
The ASSIST Programming
Environment

Massimo Coppola

06/07/2007 - Pisa, Dipartimento di Informatica
Within the Ph.D. course “Advanced Parallel Programming”

by M. Danelutto
With contributions from the whole Research Group

 on Parallel Architectures

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 2	

Summary
•  The ASSIST skeleton system
•  Basic Concepts

•  Code encapsulation
•  Execution

•  Syntax and Semantics
•  The ASSIST Constructs
•  Parallelism expression

•  Advanced features
•  Run-time, Dynamic Adaptivity
•  Heterogeneous Platforms
•  Component orientation

•  Future Extensions

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 3	

The ASSIST skeleton system
•  Skeleton-based parallel programming

environment"
–  Compilation, deployment, execution"
–  Targets scientific and industrial needs"

•  High performance"
•  Programmability, portability, interoperability, time-to-market, "

•  Developed with ideas from other prototypes"
–  P3L "(classical skeletons, C -based implementation)"
–  SkIE "(classical skeletons, multi language)"
–  Muskel "(data-flow Java based)"

•  Paradigm shift: “modable” skeletons, “escapes”"

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 4	

The ASSIST skeleton system
•  Separation of concerns"

–  Application programmer vs. system programmer "
•  Expressive power"

–  Most current patterns available through parmod"
•  Code reuse"

–  C, C++, F77 (Java)"
•  External objects/library access support"

–  Provide escapes to unstructured / external resources"
•  Layered implementation"

–  Compiler, deploy tools, multitarget run time"
•  Multiple target architectures"

–  Different CPUs/Memory & different Operating Systems"

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 5	

Basic Concepts
•  Data flow-interaction

– Typed streams

•  Code encapsulation
– Well defined interfaces around code modules

•  Which parallel skeletons?
– Flexible, extendable approach

•  Execution
•  Deployment tools
•  Adaptivity

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 6	

The ASSIST Constructs
•  Streams

–  main interaction mechanism
–  complemented by shared memory data structures

•  Seq
–  the simplest case of a code module
–  multi language code encapsulation

•  Generic
–  pipeline, DAG, generic graph task parallelism

•  Parmod
–  Multiple-pattern parallel skeleton

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 7	

Streams and data types
•  Interaction mechanism among modules
•  Typed (stream packets are ASSIST types)
•  ASSIST types = CORBA types

– C-like syntax
–  serializable data structures
– predefined inter-language equivalence
–  technology ages fast…

•  Stream management within the run-time
–  Implementation details are hidden
– exploit binary or XDR formats

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 8	

Sequential code modules
•  Seq defines a simple code module

–  To run sequentially on any single computing resource
–  With specified interface: type of input and output

parameters
–  Code defined by a proc section

•  Proc specifies sequential code behavior
–  General use in ASSIST (also within parallel modules)
–  Which language
–  What is the actual code, and what are its interfaces

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 9	

The seq and proc Constructs
My_seq_module(input_stream long x 	
	 	 	 	output_stream long y) 	
	{ f(in x out y); } 	

proc f(in long a out long b) 	
	inc<“myHeader.cpp”,	
	 “mySource.cpp”> 	
	path<“/home/marcod/myIncludes”> 	
	obj<“myObjectCode.o”> 	
	src<“mySource.c”> 	

$c++{ /* here goes your code…*/ }c++$	

can include/link:"
source, headers, externally
generated object-code files

and sequential libraries"
also different source

languages	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 10	

The generic Construct
•  Short for generic graph

–  can have loops
–  pipeline and direct acyclic graphs (DAG) as special cases

•  Allows to define unconstrained data-flow graphs of
modules
–  Sequential, parallel modules and nested generic

•  Each module represented by its functional
interfaces
–  input and output streams
–  Multiple inputs and outputs: supports nondeterministic

behavior

•  Data-flow + shared status
–  Unsynchronized shared var.s (rely on program structure!)

