Intfro to GPGPU
General Purpose GPU programming

Massimo Coppolo
16/11/2012

l ;II MCSN - M. Coppola - Strumenti di programmazione per sistemi paralleli e distribuiti - 1 '[HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboratory
DELLINFORMAZIONE “A. FAEDO”

GPU Computing

« The need for efficient specialized processing
of 3D meshes promoted the adoption of the
SIMD programming model

« How the model evolved

« What are GPUs good at@¢
— Large data sefts
— Arithmetic infensity = High compute/IO ratio
— Minimal control flow or recursion
— High locality

N HPC

IIIIIIIIIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEEEEE

« The graphics pipeline
— General methodology to produce graphic
output on raster devices like computer displays

— Start from elementary data (vertexes) and
transform them into pixels

— State of the art evolved over the years, 1o
possibly very complex structures
« Cfr. OpenGL 1.1 state machine

— We only survey the basic principles

« Graphics pipeline, or its stages, can have
pboth SW and HW implementation

» Tradeoff between flexibility and
performance

IIIIIIIIIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEEEEE

The birth of Graphic Processing Units .5,

HPC

The objects

UNIVERSITA DI PISA

« Vertex : a point in a coordinate system

« Primitive . graphic object comprising one or more
vertexes, possibly other parameters

* Pixel :image element in a raster display

« Coordinate systems for Vertexes, Primitive, Pixel usually
do not coincide

« They have typically different dimensionality
— E.g.render 3D space on a 2D display

« Widespread use of homogeneous coordinates

— Represent points in 2D spaces with 3 coordinates, and points
in 3D spaces with 4-dimension coordinates

— Allow representing linear affine tfransformations and
projections as linear operators 2 implemented as matrix
mulfiplication

— Common, very efficient execution of graphic transformations

N HPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL’INFORMAZIONE “A. FAEDO”

Elementary Graphics Pipeline

1. Vertex generation

2. Vertex processing

3. Primitive generation
4. Primifive processing
5. Pixel generation (Rasterization)
6. Pixel Processing
/. Pixel writing

« Some steps are more deeply customizable
« Some steps are efficiently realized in HW

n s _..1HPC

ISTITUTO DISCIENZA ETECNOLOGIE A B erate
DELLINFORMAZIONE “A. FAEDO”

Example

1. Vertex generation

retrieve/generate coordinates, apply geometric transformation

2. Vertex processing

Apply/attach visualization parameters to vertexes, apply per-object
transformations

3. Primitive generation

Group connected vertexes and turn them into squares, spheres, surfaces,
lines ...

4. Primitive processing

Apply shading models, colors, textures custom transformation to primitives

5. Pixel generation (Rasterization)

Slice primitives according to the output device resolution and features

Compute/interpolate texture pixels from texture memory matching with
primitive coordinates, to define each pixel characteristics in the slices

6. Pixel Processing

Process pixels accordind to lighting models, (anti) aliasing and other
postprocessing techniques

/. Pixel writing

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

Framebuffer operation, appropriate memory format (e.g. alpha channel)

lTatborato

Evolution and tranformation of GPUS .

 From 1985 (Commodore Amiga) to 1990 (S3
chips and followers) and beyond, 2D and then
3D accelerated units spread in the personal
computer market
— Driven mainly by the game market
— Less by Windowing systems, professional graphic use

* More and more specific stages in the pipeline

Implemented in HW on a chip of the graphic
device

* |In the end, all stages of a 3D pipeline
Implemented in HW

* Load balancing among the stages and
flexibility become issues for all-HW
implementation

IIIIIIIIIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEEEEE

Load balance in the pipeline

* More pixel than
raster elements R iy
(slices of primitives) LA ML

e More raster
elements than
vertexes

« Expected primitive
dis-l-ribu-l-ionl Surfoce 1 3 5 7 9 1113 1517 1921 23 25 27 29 31 33 35 37 30 41 43 45 47 49 51
h|d|ng a ﬂd OTh er Figure 14. Characteristic pixel and vertex shader workload
mCISkihg effeCTS variation over time

can affect this Image from NVIDIA GeForce 8800
balance architecture documentation, 2006

