The ASSIST Programming
Environment

Massimo Coppola

06/07/2007 - Pisa, Dipartimento di Informatica

Within the Ph.D. course “"Advanced Parallel Programming”
by M. Danelutto

With contributions from the whole Research Group
on Parallel Architectures




Summary

e The ASSIST skeleton system

e Basic Concepts
e Code encapsulation
e Execution
e Syntax and Semantics

e The ASSIST Constructs
e Parallelism expression

e Advanced features
e Run-time, Dynamic Adaptivity
e Heterogeneous Platforms
e Component orientation

e Future Extensions

07/06/2007 M. Coppola - The ASSIST Programming Environment 2



The ASSIST skeleton system

» Skeleton-based parallel programming
environment

— Compilation, deployment, execution

— Targets scientific and industrial needs
 High performance
- Programmability, portability, interoperability, time-to-market,

» Developed with ideas from other prototypes
— P3L  (classical skeletons, C -based implementation)
— SKIE  (classical skeletons, multi language)
— Muskel (data-flow Java based)

- Paradigm shift: “modable” skeletons, “escapes”

07/06/2007 M. Coppola - The ASSIST Programming Environment 3



The ASSIST skeleton system

Separation of concerns
— Application programmer vs. system programmer

Expressive power

— Most current patterns available through parmod
Code reuse

— C, C++, F77 (Java)

External objects/library access support

— Provide escapes to unstructured / external resources

Layered implementation
— Compiler, deploy tools, multitarget run time

Multiple target architectures
— Different CPUs/Memory & different Operating Systems

07/06/2007 M. Coppola - The ASSIST Programming Environment 4



Basic Concepts

e Data flow-interaction
— Typed streams

e Code encapsulation
— Well defined interfaces around code modules

e Which parallel skeletons?
— Flexible, extendable approach

e Execution
e Deployment tools
e Adaptivity

07/06/2007 M. Coppola - The ASSIST Programming Environment 5



The ASSIST Constructs

e Streams

— main interaction mechanism

- complemented by shared memory data structures
e Seq

- the simplest case of a code module

— multi language code encapsulation

e (Generic
— pipeline, DAG, generic graph task parallelism

e Parmod
— Multiple-pattern parallel skeleton

07/06/2007 M. Coppola - The ASSIST Programming Environment 6



Streams and data types

e Interaction mechanism among modules
e Typed (stream packets are ASSIST types)

e ASSIST types = CORBA types
— C-like syntax
— serializable data structures
- predefined inter-language equivalence
— technology ages fast...

e Stream management within the run-time
- Implementation details are hidden
— exploit binary or XDR formats

07/06/2007 M. Coppola - The ASSIST Programming Environment 7



Sequential code modules

e Seq defines a simple code module
— To run sequentially on any single computing resource

— With specified interface: type of input and output
parameters

— Code defined by a proc section
e Proc specifies sequential code behavior
— General use in ASSIST (also within parallel modules)

- Which language
- What is the actual code, and what are its interfaces

07/06/2007 M. Coppola - The ASSIST Programming Environment 8



The seq and proc Constructs

My_seq_module( input_stream long x
output_stream long y)

{ f(in x out y); }

can include/link:

source, headers, externally
generated object-code files

proc f(in long a out long b)
inc<“myHeader. cpp”,

“mySource. cpp”> and sequential libraries
path<“/home/marcod/myIncludes”> also different source
obj<“myObjectCode.o”> languages

src<“mySource.c”>
$c++{ /* here goes your code..*/ }c++$

]
07/06/2007 M. Coppola - The ASSIST Programming Environment 9



The generic Construct

e Short for generic graph
— can have loops
— pipeline and direct acyclic graphs (DAG) as special cases
e Allows to define unconstrained data-flow graphs of
modules
— Sequential, parallel modules and nested generic
e Each module represented by its functional
interfaces
- input and output streams

— Multiple inputs and outputs: supports nondeterministic
behavior

e Data-flow + shared status
- Unsynchronized shared var.s (rely on program structure!)

07/06/2007 M. Coppola - The ASSIST Programming Environment 10



Generic example

generic main (. . .)