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 11	

Generic example
generic main (. . .)
{
 stream int s13;
 stream int [N][N] s23;
 stream int [N][N] s34;
 stream int s25;

M1 (ouput_stream s13);
M2 (output_stream s23, s25);
M3 (input_stream s13, s23;
output_stream s34);
M4 (input_stream s34);
M5 (input_stream s25);

}

M1

M2

M3

M4

M5

s13

s23

s34

s25

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 12	

parmod = generic PARallel MODule
•  structured way of defining parallel

computations
•  abstracting away from actual mechanisms

–  logical parallel activities
–  logical data sharing
–  specification of cooperation with the “outside”

•  syntax special cases : farm, map, ….
•  + expressiveness = deal with special cases

–  classical skeletons are enough, usually
– mix skeleton behaviors / switch among them

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 13	

parmod abstract schema

non det �
control�
on input �

multiple�
output �
streams�user def virtual processes�

external object �
access�

shared state�

parmod detailed

Drawn from a presentation by
Marco Danelutto

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 15	

parmod overall
•  process (multiple) input stream(s) of data
•  produce (multiple) output stream(s)
•  Streams

–  data flow semantics (sort of one way comms)

•  Parallel Computation
–  Virtual Processes (VP) express computation grain
–  VP eventually map to physical resources (automatic!)

•  Parmod minimal syntax / semantics
–  bring data to VPs
–  define how VP cooperate
–  bring results out

parm
od Interface	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 16	

Non-deterministic input control

Multiple data-flow inputs:
(how) do we choose?

•  boolean guards
– accessible and modifiable

•  priorities
•  input guards
•  data availability

when satisfied, trigger virtual process(es)

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 17	

Nondeterminism: input section

•  non deterministic input control
–  set of data-flow input streams to choose from

•  input section handles:
–  Priorities
–  Boolean Guards (enable input streams on expression)
–  Stream combinations (f needs both A and B to compute…)

•  data from streams is distributed to
–  virtual processes or parmod state
–  Distributions: broadcast, unicast, scatter, multicast

•  data availabilty triggers virtual processor
execution (à la Data Flow)

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 18	

VP : logically parallel activity
•  Concept of virtual process:

–  a logically concurrent/parallel activity
–  with a name

•  there is a topology arranging VPs
•  topology can be exploited to define the computation

–  can perform different functions
•  selects according to its state and inputs
•  sequential code modules encapsulated in a proc

•  Computation is described in terms of
 code & data dependencies
–  VP possibly sharing state with the other activities

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 19	

At execution time:
•  VP mapped to Virtual Processes Manager (VPM)
•  VPM mapped to physical processing resources

–  Mapping performed by tools
–  Mapping can change at run-time

(dynamic reconfiguration)

VP : logical and actual machines

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 20	

VP naming
•  Topology = VP naming scheme

– array: topology array [i:N] myVP;
•  processors name after indexes of a (multidimensional)

array
•  topology array [i:N] [j:M] [k:O] myVP

– none: topology none myVP;
•  none= no naming, anonymous processes (task farm)
•  can still express many different computation schemes

– one: topology one myVP;
•  one single (seq) process, but all parmod features
•  e.g. multiple in/out, non deterministic input control

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 21	

Parmod internal state
•  attributes = variables (typed, structured)
•  can be logically distributed on VPs

– match attribute structure on parmod’s topology

•  owner-computes rule
•  compiler + run time support ensure (safe)

accessibility
•  implemented through AdHOC

–  independent shared-memory support

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 22	

Parmod distributions
•  state to VPs
•  input data to VPs and state
•  scatter, broadcast, multicast + scheduled
•  scheduled

–  computed on the basis of the input data

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 23	

Parmod application code
•  associated to virtual processes

–  to all or to subsets (using naming)

•  Call through the proc code in C, C++, F77
–  Java soon ...

