
Intel Thread Building Blocks, Part IV

SPD course 2013-14
Massimo Coppola

20/05/2014

35 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

container: Container Range

•  extends the range class to allow using
containers as ranges
(e.g. providing iterators, reference methods)
–  Container ranges can be directly used in

parallel_for, reduce and scan

•  some containers have implementations
which support container range
–  concurrent_hash_map
–  concurrent_vector
–  you can call parallel for, scan and reduce over

(all or) part of such containers

36 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Extending a container to a range

•  Types
–  R::value_type Item type
–  R::reference Item reference type
–  R::const_reference Item const reference type
–  R::difference_type Type for difference of two

iterators

•  What you need to provide
–  R::iterator Iterator type for range
–  R::iterator R::begin() First item in range
–  R::iterator R::end() One past last item in range
–  R::size_type R::grainsize() const Grain size

•  AND all Range methods: split(), is_divisible()…

37 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

concurrent map/set templates

•  The key issue is allowing multiple threads
efficient concurrent access to containers
–  keeping as much as possible close to STL usage
–  at the cost of limiting the semantics
–  A (possibly private) memory allocator is an optional

parameter

•  containers try to support concurrent insertion
and traversal
–  semantics similar to STL, in some cases simplified
–  not all containers support full concurrency of insertion,

traversal, deletion
–  typically, deletion is forbidden / not efficient
–  some methods are labeled as concurrently unsafe

•  E.g. erase

38 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Types of maps

•  We wish to reuse STL – based code as much as
possible
–  However, STL maps are NOT concurrency aware

•  Two main options to make them thread-nice
–  Preserve serial semantics, sacrifice performance
–  Aim for concurrent performance, sacrifice STL semantics

•  Choose depending on the semantics you need
•  concurrent_hash_map

–  Preserves serial semantics as much as possible
–  Operations are concurrent, but consistency is guaranteed

•  concurrent_unordered_map,
concurrent_unordered_multimap
–  Partially mimic STL corresponding semantics
–  drops concurrent performance hogging features
–  no strict serial consistency of operations

39 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent_hash_map

•  concurrent_hash_map
–  Preserves serial semantics as much as possible
–  Operations are concurrent, but subject to a

global ordering to ensure consistency
–  Relies on extensive built-in locking for this purpose
–  Data structure access is less scalable, may

become a bottleneck
–  Your tasks may be left idle on a lock until data

access is not available

40 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

concurrent unordered (multi)map

•  concurrent_unordered_map
•  concurrent_unordered_multimap

–  associative containers, concurrent insertion and traversal
–  semantics similar to STL unordered_map/multimap but

simplified
–  omits features strongly dependent on C++11

•  Rvalue references, initializer lists

–  some methods are prefixed by unsafe_ as they are
concurrently unsafe
•  unsafe_erase, unsafe_bucket methods

–  inserting concurrently the same key may actually create a
temporary pair which is destroyed soon after

–  the iterators defined are in the forward iterator category
(only allow to go forward)

–  supports concurrent traversal (concurrent insertion does
not invalidate the existing iterators)

41 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Comparison of maps

•  Choose depending on the semantics you need
•  concurrent_hash_map

–  Permits erasure, has built-in locking

•  concurrent_unordered_map
–  Allows concurrent traversal/insertion
–  No visible locking

•  minimal software lockout
•  no locks are retained that user code need to care about

–  Has [] and “at” accessors

•  concurrent_unordered_multimap
–  Same as previous, holds multiple identical keys
–  Find will return the first matching <key, Value>

•  But concurring threads may have added stuff before it in
the meantime!

42 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Map templates

•  template <typename Key,
 typename Element,
 typename Hasher = tbb_hash<Key>,
 typename Equality = std::equal_to<Key >,
 typename Allocator =
tbb::tbb_allocator<std::pair<const Key, Element > > >
class concurrent_unordered_map;

•  template <typename Key,
 typename Element,
 typename Hasher = tbb_hash<Key>,
 typename Equality = std::equal_to<Key >,
 typename Allocator =
tbb::tbb_allocator<std::pair<const Key, Element > > >
class concurrent_unordered_multimap;

43 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent sets
•  template <typename Key,

 typename Hasher = tbb_hash<Key>,
 typename Equality = std::equal_to<Key>,
 typename Allocator = tbb::tbb_allocator<Key>
class concurrent_unordered_set;