) 5 .11HPC

ISTITUTO DISCIENZA ETECNOLOGIE A B erate
DELLINFORMAZIONE “A. FAEDO”

Push toward unification

» Fixed number of vertex units and pixel units
leads to poor resource use on different
workloads

» Fixed, HW-cabled functionalifies are easily
reproduced in SW (no general CPUs)

« Special units replaced by unified units alike
to stream processors, with limited
programming capabilities

» Allocation of code to stream units initially
done by specialized SW = graphic drivers

N HPC

IIIIIIIIIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEEEEE

First “programmable” GPUS

UNIVERSITA DI PISA

« Replace the
graphic pipeline in GeForce 8800 replaces the pipeline model
the HW

Maintain some
special purpose
units in HW [Hou | |

— e.g. texture caching [input Assomblar | [Satup | Ratr 1 ZCull
and sampling [Vix Thread Issue | '

 Architecture

optimized for
sfreaming mnjun
— Custom RAM bus

— No read/write

« The future of GPUs is programmable processing
« So - build the architecture around the processor

Threod Processor

conflicts
~ Small caches EEEED m-m- m-m-
— High on-chip T A A S S S

ALU/memory ratio
— Single precision, non

IEEE floating point Example from GeForce 8800 docs

N HPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL’INFORMAZIONE “A. FAEDO”

(ViW))
m% 1,4\
AL
A
(PSS,
"f\ ';1 %\

WEYE

UNIVERSITA DI PISA

« General Purpose Graphic Unit Programming

- More and more graphic cores, and increasing core
computing power

« People started to tap into the graphic unit via
OpenGL primitives
— Exploit the computational semantics of specific graphic
operation to achieve access to the HW
— Tasks fit for stream processing : physics, image
manipulation, large data with few dependencies
« GPGPU research area was born
— Physical simulation coupled with rendering
— Textures and vertexes (read-only) are input streams

— Need to write results |
« Copy framebuffer (write-only) to texture after computation

« Skip last pipeline stages and save results to texture memory
(stream output in DirectX10)

N HPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL’INFORMAZIONE “A. FAEDO”

N ew G P U s UVI:;\iS};WDiISA
« GPU producers understood the market value
— GPU became more programmable

— General programming issues accounted for

« Double precision IEEE f.p. arithmetic
« More efficient branches in GPU code

« Architecture is still optimized for streaming
— The model exposed is very much SIMD like
— No support for reading/writing the same memory area

— No or limited support for communication among code
instances

« to avoid synchronization and pipeline stall detection logic

« GPUs are optimized for long computation run with
reduced dependencies

- CPUs for general access patterns and concurrency

N HPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL’INFORMAZIONE “A. FAEDO”

GPU optimizations

* Very large RAM bus
* Multiple traster per cycle
— rising/falling clock edge
« Low latency for sequential access
« High ALU density
— Many ALU conftrolled by the same control unit

« Grouped as thread processors

— All the core in a same thread block share same SIMD
model Code

— Share code and program flow, cores can just skip

— Sometimes available: shared set of registers and
caches

» Different threads blocks are truly independent

N HPC

IIIIIIIIIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEEEEE

Hardware Model

ATl “Cypress” RV870

. —_— - _ -
(anhks(nglne i)
T T T T
danslofolas L v ueometry. (a0 bl ’ o ;.1»,[.‘_-":1 - Ze)
B \ssemb Assemb ’ "y . 0
Instruction Cache
& Constant Cache
B
=Y re o — . - k. — b
: S (R =F
0 3 2 = ™ 2 &
=] » [t g (— ,O -
D - AD pe 0 < e) g (o] g > g
8 T m m |2 m 2 m o
64-b - or ADD pe 0 pecia Clio Q2 é =} o =) 5 = 5
5 MAD bit FP MAD 3> o m o k@ LA P
54-b D clo = - :5' & - , = &
4-b or ADD pe 0 o — ‘é g, (0 ; g ? P %,'
(o] & o (R o2
- m) m
[— - —
()
E @
@ fu—_ o
Fetch o
= "'ﬁrfit] g |2
g wv
" Ll | 8kBL1 a |3
RHElc POSERERISI N =
g |S
N
g |8
[] o
wv =
128kB L2 128KB L2 128kB L2 128kB L2 3 13
s |2
I
| -
| B Il B0 S0 0 150 I | M