•  possibility to introduce parmod iterations
–  for, while statements

•  Input data triggers code execution
•  Barriers can be automatically inserted

–  take care of data-parallel synchronizations

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 24	

Parmod output section
•  Simple syntax for simple cases

– output parameters of virtual processes simply
delivered to output streams

•  User control for more complex cases
– assist_out(stream, object)
–  recompose data structures out of VP results
–  insert arbitrary proc (attributes, guards)

•  Multiple output stream handling

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 25	

external objects

"   run time code access to invoke external
services
"   e.g. CCM, WS, AdHOC, shared objects, ...

"   proc code can access these services
under complete user control
"   sort of ESCape to structured parallelism ...

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 26	

Examples of structured patterns
 (parmod subcases)

•  task farm
–  topology none, distribution on-demand, collect from any

•  “dedicated” task farm
–  topology array, distribution scheduled

•  (embarrassingly) data parallel
–  topology array, tree

•  fixed/variable stencil data parallel
–  topology array, tree

•  Custom schemes
–  topology array, tree + non det input section+ state +

multiple VP proc + code within output section

parmod examples

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 28	

Multi-language support and
 application structure

•  ASSIST astcc is a front-end compiler
–  Employs several other compilers as back-ends
–  Run-time support code, and final linker: C++

•  Compiler and sub-compiler configuration
–  The ast_rc XML file defines

paths, flags, compilers, linker to exploit

•  Compiled application is a set of executables
–  Application structure is a directory tree
–  Compact form (.aar archive)
–  Structure encoded in a flexible XML format

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 29	

Application Description
ALDL=Application Level Description Language

•  Application-level information
–  Structure and parameters (e.g. degree of parallelism)
–  Application executables
–  Run-time support processes

•  Process-level information
–  Architecture, OS
–  HW/SW resources: memory, CPU, libraries…
–  Input and output files

•  Run-time parameters
–  E.g. TCP ports, or network configuration

A
ll in

fo
rm

atio
n
 g

ath
ered

 b
y th

e co
m

p
iler

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 30	

(simple) ALDL fragment
<?xml version="1.0" ?>
<aldl:application xmlns = "urn:aldl-assist" xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" xmlns:aldl = "http://

www.isti.cnr.it/schemas/aldl/" xmlns:ns1 = "http://www.isti.cnr.it/schemas/assist/" xmlns:tns = "urn:aldl-assist"
targetNamespace = "urn:aldl-assist" xsi:schemaLocation = "http://www.isti.cnr.it/schemas/aldl/ xml/aldl.xsd http://
www.isti.cnr.it/schemas/assist/ xml/assist.xsd">

 <aldl:requirement name = "libraries">
 <ns1:lib fileName = "libACE.so.5" fileSystemName = "/tmp" arch = "i686" executable = "no">
 <ns1:source url = "file:///home/pascucci/Assist/utils/ACE-5.5/lib/libACE.so.5"/>
 </ns1:lib>
 <ns1:lib fileName = "libm.so.6" fileSystemName = "/tmp" arch = "i686" executable = "no">
 <ns1:source url = "file:///lib/tls/libm.so.6"/>
 </ns1:lib>
 <ns1:lib fileName = "libxml2.so.2" fileSystemName = "/tmp" arch = "i686" executable = "no">
 <ns1:source url = "file:///home/pascucci/Assist/utils/libxml2-2.6.27/lib/libxml2.so.2"/>
 </ns1:lib>
 </aldl:requirement>
 <aldl:requirement name = "ND000__leggiConfiguration">
 <ns1:executable master = "yes" strategy = "no" arch = "i686">/home/pascucci/Assist/compiledAssist/testKMeans//bin//

i686-pc-linux-gnu/ND000__leggi</ns1:executable>
 </aldl:requirement>
 <aldl:requirement name = "ND001__kmeansConfigurationIsm">
 <ns1:executable master = "no" strategy = "no" arch = "i686">/home/pascucci/Assist/compiledAssist/testKMeans//bin//

i686-pc-linux-gnu/ND001__kmeans_ism</ns1:executable>
 </aldl:requirement>
 <aldl:requirement name = "ND001__kmeansConfigurationOsm">
 <ns1:executable master = "no" strategy = "no" arch = "i686">/home/pascucci/Assist/compiledAssist/testKMeans//bin//

i686-pc-linux-gnu/ND001__kmeans_osm</ns1:executable>

Generic
execution
requirements

Process spec.

