
Introduction to FastFlow programming

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

SPM lecture, November 2016

 2

ClassWork1

● Modify hello_pipe_feedback.cpp (provided to the students in the ClassWork1
folder) in order to implement the following behavior:

● Computing the sum of the square of the first N numbers using a pipeline.

5, 4, 3, 2, 1, 0 55

5, 4, 3, 2, 1, 0 25, 16, 9, 4, 1, 0

...,6, 5, 4, 3, 2, 1, 0 ..., 6, 4, 2, 0

..., 5, 3, 1

even numbers

odd numbers

 3

ClassWork1: comments

// 3-stage pipeline
ff_Pipe<> pipe(first, second, third);
pipe.run_and_wait_end();

// 1st stage
struct firstStage: ff_node_t<float> {
 firstStage(const size_t len):len(len) {}
 float* svc(float *) {
 for(long i=0;i<len;++i)
 ff_send_out(new float(i));
 return EOS; // End-Of-Stream
 }
 const size_t len;
};

// 2nd stage
struct secondStage: ff_node_t<float> {
 float* svc(float *task) {
 float &t = *task;
 t = t*t;
 return task;
 }
};

// 3rd stage
struct thirdStage: ff_node_t<float> {
 float* svc(float *task) {
 float &t = *task;
 sum +=t;
 delete task;
 return GO_ON;
 }
 void svc_end() { std::cout << “sum = “ << sum << “\n”; }
 float sum = {0.0};
};

● Computing the sum of the square of the first N numbers using a pipeline.

5, 4, 3, 2, 1, 0 55

5, 4, 3, 2, 1, 0 25, 16, 9, 4, 1, 0

Possible extention: think about how
to avoid using many new/delete

 4

Core patterns: ff_farm (1)

struct myNode: ff_node_t<myTask> {
 myTask *svc(myTask * t) {
 F(t);
 return GO_ON;
}};

std::vector<std::unique_ptr<ff_node>> W;
W.push_back(make_unique<myNode>());
W.push_back(make_unique<myNode>());

ff_Farm<myTask>
 myFarm(std::move(W));

ff_Pipe<myTask>
 pipe(_1, myFarm, <...other stages...>);

pipe.run_and_wait_end();

● Farm's workers are ff_node(s) provided via an
std::vector

● By providing different ff_node(s) it is easy to build a
MISD farm (each worker computes a different
function)

● By default the farm has an Emitter and a Collector,
the Collector can be removed using:

– myFarm.remove_collector();

● Emitter and Collector may be redefined by providing
suitable ff_node objects

● Default task scheduling is pseudo round-robin

● Auto-scheduling:

– myFarm.set_scheduling_ondemand()

● Possibility to implement user's specific scheduling
strategies (ff_send_out_to)

● Farms and pipelines can be nested and composed in
any way

task-farm pattern

 5

Core patterns: ff_farm (2)

 myTask *F(myTask * t,ff_node*const) {
 …. <work on t> ….
 return t;
 }

 ff_Farm<myTask> myFarm(F, 5);

● Simpler syntax

● By providing a function having a suitable
signature together with the number of replicas

– 5 replicas in the code aside

● Default scheduling or auto-scheduling

task-farm pattern

● Ordered task-farm pattern

● Tasks are produced in output in the same order as
they arrive in input

● In this case it is not possible to redefine the
scheduling policy

 myTask *F(myTask * t,ff_node*const) {
 …. <work on t> ….
 return t;
 }

 ff_OFarm<myTask> myFarm(F, 5);

 6

Simple ff_farm examples

● Let's comment on the code of the 2 simple tests presented in the FastFlow tutorial:

– hello_farm.cpp

– hello_farm2.cpp

● Then, let's take a look at how to define Emitter an Collector in a farm:

– hello_farm3.cpp

● A farm in a pipeline without the Collector:

– hello_farm4.cpp

 7

ClassWork2

● Considering again the ClassWork1. Then, transform the middle stage of the
pipeline in a task-farm.

● When it works, then try to remove the collector from the farm.

5, 4, 3, 2, 1, 0 55

5, 4, 3, 2, 1, 0 25, 16, 9, 4, 1, 0

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7

