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Over the past decade, high-perfor-
mance computing has ridden the wave of
commodity computing, building cluster-
based parallel computers that leverage the
tremendous growth in processor performance
fueled by the commercial world. As this pace
slows, processor designers face complex prob-
lems in their efforts to increase gate density,
reduce power consumption, and design effi-
cient memory hierarchies. Processor develop-
ers are looking for solutions that can keep up
with the scientific and industrial communi-
ties’ insatiable demand for computing capa-
bility and that also have a sustainable market
outside science and industry.

A major trend in computer architecture is
integrating system components onto the
processor chip. This trend is driving the devel-
opment of processors that can perform func-
tions typically associated with entire systems.
Building modular processors with multiple
cores is far more cost-effective than building

monolithic processors, which are prohibitive-
ly expensive to develop, have high power con-
sumption, and give limited return on
investment. Multicore system-on-chip (SoC)
processors integrate several identical, inde-
pendent processing units on the same die,
together with network interfaces, acceleration
units, and other specialized units.

Researchers have explored several design
avenues in both academia and industry. Exam-
ples include MIT’s Raw multiprocessor, the
University of Texas’s Trips multiprocessor,
AMD’s Opteron, IBM’s Power5, Sun’s Niagara,
and Intel’s Montecito, among many others.
(For details on many of these processors, see
the March/April 2005 issue of IEEE Micro.)

In all multicore processors, a major tech-
nological challenge is designing the internal,
on-chip communication network. To realize
the unprecedented computational power of
the many available processing units, the net-
work must provide very high performance in

Michael Kistler
IBM Austin 

Research Laboratory

Michael Perrone
IBM TJ Watson 

Research Center

Fabrizio Petrini
Pacific Northwest 

National Laboratory

MULTICORE DESIGNS PROMISE VARIOUS POWER-PERFORMANCE AND AREA-

PERFORMANCE BENEFITS. BUT INADEQUATE DESIGN OF THE ON-CHIP

COMMUNICATION NETWORK CAN DEPRIVE APPLICATIONS OF THESE BENEFITS.

TO ILLUMINATE THIS IMPORTANT POINT IN MULTICORE PROCESSOR DESIGN,

THE AUTHORS ANALYZE THE CELL PROCESSOR’S COMMUNICATION NETWORK,

USING A SERIES OF BENCHMARKS INVOLVING VARIOUS DMA TRAFFIC

PATTERNS AND SYNCHRONIZATION PROTOCOLS.

CELL MULTIPROCESSOR
COMMUNICATION NETWORK:

BUILT FOR SPEED

Published by the IEEE Computer Society 0272-1732/06/$20.00 © 2006 IEEE



latency and in bandwidth. It must also resolve
contention under heavy loads, provide fair-
ness, and hide the processing units’ physical
distribution as completely as possible.

Another important dimension is the nature
and semantics of the communication primi-
tives available for interactions between the var-
ious processing units. Pinkston and Shin have
recently compiled a comprehensive survey of
multicore processor design challenges, with
particular emphasis on internal communica-
tion mechanisms.1

The Cell Broadband Engine processor
(known simply as the Cell processor), jointly
developed by IBM, Sony, and Toshiba, uses
an elegant and natural approach to on-chip
communication. Relying on four slotted rings
coordinated by a central arbiter, it borrows a
mainstream communication model from
high-performance networks in which pro-
cessing units cooperate through remote direct
memory accesses (DMAs).2 From functional
and performance viewpoints, the on-chip net-
work is strikingly similar to high-performance
networks commonly used for remote com-
munication in commodity computing clus-
ters and custom supercomputers.

In this article, we explore the design of the
Cell processor’s on-chip network and provide
insight into its communication and synchro-
nization protocols. We describe the various
steps of these protocols, the algorithms
involved, and their basic costs. Our perfor-
mance evaluation uses a collection of bench-
marks of increasing complexity, ranging from
basic communication patterns to more
demanding collective patterns that expose net-
work behavior under congestion.

Design rationale
The Cell processor’s design addresses at least

three issues that limit processor performance:
memory latency, bandwidth, and power.

Historically, processor performance
improvements came mainly from higher
processor clock frequencies, deeper pipelines,
and wider issue designs. However, memory
access speed has not kept pace with these
improvements, leading to increased effective
memory latencies and complex logic to hide
them. Also, because complex cores don’t allow
a large number of concurrent memory access-
es, they underutilize execution pipelines and

memory bandwidth, resulting in poor chip
area use and increased power dissipation with-
out commensurate performance gains.3

For example, larger memory latencies
increase the amount of speculative execution
required to maintain high processor utiliza-
tion. Thus, they reduce the likelihood that
useful work is being accomplished and
increase administrative overhead and band-
width requirements. All of these problems
lead to reduced power efficiency.