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

Compuvutational Model

Stream Computing
— SIMD-like programming model
— Multiple processing units

« Non-determinism

— how data in streams gets processed by the
cores is left to the board firmware

« The computation of each core is driven by
a program, kernel

- The GPU infrastructure is responsible for
assigning cores 1o kernels
— each running instance of a kernel is called
thread

— each thread has an associated set of output
locations in the GPU memory referred as the
domain of execution.

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL’INFORMAZIONE “A. FAEDO”

Virtualized SIMD
array of threads

4_[Execution Domain]
1 Tij

T‘—l,y-1

~
~

Kernel

-—F1+=-=-=9@--~_ Scheduler

InputStream

7
| ¥ OutputStream
SPao |..| SPk | e | SPh-1 | f—

|l

Shader Processing Cores

I

Global cache

Proprietary Programming Models

« Brook+ and CUDA

—Provide so
abstractio

computati

und language
NS To define
onal kernels

—lNn A subse!

- of standard sequential

languages

* each one assigned to one or more
thread processors

—Main issue

IS to define In which

memory space each data/variable

IS actually

IIIIIIIIIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEEEEE

kepf

HPC

A

Host 'D.VIOC
e Each kernelis o :
mapped onto T Gy aw ao
one or more Sy e
thread blocks @y an i e

« Each Block can
execute several
subb-computations

« Kernel instances

(threads) in a
thread block can
oe interleaved or
oarallel

The host issues a succession of kermel invocations to the device, Each kernel is executed as a batch -
of threads orgarized as a grid of thread blocks P
ISTITUTO DI SCIENZA E TECNOLOGIE
DELL’INFORMAZIONE “A. FAEDO”

 The kernel instance
INn each core can
access several
spaces

« Language qualifiers
on functions and
variables

« Concurrency issues
- avoid
dependencies

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL’INFORMAZIONE “A. FAEDO”

Block (0, 0) Block (1, 0)

o] e

Thread (0,0) Thread(1,0) Thread (0, 0)

Thread (1, 0)

==

A thread has access Lo the device’s DRAM and on-chip memory through a set of

memory spaces of Vanous Scopes.

oooooooooo

More general Programming Models

« OpenCL

— New API more focused on computational
exploitation of GPU

— Will be part of this course
« RapidMind
— Language based approach which focues on
portability

— Same set of SIMD-like primitives could be
compiled to
« GPUs
« Cell Multicore
« X86 multicore CPUs

— Interesting idea - acquired (by Intel) in 2009

N HPC

IIIIIIIIIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEEEEE

GPU and CPU interaction

* The main limit of conventional GPU approach

* |Interaction with the CPU bus is a bottleneck

— PCl bus is fast, but slower than memory interface of
the GPU

— Data exchange rate and overhead is influenced by
the driver/OS management and by the hardware
capability (is DMA controlled by both wayse)

« To scale you need an ALU intensive, regular

problem and infrequent inferaction with the
CPU

« Or efficient asynchronous inferaction with the
CPU bus

N HPC

IIIIIIIIIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEEEEE

Hardware Model

ATl “Cypress” RV870

Stream Cores

suelg

4 32-bit FP MAD per clock
2 64-bit FP MUL or ADD per clock Special functions

1 64-bit FP MAD per clock 132-bit FP MAD
per clock

Ny

4 24-bit Int MUL or ADD per clock

Memory Controller

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL’INFORMAZIONE “A. FAEDO”

Instruction Cache
Constant Cache

Jayng Jodx3 Asowapy

. 0 3uiu3 WIS -

2JeysS ejeq |20 g)ZE

6T 2uISu3 QWIS
2Jeys ejeq |eao] gyze

Fetchp |
-
*Unit ™=

128kB L2

128kB L2

128kB L2

128kB L2

aJeys eieq |eqoo g4v9
51915183} UONEBZIUOIYIUAS (O[S