•  template <typename Key,
 typename Hasher = tbb_hash<Key>,
 typename Equality = std::equal_to<Key>,
 typename Allocator = tbb::tbb_allocator<Key>
class concurrent_unordered_multiset;

•  concurrent_unordered_set
–  set container supporting insertion and traversal
–  same limitations as map: C++0x, unsafe_erase and bucket methods
–  Forward iterators, not invalidated by concurrent insertion
–  For multiset, same find() behavior as with the maps

44 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent queues

•  STL queues, modified to allow concurrency
–  Unbounded capacity (memory bound!)
–  FIFO, allows multiple threads to push/pop

concurrently with high scalability
•  Differences with STL

–  No front and back access ! concurrently unsafe
•  Iterators are provided only for debugging purposes!
•  unsafe_begin() unsafe_end() iterators pointing to begin/

end of the queue
–  Size_type is an integral type
–  Unsafe_size() number of items in queue, not

guaranteed to be accurate
–  try_pop(T & object)

•  replaces (merges) size() and front() calls
•  attempts a pop, returns true if an object is returned

45 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Bounded_queue

•  Adds the ability to specify a capacity
–  set_capacity() and capacity()
–  default capacity is practically unbounded

•  push operation waits until it can complete without
exceeding the capacity
–  try_push does not wait, returns true on succes

•  Adds a waiting pop() operation that waits until it
can pop an item
–  Try_pop does not wait, returns true on success

•  Changes the size_type to a signed type, as
–  size() operation returns the number of push operations

minus the number of pop operations
–  Can be negative: if 3 pop operations are waiting on an

empty queue, size() returns -3.
•  abort() causes any waiting push or pop operation

to abort and throw an exception

46 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

concurrent_priority_queue

•  Concurrent push/pop priority queue
–  Unbounded capacity
–  Push is thread safe, try_pop is thread safe

•  Differences to STL
–  Does not allow choosing a container; does allow

to choose the memory allocator
–  top() access to highest priority elements is missing

(as it is unsafe)
–  pop replaced by try_pop
–  size() is inaccurate on concurrent access
–  empty() may be inaccurate
–  Swap is not thread safe

47 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent priority queue examples

•  concurrent_priority_queue(const
allocator_type& a = allocator_type())
–  Empty queue with given allocator

•  concurrent_priority_queue(size_type
init_capacity, const allocator_type& a =
allocator_type())
–  Sets initial capacity

•  Priority is provided by the template type T

48 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent vector

•  Random access by index
•  Concurrent growth / append
•  Growing does not invalidate indexes
•  Some methods are NOT concurrent

–  Reserve, compact, swap
•  Shrink_to_fit compacts the memory

representation
–  Not done automatically to preserve concurrent

access, invalidates indexes
•  Implements the range concept

–  Can be used for parallel iteration
•  Size() can be concurrently inaccurate (includes

element in construction)
•  Provides forward and reverse iterators

49 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

thread local storage

•  enumerable_thread_specific
•  a container class providing local storage to any of

the running threads

–  outside of parallel contexts, the contents of all thread-local
copies are accessible by iterator or using combine or
combine_each methods

–  thread-local copies are lazily created, with default,
exemplar or function initialization

–  thread-local copies do not move (during lifetime, and
excepting clear()) so the address of a copy is invariant.
•  the contained objects need not have operator=() defined if

combine is not used.
•  enumerable_thread_specific containers may be copy-

constructed or assigned.
•  thread-local copies can be managed by hash-table, or can be

accessed via TLS storage for speed.

50 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Updated References

•  Download docs and code from
http://threadingbuildingblocks.org/

•  Since TBB 4
–  many of the accompanying PDF (tutorial, reference) are

no longer made available on the web site. Either
–  ask the teacher for TBB 3.0 copies
–  resort to books

•  TBB Accompanying docs
–  download the full TBB source archive, it contains

•  an example directory with TBB examples and their description
•  a doc directory with full html reference docs

–  Getting started – install and compile examples ! TRY IT
•  Quick summary to lamba expressions in C++

–  http://www.nacad.ufrj.br/online/intel/Documentation/en_US/
compiler_c/main_cls/cref_cls/common/cppref_lambda_desc.htm!

51 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