Power use in CMOS processors is approach-
ing the limits of air cooling and might soon
begin to require sophisticated cooling tech-
niques.4 These cooling requirements can sig-
nificantly increase overall system cost and
complexity. Decreasing transistor size and cor-
respondingly increasing subthreshold leakage
currents further increase power consumption.5

Performance improvements from further
increasing processor frequencies and pipeline
depths are also reaching their limits.6 Deeper
pipelines increase the number of stalls from
data dependencies and increase branch mis-
prediction penalties. 

The Cell processor addresses these issues by
attempting to minimize pipeline depth,
increase memory bandwidth, allow more
simultaneous, in-flight memory transactions,
and improve power efficiency and perfor-
mance.7 These design goals led to the use of
flexible yet simple cores that use area and
power efficiently.

Processor overview
The Cell processor is the first implementa-

tion of the Cell Broadband Engine Architetc-
ture (CBEA), which is a fully compatible
extension of the 64-bit PowerPC Architecture.
Its initial target is the PlayStation 3 game con-
sole, but its capabilities also make it well suit-
ed for other applications such as visualization,
image and signal processing, and various sci-
entific and technical workloads.

Figure 1 shows the Cell processor’s main
functional units. The processor is a heteroge-
neous, multicore chip capable of massive
floating-point processing optimized for com-
putation-intensive workloads and rich broad-
band media applications. It consists of one
64-bit power processor element (PPE), eight
specialized coprocessors called synergistic
processor elements (SPEs), a high-speed mem-
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ory controller, and a high-bandwidth bus
interface, all integrated on-chip. The PPE and
SPEs communicate through an internal high-
speed element interconnect bus (EIB).

With a clock speed of 3.2 GHz, the Cell
processor has a theoretical peak performance
of 204.8 Gflop/s (single precision) and 14.6
Gflop/s (double precision). The EIB supports
a peak bandwidth of 204.8 Gbytes/s for intra-
chip data transfers among the PPE, the SPEs,
and the memory and I/O interface controllers.
The memory interface controller (MIC) pro-
vides a peak bandwidth of 25.6 Gbytes/s to
main memory. The I/O controller provides
peak bandwidths of 25 Gbytes/s inbound and
35 Gbytes/s outbound.

The PPE, the Cell’s main processor, runs
the operating system and coordinates the
SPEs. It is a traditional 64-bit PowerPC
processor core with a vector multimedia
extension (VMX) unit, 32-Kbyte level 1
instruction and data caches, and a 512-Kbyte
level 2 cache. The PPE is a dual-issue, in-
order-execution design, with two-way simul-
taneous multithreading.

Each SPE consists of a synergistic proces-
sor unit (SPU) and a memory flow controller
(MFC). The MFC includes a DMA con-
troller, a memory management unit (MMU),
a bus interface unit, and an atomic unit for
synchronization with other SPUs and the
PPE. The SPU is a RISC-style processor with

an instruction set and a microarchitecture
designed for high-performance data stream-
ing and data-intensive computation. The SPU
includes a 256-Kbyte local-store memory to
hold an SPU program’s instructions and data.
The SPU cannot access main memory direct-
ly, but it can issue DMA commands to the
MFC to bring data into local store or write
computation results back to main memory.
The SPU can continue program execution
while the MFC independently performs these
DMA transactions. No hardware data-load
prediction structures exist for local store man-
agement, and each local store must be man-
aged by software.

The MFC performs DMA operations to
transfer data between local store and system
memory. DMA operations specify system
memory locations using fully compliant Pow-
erPC virtual addresses. DMA operations can
transfer data between local store and any
resources connected via the on-chip inter-
connect (main memory, another SPE’s local
store, or an I/O device). Parallel SPE-to-SPE
transfers are sustainable at a rate of 16 bytes
per SPE clock, whereas aggregate main-mem-
ory bandwidth is 25.6 Gbytes/s for the entire
Cell processor.

Each SPU has 128 128-bit single-instruc-
tion, multiple-data (SIMD) registers. The
large number of architected registers facilitates
highly efficient instruction scheduling and
enables important optimization techniques
such as loop unrolling. All SPU instructions
are inherently SIMD operations that the
pipeline can run at four granularities: 16-way
8-bit integers, eight-way 16-bit integers, four-
way 32-bit integers or single-precision
floating-point numbers, or two 64-bit dou-
ble-precision floating-point numbers.