{ M, =g S3/4V'M4
Pad

stream TN s B

stream T FINTRELE [ s 2 h43

stream int [N][N] s34; M $13 S M
| 2 25 5

stream int s25; >

M1 (ouput stream s13);
M2 (output stream s23, s25);

M3 (input stream SeleS’, S23;
output stream s34);

M4 (input stream s34);
M5 (input stream s25);

}

]
07/06/2007 M. Coppola - The ASSIST Programming Environment 11



parmod = generic PARallel MODuleé.

e structured way of defining parallel
computations
e abstracting away from actual mechanisms
— logical parallel activities
— logical data sharing
— specification of cooperation with the “outside”
e syntax special cases : farm, map, ....

e + expressiveness = deal with special cases
— classical skeletons are enough, usually
- mix skeleton behaviors / switch among them

07/06/2007 M. Coppola - The ASSIST Programming Environment 12



parmod abstract schema

non det external object
control access
on input
° — —2
shared state mulfiple
output

user def virtual processes  ctreams

07/06/2007 M. Coppola - The ASSIST Programming Environment 13



parmod detailed

Drawn from a presentation by
Marco Danelutto




parmod overall

process (multiple) input stream(s) of data
produce (multiple) output stream(s)

Streams
— data flow semantics (sort of one way comms)
e Parallel Computation

— Virtual Processes (VP) express computation grain
- VP eventually map to physical resources (automatic!)

e Parmod minimal syntax / semantics
— bring data to VPs
— define how VP cooperate
— bring results out

dorJiu] poured

]
07/06/2007 M. Coppola - The ASSIST Programming Environment 15



Non-deterministic input controkss

Multiple data-flow inputs: @ ®

(how) do we choose? —

e boolean guards ® o
- accessible and modifiable = —

e priorities

e input guards
e data availability

when satisfied, trigger virtual process(es)

07/06/2007 M. Coppola - The ASSIST Programming Environment 16



e non deterministic input control
- set of data-flow input streams to choose from

e input section handles:
— Priorities
— Boolean Guards (enable input streams on expression)
- Stream combinations (f needs both A and B to compute...)

e data from streams is distributed to
— virtual processes or parmod state
— Distributions: broadcast, unicast, scatter, multicast

e data availabilty triggers virtual processor
execution (a la Data Flow)

07/06/2007 M. Coppola - The ASSIST Programming Environment 17



e Concept of virtual process:
— a logically concurrent/parallel activity

- with a name

e there is a topology arranging VPs

e topology can be exploited to define the computation
— can perform different functions

e selects according to its state and inputs

e sequential code modules encapsulated in a proc

e Computation is described in terms of
code & data dependencies

- VP possibly sharing state with the other activities

07/06/2007 M. Coppola - The ASSIST Programming Environment 18



VP : logical and actual machines

At execution time:
e VP mapped to Virtual Processes Manager (VPM)

e VPM mapped to physical processing resources
- Mapping performed by tools

— Mapping can change at run-time
(dynamic reconfiguration)

VVEM 2

07/06/2007 M. Coppola - The ASSIST Programming Environment 19



VP naming

e Topology = VP naming scheme

— array: topology array [i:N] myVP;
e processors name after indexes of a (multidimensional)
array
e topology array [i:N] [j:M] [k:O] myVP
- none: topology none myVP;
e hone= NO naming, anonymous processes (task farm)
e can still express many different computation schemes

- one: topology one myVP;
e one single (seq) process, but all parmod features
e e.g. multiple in/out, non deterministic input control

07/06/2007 M. Coppola - The ASSIST Programming Environment 20



Parmod internal state

e attributes = variables (typed, structured)

e can be logically distributed on VPs
— match attribute structure on parmod’s topology

e owner-computes rule

e compiler + run time support ensure (safe)
accessibility

e implemented through AdHOC
- independent shared-memory support

07/06/2007 M. Coppola - The ASSIST Programming Environment 21



Parmod distributions

e state to VPs
e input data to VPs and state
e scatter, broadcast, multicast + scheduled

e scheduled
— computed on the basis of the input data

]
07/06/2007 M. Coppola - The ASSIST Programming Environment 22



Parmod application code

e associated to virtual processes
— to all or to subsets (using naming)

e Call through the proc code in C, C++, F/77
— Java soon ...

e possibility to introduce parmod iterations
— for, while statements

e Input data triggers code execution

e Barriers can be automatically inserted
— take care of data-parallel synchronizations

07/06/2007 M. Coppola - The ASSIST Programming Environment 23



Parmod output section

e Simple syntax for simple cases

— output parameters of virtual processes simply
delivered to output streams

e User control for more complex cases
— assist_out(stream, object)
— recompose data structures out of VP results
— insert arbitrary proc (attributes, guards)

e Multiple output stream handling

07/06/2007 M. Coppola - The ASSIST Programming Environment 24



external objects

run time code access to invoke external
services
e.g. CCM, WS, AdHOC, shared objects, ...

proc code can access these services
under complete user control

sort of ESCape to structured parallelism ...

