_2 con $(q,r)\in \mathbf{R}_2$ allora $(p,r)\in \mathbf{R}_2\circ \mathbf{R}_1$ e $\mathbf{R}_2\circ \mathbf{R}_1$ e' una b.f. allora $(p,r)\in \mathbf{R}_2\circ \mathbf{R}_1\subseteq \simeq$ cioe' $p\simeq r$

TH. La bisimilarita' forte e' una bisimulazione forte

prova.

prendiamo $p\simeq q$ prendiamo $p\to p'$ vogliamo trovare $q\to p'$ con $p'\simeq q'$ $p\simeq q$ significa che c'e' una $\mathbf R$ con $(p,q)\in \mathbf R$ dal momento che $\mathbf R$ e' una bisimulazione forte e $p\to p'$ abbiamo $q\to p'$ con $(p',q')\in \mathbf R$ dal momento che $\mathbf R\subseteq p'$ abbiamo $p'\simeq q'$

prendiamo $q \xrightarrow{\mu} q'$ vogliamo trovare $p \xrightarrow{\mu} p'$ con $p' \simeq q'$ segue dal caso precedente (la bisimilarita' forte e' simmetrica)

Cor. la bisimilarita' forte e' la piu' grande bisimulazione

proof.

la bisimilarita' forte e' una bisimulazione forte (TH. prec.) per definizione

$$\simeq \triangleq \bigcup_{\mathbf{R}, \mathbf{S}, \mathbf{b}} \mathbf{R}$$

ogni altra bisimulazione forte e' inclusa in \simeq

TH. Definizione ricorsiva di bisimilarita' forte

$$\forall p,q.\ p \simeq q \Leftrightarrow \begin{cases} \forall \mu,p'.\ p \xrightarrow{\mu} p' \quad \Rightarrow \quad \exists q'.\ q \xrightarrow{\mu} q' \land p' \simeq q' \\ \land \\ \forall \mu,q'.\ q \xrightarrow{\mu} q' \quad \Rightarrow \quad \exists p'.\ p \xrightarrow{\mu} p' \land p' \simeq q' \end{cases}$$

prova.

 \Rightarrow) segue immediatamente perché \simeq è una bisimulazione forte

$$\Leftarrow) \ \ \text{prendi} \ \textit{p,q} \ \text{t.c.} \left\{ \begin{array}{ll} \forall \mu, p'. \ p \xrightarrow{\mu} p' \quad \Rightarrow \quad \exists q'. \ q \xrightarrow{\mu} q' \wedge p' \simeq q' \\ \land \\ \forall \mu, q'. \ q \xrightarrow{\mu} q' \quad \Rightarrow \quad \exists p'. \ p \xrightarrow{\mu} p' \wedge p' \simeq q' \end{array} \right.$$

vogliamo provare $p \simeq q$ si fa provando che $\mathbf{R} \triangleq \{(p,q)\} \cup \simeq \text{ e' una b.f.}$

TH. Definizione ricorsiva di bisimilarita' forte

$$\mathbf{R} \triangleq \{(p,q)\} \cup \simeq \text{ e' una b.f.}$$

prendiamo $(r,s) \in \mathbf{R}$

se $r \xrightarrow{\mu} r'$ vogliamo trovare $s \xrightarrow{\mu} s'$ con $(r', s') \in \mathbf{R}$ se $r \simeq s$ troviamo $s \xrightarrow{\mu} s'$ con $(r', s') \in \simeq \subseteq \mathbf{R}$ perche' \simeq e' una bisimulazione

$$\mathsf{se} \quad (r,s) = (p,q) \quad \mathsf{allora} \ p \xrightarrow{\mu} r' \quad \mathsf{e} \quad \left\{ \begin{smallmatrix} \forall \mu, p'. \ p \xrightarrow{\mu} p' & \Rightarrow & \exists q'. \ q \xrightarrow{\mu} q' \land p' \simeq q' \\ \forall \mu, q'. \ q \xrightarrow{\mu} q' & \Rightarrow & \exists p'. \ p \xrightarrow{\mu} p' \land p' \simeq q' \end{smallmatrix} \right.$$

percio' troviamo $q \xrightarrow{\mu} s'$ con $(r', s') \in \cong \subseteq \mathbf{R}$

se $s \xrightarrow{\mu} s'$ vogliamo trovare $r \xrightarrow{\mu} r'$ con $(r', s') \in \mathbf{R}$ analogo al caso precedente

CCS Composizionalita'

Composizionalita

ricordate che = e' una congruenza quando

$$\forall \mathbb{C}[\cdot]. \ \forall p, q. \ p \equiv q \ \Rightarrow \ \mathbb{C}[p] \equiv \mathbb{C}[q]$$

possiamo sostituire processi equivalenti in qualsiasi contesto senza cambiare la semantica astratta

- 1. $\forall p, q. \ p \simeq q \implies \forall \mu. \ \mu.p \simeq \mu.q$
- 2. $\forall p, q. p \simeq q \Rightarrow \forall \alpha. p \backslash \alpha \simeq q \backslash \alpha$
- 3. $\forall p, q. \ p \simeq q \implies \forall \phi. \ p[\phi] \simeq q[\phi]$
- 4. $\forall p_0, q_0, p_1, q_1. p_0 \simeq q_0 \land p_1 \simeq q_1 \implies p_0 + p_1 \simeq q_0 + q_1$
- 5. $\forall p_0, q_0, p_1, q_1. \ p_0 \simeq q_0 \land p_1 \simeq q_1 \implies p_0 | p_1 \simeq q_0 | q_1$

omettiamo la quantificazione per rendere la dichiarazione più leggibile

1.
$$p \simeq q \Rightarrow \mu.p \simeq \mu.q$$

2.
$$p \simeq q \Rightarrow p \backslash \alpha \simeq q \backslash \alpha$$

3.
$$p \simeq q \Rightarrow p[\phi] \simeq q[\phi]$$

4.
$$p_0 \simeq q_0 \land p_1 \simeq q_1 \implies p_0 + p_1 \simeq q_0 + q_1$$

5.
$$p_0 \simeq q_0 \land p_1 \simeq q_1 \implies p_0 | p_1 \simeq q_0 | q_1$$

tecnica di prova:

