
SPM 2011–2012: Final project

Version 0.9

May 3, 2012

The project is assigned to individual students
or to groups of max 2 students. The project has
to be prepared and sent to the teacher by one
of the deadlines (exam dates) published on the
course web site1 (and on secretary web site). One
deadline per exam session will be given. At the
moment being, the first three deadlines (relative
to the Summer session exams) are fixed on June
4th and 15th and on July 16th, respectively. The
last deadline of the term (last deadline in June-
July, September deadline and the last deadline in
January-February) may be extended (one week)
provided the student sends an email to the pro-
fessor with the work made so far by the official
exam deadline. The project sent to the professor
via email must consist in:

a message with subject ”SPM project sub-
mission”
a PDF document, in attachment, with the
project report, of max 10 pages
a tar.gz document, in attachment, with the
project code, the examples, the makefiles,
and all what’s necessary to recompile and
run it

Each one of the two attachments is described in
detail later on in this document (see Sec. 3). Af-
ter receiving all the projects relative to the exam
session, the teacher will take about one week to
mark them (a little bit more in case of a huge
number of projects submitted) and then he will
publish a calendar of oral exams for the students
that submitted a project eventually ranked suffi-
cient or higher. The oral exam is made of two
parts:

• a short demo of the project run by the stu-
dent using one or more text (only) terminals
connected via SSH to the parallel machines
where the project has been developed. Dur-
ing the demo the student will be asked to
answer questions relative to the project struc-
ture, code and execution behaviour. Possibly,

1http://didawiki.cli.di.unipi.it/doku.php/

magistraleinformaticanetworking/spm/start

the student(s) may be asked to implement
small changes in the project code2.

• two/three questions relative to the topics pre-
sented and discussed in the course and cov-
ered by the teaching material (project course
notes + book chapters covering the last part
of the course arguments).

At the end of the oral exam, the student will
get the final exam mark registered. In case, the
student may submit the project at exam session
i and have the exam at session i + k provided it
is in the same period (e.g. submit the project in
June and have the oral exam in July, but not in
September).

1 Project subjects

The student can choose one of the two projects
listed below. Both projects are somehow “under-
specified”: part of the project has to be defined
by the student. As an example, the “skeleton”
projects do not specify any use case to be used to
test the implementation. It is up to the student
to figure out proper tests/simple applications, in
this case. The complete definition of the project
out of the project schema presented here is part
of the project itself and it will be evaluated during
the exam.

1.1 “Skeleton” projects

The final goal is the implementation of a simple
run time/library for one of the structured paral-
lel programming patterns discussed in the course.
In other words, the student must provide some
code that can be used to implement a generic
application exploiting the parallel pattern subject
of his/her implementation. The implementation
may be written using C, C++ or Java and must

2usual Linux text only editors will be available: vi,
emacs, pico, etc.

1



run on POSIX (Linux) workstations. Depending
on the skeleton, COW/NOW, multi cores or even
network of multi core architectures should be tar-
geted. The reference target architectures, that is
the ones where the project will be run during the
final demo, are

1. the Linux PC in Aula H (or aula M or aula I)

2. a symmetric multicore 3 which will be made
available by the teacher to the students tar-
geting multicore only architectures.

This year we will consider the following
skeletons (that is the project consists in im-
plementing one of the following skeletons):

Divide&Conquer skeleton. The student must
implement a divide and conquer skeleton.The
skeleton takes four “code” parameters:

• a divide function, splitting input data
into a collection of data of the same type

• a ifbasecase function, returning true
if the result relative to the input data
may be directly computed

• a basecase function, computing the re-
sult out of the input data when the input
data represents a base case

• a conquer function, computing a result
out of a collection of partial results.

The divide and conquer computation may be
defined as follows:

d&c(div,ifbc,bcs,conq,input) {

if(ifbc(input))

then return bcs(input);

else {

parts = div(input);

ress = map(d&c(div,ifbc,bcs,conq),

parts);

return conq(ress);

}

}

It is worth taking into account that not nec-
essarily ifbasecase should return true for the
“algorithmic” base case. It may be assumed
that under a given “threshold” divide and
conquer should apply a different–sequential–
algorithm rather than going up splitting in-
put data up to the base case. As an exam-
ple, consider the quicksort algorithm. Rather

3most likely ottavinareale.di.unipi.it or other
multicores possibily available

than splitting up to the base case (lists of
no more than 2 items), we can decide that
when lists are shorter than k elements we
may sequentially apply a bubblesort. In this
case ifbasecase will simply return true when
input.lenght()<k and basecase will sim-
ply call bubblesort.