07/06/2007 M. Coppola - The ASSIST Programming Environment 25



Examples of structured pattern

(parmod subcases)

e task farm
- topology none, distribution on-demand, collect from any

e “dedicated” task farm
— topology array, distribution scheduled

e (embarrassingly) data parallel
- topology array, tree

o fixed/variable stencil data parallel
- topology array, tree

e Custom schemes

- topology array, tree + non det input section+ state +
multiple VP proc + code within output section

07/06/2007 M. Coppola - The ASSIST Programming Environment 26



parmod examples



Multi-language support and

application structure

o ASSIST astcce is a front-end compiler
- Employs several other compilers as back-ends
— Run-time support code, and final linker: C++

e Compiler and sub-compiler configuration

— The ast_rc XML file defines
paths, flags, compilers, linker to exploit

e Compiled application is a set of executables
— Application structure is a directory tree
— Compact form ( .aar archive)
— Structure encoded in a flexible XML format

07/06/2007 M. Coppola - The ASSIST Programming Environment 28



Application Description &0

ALDL=Application Level Description Language

o Application-level information
— Structure and parameters (e.g. degree of parallelism)
— Application executables
— Run-time support processes

e Process-level information
— Architecture, OS
- HW/SW resources: memory, CPU, libraries...
— Input and output files

e Run-time parameters
- E.g. TCP ports, or network configuration

07/06/2007 M. Coppola - The ASSIST Programming Environment

19)1dwod ayy Agq paJtayieb uonewdolul ||V

29




(stmple) ALDL fragment

<?xml version="1.0" ?>

<aldl:application xmlIns = "urn:aldl-assist" xmIns:xsi = "http://www.w3.org/2001/XMLSchema-instance" xmins:aldl = "http://
www.isti.cnr. it/schemas/aldl/" xmins:nsl = "http://www.isti.cnr.it/schemas/assist/" xmlns:tns = "urn:aldl-assist"
targetNamespace = urn aIdI assist" xsi:schemalocation = "http://www.isti.cnr.it/schemas/aldl/ xml/aldl.xsd http://

WPwStTeTTT ml/assist.xsd" >
Generic
: iIleSystemName = "/tmp" arch = "i686" executable = "no"> execution

<nsl:source url = "file: ///home/paSCUCC|/ASS|st/ut|Is/ACE 5.5/lib/libACE.so0.5"/> i
</ns1:lib> requirements
<nsl:lib fileName = "libm.so.6" fileSystemName = "/tmp" arch = "i686" executable = "no">

<nsl:source url = "file:///lib/tls/libm.so0.6"/>
</nsl:lib>
<nsl:lib fileName = "libxml2.s0.2" fileSystemName = "/tmp" arch = "i686" executable = "no">

<nsl:source url = "file:///home/pascucci/Assist/utils/libxml2-2.6.27/lib/libxml2.s0.2"/>
</ns1:lib>

</aldl:requirement>
<Zaldl:requirement name = "ND0O0O__leggiConfiguration"> > | Process Spec.

<nsl:executable master = "yes" strategy = "no" arch = "i686">/home/pascucci/Assist/compiledAssis nelibinll

i686-pc-linux-gnu/ND0O00__ leggi</nsl:executable>
</aldl:requirement>
<aIdI'requirement name = "ND001 )01__kmeansConfigurationIsm">

<n aster = "no" strategy = "no" arch = "i686">/home i ist/compiledAssist/k élrl.qg iy
|686 pc-linux-gnu/NDO01__kmeans_ism</nsl:executable> M ® .Féf 6
</aldT:Fequirerent= run-tlme

<aldl:requirement name = "ND001__kmeansConfigurationOsm">

<nsl:executable master = "no" strategy = "no" arch = "i686">/home/pascucci/Assist/compiledAssist testKa ans//bln//
i686-pc-linux-gnu/ND001__kmeans_osm</ns1:executable> con guratlon

07/06/2007 M. Coppola - The ASSIST Programming Environment 30



Deployment : the GEA loader

e Exploits the ALDL description

e Goto GEA presentation

Slides will be merged on the web site :-)

]
07/06/2007 M. Coppola - The ASSIST Programming Environment 31



ASSIST deployment 1ssues

e Parallel modules
— Reconfigure exploiting QoS models and goals

e Run-time support of the language
— Multi-architecture (heterogeneous OS, HW)
— On physical system (no virtual machine)

e Deployment on clusters and Grids
— SSH, Globus

e Extendable to a component model
— Grid.it project

07/06/2007 M. Coppola - The ASSIST Programming Environment 32



GEA, the Grid Execution Age

e Tool to automatically deploy ASSIST application
- Implemented in Java for maximum portability

e Provides abstraction of a Grid computing platform
(GAM) together with the ASSIST run-time

o Applications =
multi-architecture “parallel executable” archives
— Executable availability directs matchmaking and staging
e Essential use of the ALDL application description
language
— ALDL descriptors are compiler generated
— do not depend on the source language