Per-process
run-time
support
configuration

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 31	

Deployment : the GEA loader
•  Exploits the ALDL description

•  Goto GEA presentation

Slides will be merged on the web site :-)

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 32	

ASSIST deployment issues
•  Parallel modules

– Reconfigure exploiting QoS models and goals

•  Run-time support of the language
– Multi-architecture (heterogeneous OS, HW)
– On physical system (no virtual machine)

•  Deployment on clusters and Grids
– SSH, Globus

•  Extendable to a component model
– Grid.it project

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 33	

GEA, the Grid Execution Agent

•  Tool to automatically deploy ASSIST application
–  Implemented in Java for maximum portability

•  Provides abstraction of a Grid computing platform
(GAM) together with the ASSIST run-time

•  Applications =
multi-architecture “parallel executable” archives
–  Executable availability directs matchmaking and staging

•  Essential use of the ALDL application description
language
–  ALDL descriptors are compiler generated
–  do not depend on the source language

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 34	

GEA Core Deployment Schema
•  Deploy ASSIST applications
•  Exploit High-level, structured

ALDL application description
•  Satisfy resource constraints

–  Static and Dynamic
–  HW, SW
–  Aggregate

•  Several translation steps
•  Finally exploit middleware

–  broker, allocation, staging,
network configuration

•  GEA provides
–  Filtering, matchmaking,

mapping

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 35	

Dynamic Adaptivity
•  Change resource configuration

–  Relocate processes and/or computations
–  According to environment changes

•  Complex task:
–  Stop/synchronize processes
–  Exchange status / change configuration
–  Restart

•  Hard to do with low-level MPI_Send() …
•  Easy with ASSIST high-level code

–  Compiler knows relevant program properties (structure!!)
–  All necessary protocols are built into the run-time

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 36	

Dynamic Adaptivity
•  ASSIST exploits structure-information

–  Avoid unnecessary synchronizations
–  Avoid state propagation when not useful

•  Farm skeletons do not almost need to synch
–  Single stream communication can be controlled
–  Overhead is minimal

•  Data parallel is reconfigurable too
–  Need to redistribute the computation
–  Same interface to add/reduce resources, and redistribute the

load

•  Reconfiguration either
–  User-driven
–  Based on autonomic control

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 37	

Autonomic control

Contract �
over-ensured�

Contract �
un-ensured�

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 38	

Autonomic control (2)

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 39	

Adaptivity example
•  Adaptivity -- p. 91

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 40	

Heterogeneous Platforms

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 41	

Multi-phase compilation

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 42	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 43	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 44	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 45	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 46	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 47	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 48	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 49	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 50	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 51	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 52	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 53	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 54	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 55	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 56	

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 57	

Conclusions
•  Parallel program made up by modules

–  Declared, data-flow stream interfaces
–  Unconstrained graph

•  Seq modules to encapsulate seq code
–  Multi-language, code reuse

•  Parmod to express parallel activities
–  High level powerful syntax
–  Skeleton oriented, shared memory available

•  Run-time exploits structure information
–  Low-level details hidden to programmers
–  Automatic mapping over platforms
–  Dynamic reconfiguration
–  Portability, performance, efficiency, load balancing…

07/06/2007	

 M. Coppola - The ASSIST Programming Environment	

 58	

Thanks for your attention
•  Web site: www.di.unipi.it://
Assist.html

•  Information