MapReduce skeleton. The student must imple-
ment a map-reduce skeleton. Two versions of
the skeleton are required. The first one is the
classical map reduce. In this case the skeleton
takes two code parameters:

• a map function f to be applied on the
items of the input collection, and

• a commutative and associative reduce

function ⊕ to be used to “sum up” all
the items in the input collection after
the application of the map function.

Therefore, given an input collection of data

〈x1, x2, . . . , xm〉

the final result should be

f(x1)⊕ f(x2)⊕ . . .⊕ f(xm)

The second version is the “Google” variant
of the map reduce. In this case, the skeleton
takes the same code parameters as before.
However, the function f is such that f(xi) re-
turns a key–value pair 〈ki, vi〉, and the reduce
function should be computed on all the pairs
relative to the same key. That is, the result
should be a collection of values 〈y1, . . . , yk〉
where each yj is the result of “sum” (through
the ⊕ operator) of the vi relative to the pairs
with key equal to kj .

mapreduce(f,g,input) {

foreach x in input

<ki, vi> = f(x);

keys = set of distinct ki;

foreach k in keys {

values = set of values with key k

res = reduce(g, values)

add res to result

}

return result

Parameter sweeping skeleton. The student
must implement a parameter sweeping skele-
ton. The parameter sweeping skeleton takes
as parameters a function f , a comparison
function comp (a binary function returning a

2



boolean, comp(a,b) = true iff a is “better”
than b) and a set of input data sets s1, . . . , sk,
and returns the input data set si such that
∀j 6= i comp(si, sj) = true. The student
must consider the possibility f is given as an
application (executable reading input param-
eters from standard input and writing results
to the standard output). In this case we may
assume the “result” of the application is an
integer, and the comp simply evaluates a > b.

PS(applname, inputs) {

foreach input in inputs {

res = exec(applname(input));

add <res, input> to results;

}

res = null;

foreach r in results

if comp(r,res)=true then res = r

return res;

}

Domain specific skeleton . The student may
propose a new/different skeleton, that is a
new/different parallelism exploitation pattern
which is efficient, resusable and parametric,
as other skeletons are. The new skeleton has
to be discussed with (and approved by) the
teacher before actually starting the project.

In all cases, the project report must include:

a description of the concurrent activity graph
and the implementation graph
the proper performance models related to
the skeleton (abstract model) and to the im-
plementation (concrete model)
the code implementing the run time support

and the skeleton should be implemented

• targeting either a single multi core or
a COW/NOW, in case the implementa-
tion/project is developed by a single student,
or

• targeting a network of multi core worksta-
tions, in case the implementation/project is
developed by a group of two students.

A comparison of the expected performance vs. the
achieved performance figures must be included in
the project report.

1.2 “Application” projects

The final goal is the implementation of an appli-
cation using a skeleton based structured program-
ming environment. The candidate programming
environments are those introduced and discussed
during the course, that include4:

Env. Host lang. Target hw
Muesli C++ multicore COW/NOW
FastFlow C++ multicore
Skandium Java multicore
SkeTo C++ COW/NOW

(data parallel only)

Depending on the framework chosen, three kind
of architectures may be targeted: multi cores,
COW/NOW or network of multi core work-
stations. The reference architectures will be
ottavinareale in the first case and the machines
in Aula H, M and I, in the second and third case.

This year we consider the following appli-
cations (that is the project consist in im-
plementing one of these applications, using
a structured parallel programming framework):

MonteCarlo The application computes the in-
tegral of a function using a Monte Carlo
method: given a function f(x) to be inte-
grated in the interval [a, b] we choose a num-
ber N of random points 〈x1, . . . , xN 〉 : xi ∈
[a, b] and we compute the integral as

1

N

N∑
i=1

(f(xi)(b− a))

Given a function f the integral is
computed over a stream of intervals
〈〈a1, b1〉, . . . , 〈am, bm〉〉.

Bucket sort Given a stream of lenght m of float-
ing point vectors of lenght n, produce the
stream of sorted vectors using a bucket sort.
Bucket sort divides the input vector into k
buckets. Each bucket Bi hosts vector items
that are smaller than the items in buckets
Bj : ∀j > i and larger that the items in
buckets Bj : ∀j < i. Each bucket is sorted
sequentially and the sorted vector is built out
of the sorted buckets.