"indovinare" una relazione abbastanza grande da contenere tutte le coppie di interesse;

mostrare che è una relazione di bisimulazione; allora è contenuta nella relazione di bisimilarità forte

prendi $\mathbf{R} \triangleq \{(p[\phi], q[\phi]) \mid p \simeq q\}$ mostriamo che R.è una relazione di bisimulazione forte prendi $(p[\phi], q[\phi]) \in \mathbf{R}$ (abbiamo $p \simeq q$) prendi $p[\phi] \xrightarrow{\mu} p'$ vogliamo trovare $q[\phi] \xrightarrow{\mu} q'$ con $(p', q') \in \mathbf{R}$ per la regola rel) deve essere $p \xrightarrow{\mu'} p'' \quad \mu = \phi(\mu') \quad p' = p''[\phi]$ dal momento che $p \simeq q$ allora $q \xrightarrow{\mu'} q''$ con $p'' \simeq q''$ per la regola rel) $q[\phi] \xrightarrow{\phi(\mu')} q''[\phi]$ prendi $q'=q''[\phi]$ cosi' che $(p',q')=(p''[\phi],q''[\phi])\in\mathbf{R}$ prendi $q[\phi] \xrightarrow{\mu} q'$ vogliamo trovare $p[\phi] \xrightarrow{\mu} p'$ con $(p', q') \in \mathbf{R}$ analogo al caso precedente

prendi $\mathbf{R} \triangleq \{(p_0 + p_1, q_0 + q_1) \mid p_0 \simeq q_0 \land p_1 \simeq q_1\}$ mostriamo cheR è una relazione di bisimulazione forte prendi $(p_0 + p_1, q_0 + q_1) \in \mathbf{R}$ (cioe' $p_0 \simeq q_0 \ p_1 \simeq q_1$) prendi $p_0 + p_1 \xrightarrow{\mu} p'$ vogliamo trovare $q_0 + q_1 \xrightarrow{\mu} q'$ con se la regola suml) e' stata usata: $p_0 \stackrel{\mu}{\rightarrow} p'$ $(p', q') \in \mathbf{R}$ dal momento che $p_0 \simeq q_0$ allora $q_0 \xrightarrow{\mu} q'$ con $p' \simeq q'$ per la regola suml) $q_0 + q_1 \xrightarrow{\mu} q'$

ma purtroppo $(p',q')\in \simeq$ non necessariamente implica

$$(p',q') \in \mathbf{R}$$

come possiamo riparare la prova?

$$\mathbf{R} \triangleq \{ (p_0 + p_1, q_0 + q_1) \mid p_0 \simeq q_0 \land p_1 \simeq q_1 \} \quad \bigcup \simeq$$

mostriamo che ${f R}$ è una relazione di bisimulazione forte

prendi
$$(p_0+p_1,q_0+q_1)\in \mathbf{R}$$
 (cioe' $p_0\simeq q_0$ $p_1\simeq q_1$) prendi $p_0+p_1\xrightarrow{\mu} p'$ vogliamo trovare $q_0+q_1\xrightarrow{\mu} q'$ con se la regola suml) e' stata usata: $p_0\xrightarrow{\mu} p'$ dal momento che $p_0\simeq q_0$ allora $q_0\xrightarrow{\mu} q'$ con $p'\simeq q'$ per la regola suml) $q_0+q_1\xrightarrow{\mu} q'$

ma purtroppo $(p',q')\in \simeq$ non necessariamente implica come possiamo riparare la prova? $(p',q')\in {\bf R}$

(non c'e' bisogno di controllare le coppie in $\stackrel{\sim}{}$)

CCS: alcune regole

$$p + \mathbf{nil} \simeq p$$

$$p + q \simeq q + p$$

$$p + (q + r) \simeq (p + q) + r$$

$$p + p \simeq p$$

$$p|\mathbf{nil} \simeq p$$
 $p|q \simeq q|p$
 $p|(q|r) \simeq (p|q)|r$

Come dimostrarle? Trovare una bisimulazione forte per ciascuna di esse

$$\begin{array}{ll} \mathbf{nil}\backslash\alpha\simeq\mathbf{nil} & \mathbf{nil}[\phi]\simeq\mathbf{nil} \\ (\mu.p)\backslash\alpha\simeq\mathbf{nil} & \mathrm{if}\ \mu\in\{\alpha,\overline{\alpha}\} \\ (\mu.p)\backslash\alpha\simeq\mu.(p\backslash\alpha) & \mathrm{if}\ \mu\not\in\{\alpha,\overline{\alpha}\} \\ (p+q)\backslash\alpha\simeq(p\backslash\alpha)+(q\backslash\alpha) & (p+q)[\phi]\simeq(p[\phi])+(q[\phi]) \\ \hline p\backslash\alpha\backslash\alpha\simeq p\backslash\alpha \\ p\backslash\alpha\backslash\beta\simeq p\backslash\beta\backslash\alpha & p[\phi][\eta]\simeq p[\eta\circ\phi] \end{array}$$