
The MPI Message-passing Standard
Practical use and implementation (V)

SPD Course
12/10/2012

Massimo Coppola

COLLECTIVE
COMMUNICATIONS

Intracommunicators

SPD - MPI Standard Use and Implementation (3) 2

Collectives’ Characteristics

•  Collective operations are called by ALL
processes of a communicator
–  Happen in a communicator like p-to-p
–  Use Datatypes to define message structure
–  Implement complex communication patterns

•  Distinct semantics from point-to-point
–  No modes
–  Always blocking
–  No variable-size data
–  No status parameters (would require many…)
–  Limited concurrency

•  Still a lot of freedom left to implementers
–  E.g. actual pattern choice, low-level operations
–  Semantics is carefully defined for this aim

SPD - MPI Standard Use and Implementation (3) 3

Changes! with MPI 3.0

•  MPI standard 3.0 released in September 2012
–  Collective Communications can be non-blocking
–  In this course we will stick to the MPI 2.2 definition

•  After studying the blocking version, it might
worth to know about non-blocking collectives
–  implicit serialization within a communicator still holds
–  blocking and non-blocking collectives do not

match with each other
–  all completion calls (WAIT, TEST) are supported
–  multiple outstanding collectives allowed in same

communicator
–  non-blocking behavior can avoid collective-related

deadlock across communicators
•  interaction with collective serialization is significant

–  it is not allowed to cancel a non-bl. collective

SPD - MPI Standard Use and Implementation (2) 4

Collective & Communicators

•  Independence among separate communicators
•  Independence with p-to-point in same comm.

–  Although coll. may be implemented on top of p-to-p.
•  Collectives are serialized over a communicator

–  Obvious consequence of the semantics
–  Same actual call order from every process in the

communicator
•  Serialization is not synchronization

–  Blocking behaviour = after the call, local completion is
granted and buffer / parameters are free to be reused

–  Globally, the collective may still be ongoing (and vice
versa)

–  Example: broadcast on a binary support tree may
complete on root process long before it is done

–  Only the MPI_Barrier is granted to synchronize
•  Serialization is a source of deadlocks

SPD - MPI Standard Use and Implementation (3) 5

Example of deadlocks and errors

•  Serialization is a source of deadlocks

SPD - MPI Standard Use and Implementation (2) 6

1

BAR

BRD

BAR

2

BRD

BAR

BAR

3

BAR

BAR

BAR

BAR BAR BAR

OK

Deadlock!

Collective Primitives

•  Many of the primitives you already know
–  Synchronization: Barrier (also an all-to-all)
–  One-to-all: Bcast (broadcast), Scatter *
–  All-to-one: Gather *, Reduce
–  All-to-all: AllGather *, AllToAll *,

 AllReduce, ReduceScatter
–  Other (comp.): Scan (parallel prefix), Exscan

•  agreement on parameters among all proc.s
–  Who is the root
–  Transferred data
–  More constraints on the typemaps, not only

signatures

SPD - MPI Standard Use and Implementation (3) 7

Collective Primitives

•  Agreement on data to be transferred
–  Buffers defined at each process must match in

size
–  Sometimes used for reading AND writing

•  User-defined datatypes and type signatures
are allowed
–  Typemaps should be compatible as always
–  Writing typemaps shall not be redundant

•  No ambiguity shall ever arise from typemap access
order, which is free choice of the MPI library

–  Generally speaking, collective primitives should
not read or write twice the same location
•  Not discussing all cases, refer to the standard

SPD - MPI Standard Use and Implementation (3) 8

Barrier & Broadcast

•  int MPI_Barrier(MPI_Comm comm)
–  Can be applied to intercommunicators

•  int MPI_Bcast(void* buffer, int count,
 MPI_Datatype datatype, int root,
 MPI_Comm comm)

SPD - MPI Standard Use and Implementation (3) 9