Game of life Given a blackboard of N ×N posi-
tions, M iterations of the “Game of life” have

4but are not limited to. Students may consider other
structured parallel programming environments (to be ap-
proved by the teacher).

3



to be computed. The initial blackboard is
randomly filled (each position is either “alive”
(full) or “dead” (empty)). At each iteration,
position i, j evolves according to the following
rules:

Current state Alive neighbours Next state
Alive ≤ 1 Dead
Alive ≥ 4 Dead
Alive 3 Alive
Dead 3 Alive

The blackboard is to be considered a mesh.
Position i,M − 1 is adjacent to position i, 0
and position M − 1, j is adjacent to position
0, j.

Free application The student can pick up an
application in his/her favorite domain and
implement the application using a skeleton
framework. The application has to be dis-
cussed with (and approved by) the teacher
before actually starting the project.

In all cases, the project submission should even-
tually include:

The design of the implementation with the
available skeletons, including an estimate of
the performances
The application implementation
A comparison of the performances achieved
with the ones expected

2 Project assignment

When a student (group of two students) decides
to start working on the project he/she should first
“negotiate” the project with the professor. He/she
communicates to the professor the project chosen
sending an email (subject “SPM project choice”).
The email text should give an idea of i) which
project subject has been chosen and ii) of the un-
specified parameters of the project. In case of “free
application”, as an example, the application cho-
sen should be introduced; in case of any appli-
cation, the framework chosen for the implemen-
tation is to be specified; etc. The professor, in
a short amount of time, returns an acknowledge
message possibly including more detailed require-
ments and/or modifications of the choices made
by the student/s. In particular cases, the profes-
sor may ask the student(s) to discuss the project

Help Desk
Any question relative to the project (design,
coding, debugging) can be posed during the
lesson breaks, during the question time (ques-
tion time will be active even in periods with-
out lessons) or by email (simple questions only).
Questions relative to the programming environ-
ments may also be sent to P. Dazzi (via email).

assignment during question time. After the ac-
knowledge, the assignment is registered on the
project web page5 and the student(s) may start
working. The acknowledgment may be implicitly
substituted by the pubblication of the assignment
on the project web page.

3 Submission details

3.1 Project report attachment

The project report is a short report (no more than
10 pages, excluding code). It must include:

• the specification of the project chosen, as
agreed with the professor

• the general design of the work done

• the peculiarities tackled when implementing
the project

• the comparison among performance predicted
with the performance models and the one ob-
served during the experiments

• a one page “user manual” explaining how the
code may be compiled and run

Please do not copy&paste parts of the project text,
of the SPM notes book, etc. Conciseness of the
project report is appreciated. The ability to report
only important facts is also evaluated.

3.2 Project sources

The whole sources of the project, including

(full) code
sample code/data used to exercise the run
time support or to run the application
makefiles or ant files used to compile the
project
scripts used to run the project (if any)

5http://didawiki.cli.di.unipi.it/doku.php/

magistraleinformaticanetworking/spm/spm1112proj

4



Figure 1: Didawiki page relative to the project
available at http://didawiki.cli.di.unipi.it/
doku.php/magistraleinformaticanetworking/spm/
spm1112proj

must be sent as a tar, gzipped file. Following the
instruction in the project report the teacher should
be able to run the code with proper inputs and to
observe the results described in the project report.

The source code file should be named as follows:
NameFamilyname.enrollmentNumber.tar.gz

As an example, I would submit a file with name
MarcoDanelutto12345.tar.gz In case the
project is prepared by two students, the project
file should be named using both names and
enrollment numbers.

The code should be decently commented. In
case of usage of tools such as javadoc or
doxygen, the commands necessary to generate the
documentation should be included in the proper
makefile or ant files.

The code may be developed on any ma-
chine, including student notebooks or other ma-
chines they have access to, but as far as the
evaluation process is concerned, the code must
run either on the Aula H/I/M machines or on
ottavinareale.di.unipi.it.

Project validity
The project described in this document is valid
for all the exam terms in Academic Year 2011-
2012, that is from June 2012 to February 2013.
The assignment may be required at any time
since project publication on. The assignment is
valid up to moment a new, different assignment
is required by the student(s) or up to start of
the 2012-2013 course. The start of next year
course “resets” any pending project work.

5