07/06/2007 M. Coppola - The ASSIST Programming Environment 33



GEA Core Deployment Schemay

e Deploy ASSIST applications
o Exploit High-level, structured

ALDL app||cat|0n deSCI’IptIOI’l Core Deployment Cycle
o Satisfy resource constraints
— Static and Dynamic Resource Location
- HW, SW
Resource Selection
— Aggregate
e Several translation steps el sl
e Finally exploit middleware
— broker, allocation, staging, Res. Config + Staging
network configuration
e GEA provides Execution
- Filtering, matchmaking, —

07/06/2007 M. Coppola - The ASSIST Programming Environment 34



Dynamic Adaptivity

e Change resource configuration
— Relocate processes and/or computations
— According to environment changes

e Complex task:
— Stop/synchronize processes
- Exchange status / change configuration
— Restart

e Hard to do with low-level MPI_Send() ...
e Easy with ASSIST high-level code

— Compiler knows relevant program properties (structure!!)
— All necessary protocols are built into the run-time

07/06/2007 M. Coppola - The ASSIST Programming Environment 35



Dynamic Adaptivity

e ASSIST exploits structure-information
— Avoid unnecessary synchronizations
— Avoid state propagation when not useful

e Farm skeletons do not almost need to synch
— Single stream communication can be controlled
— Overhead is minimal

e Data parallel is reconfigurable too
— Need to redistribute the computation

— Same interface to add/reduce resources, and redistribute the
load

e Reconfiguration either
— User-driven
— Based on autonomic control

07/06/2007 M. Coppola - The ASSIST Programming Environment 36



Autonomic control

: Sutput Contract
M| n-ensured
e A/
iy " i tothe
' : . CAM
O
I S A
Output
Input Streams
Streams -
Contract L/ :
Por g ¢ to the
over-ensured A B g OAM

07/06/2007 M. Coppola - The ASSIST Programming Environment 37



Autonomic control (2)

ltems/s N. of VPMs

COO WHOIODM DHO~N® O

Fill %

-
no

S

| N [
r’J N. of VPMs in parmod ——
I\ r\‘ S VPMs aggregated power - = -
’ v"\- VNN ’\/\/\f\_a-~~\,,‘~,\ - —
+r vy —r >
! QoS contract —
{ : ~Input stream queue fill level == -
50 100 150 200

Wall Clock Time (s)

07/06/2007

M. Coppola - The ASSIST Programming Environment

38



Adaptivity example

e Adaptivity -- p. 91

]
07/06/2007 M. Coppola - The ASSIST Programming Environment 39



Heterogeneous Platforms

]
07/06/2007 M. Coppola - The ASSIST Programming Environment 40



Multi-phase compilation

]
07/06/2007 M. Coppola - The ASSIST Programming Environment 41



42

M. Coppola - The ASSIST Programming Environment

07/06/2007



43

M. Coppola - The ASSIST Programming Environment

07/06/2007



44

M. Coppola - The ASSIST Programming Environment

07/06/2007



45

M. Coppola - The ASSIST Programming Environment

07/06/2007



46

M. Coppola - The ASSIST Programming Environment

07/06/2007



47

M. Coppola - The ASSIST Programming Environment

07/06/2007



48

M. Coppola - The ASSIST Programming Environment

07/06/2007



49

M. Coppola - The ASSIST Programming Environment

07/06/2007



50

M. Coppola - The ASSIST Programming Environment

07/06/2007



51

M. Coppola - The ASSIST Programming Environment

07/06/2007



52

M. Coppola - The ASSIST Programming Environment

07/06/2007



53

M. Coppola - The ASSIST Programming Environment

07/06/2007



54

M. Coppola - The ASSIST Programming Environment

07/06/2007



55

M. Coppola - The ASSIST Programming Environment

07/06/2007



56

M. Coppola - The ASSIST Programming Environment

07/06/2007



Conclusions

e Parallel program made up by modules
- Declared, data-flow stream interfaces
- Unconstrained graph

e Seq modules to encapsulate seq code
- Multi-language, code reuse

e Parmod to express parallel activities
- High level powerful syntax
— Skeleton oriented, shared memory available

e Run-time exploits structure information
- Low-level details hidden to programmers
— Automatic mapping over platforms
— Dynamic reconfiguration
— Portability, performance, efficiency, load balancing...

07/06/2007 M. Coppola - The ASSIST Programming Environment 57



Thanks for your attention

e Web site: www.di.unipi.it://
Assist.html

e Information

e
07/06/2007 M. Coppola - The ASSIST Programming Environment 58