The SPU is an in-order processor with two
instruction pipelines, referred to as the even
and odd pipelines. The floating- and fixed-
point units are on the even pipeline, and the
rest of the functional units are on the odd
pipeline. Each SPU can issue and complete
up to two instructions per cycle—one per
pipeline. The SPU can approach this theo-
retical limit for a wide variety of applications.
All single-precision operations (8-bit, 16-bit,
or 32-bit integers or 32-bit floats) are fully
pipelined and can be issued at the full SPU
clock rate (for example, four 32-bit floating-
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point operations per SPU clock cycle). The
two-way double-precision floating-point
operation is partially pipelined, so its instruc-
tions issue at a lower rate (two double-preci-
sion  flops every seven SPU clock cycles).
When using single-precision floating-point
fused multiply-add instructions (which count
as two operations), the eight SPUs can per-
form a total of 64 operations per cycle.

Communication architecture
To take advantage of all the computation

power available on the Cell processor, work
must be distributed and coordinated across
the PPE and the SPEs. The processor’s spe-
cialized communication mechanisms allow
efficient data collection and distribution as
well as coordination of concurrent activities
across the computation elements. Because the
SPU can act directly only on programs and
data in its own local store, each SPE has a
DMA controller that performs high-band-
width data transfer between local store and
main memory. These DMA engines also allow
direct transfers between the local stores of two
SPUs for pipeline or producer-consumer-style
parallel applications.

At the other end of the spectrum, the SPU
can use either signals or mailboxes to perform
simple low-latency signaling to the PPE or

other SPEs. Supporting more-complex syn-
chronization mechanisms is a set of atomic
operations available to the SPU, which oper-
ate in a similar manner as the PowerPC archi-
tecture’s lwarx/stwcx atomic instructions. In
fact, the SPU’s  atomic operations interoper-
ate with PPE atomic instructions to build
locks and other synchronization mechanisms
that work across the SPEs and the PPE. Final-
ly, the Cell allows memory-mapped access to
nearly all SPE resources, including the entire
local store. This provides a convenient and
consistent mechanism for special communi-
cations needs not met by the other techniques.

The rich set of communications mecha-
nisms in the Cell architecture enables pro-
grammers to efficiently implement widely
used programming models for parallel and
distributed applications. These models
include the function-offload, device-exten-
sion, computational-acceleration, streaming,
shared-memory-multiprocessor, and asym-
metric-thread-runtime models.8

Element interconnect bus
Figure 2 shows the EIB, the heart of the Cell

processor’s communication architecture,
which enables communication among the
PPE, the SPEs, main system memory, and
external I/O. The EIB has separate commu-
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nication paths for commands (requests to
transfer data to or from another element on
the bus) and data. Each bus element is con-
nected through a point-to-point link to the
address concentrator, which receives and
orders commands from bus elements, broad-
casts the commands in order to all bus ele-
ments (for snooping), and then aggregates and
broadcasts the command response. The com-
mand response is the signal to the appropriate
bus elements to start the data transfer.

The EIB data network consists of four 16-
byte-wide data rings: two running clockwise,
and the other two counterclockwise. Each ring
potentially allows up to three concurrent data
transfers, as long as their paths don’t overlap.
To initiate a data transfer, bus elements must
request data bus access. The EIB data bus
arbiter processes these requests and decides
which ring should handle each request. The
arbiter always selects one of the two rings that
travel in the direction of the shortest transfer,
thus ensuring that the data won’t need to trav-
el more than halfway around the ring to its
destination. The arbiter also schedules the
transfer to ensure that it won’t interfere with
other in-flight transactions. To minimize
stalling on reads, the arbiter gives priority to
requests coming from the memory controller.
It treats all others equally in round-robin fash-
ion. Thus, certain communication patterns
will be more efficient than others.

The EIB operates at half the processor-clock
speed. Each EIB unit can simultaneously send
and receive 16 bytes of data every bus cycle.
The EIB’s maximum data bandwidth is lim-
ited by the rate at which addresses are snooped
across all units in the system, which is one
address per bus cycle. Each snooped address
request can potentially transfer up to 128
bytes, so in a 3.2GHz Cell processor, the the-
oretical peak data bandwidth on the EIB is
128 bytes × 1.6 GHz = 204.8 Gbytes/s.

The on-chip I/O interfaces allow two Cell
processors to be connected using a coherent
protocol called the broadband interface (BIF),
which effectively extends the multiprocessor
network to connect both PPEs and all 16
SPEs in a single coherent network. The BIF
protocol operates over IOIF0, one of the two
available on-chip I/O interfaces; the other
interface, IOIF1, operates only in noncoher-
ent mode. The IOIF0 bandwidth is config-

urable, with a peak of 30 Gbytes/s outbound
and 25 Gbytes/s inbound.

The actual data bandwidth achieved on the
EIB depends on several factors: the destina-
tion and source’s relative locations, the chance
of a new transfer’s interfering with transfers
in progress, the number of Cell chips in the
system, whether data transfers are to/from
memory or between local stores in the SPEs,
and the data arbiter’s efficiency.

Reduced bus bandwidths can result in the
following cases:

• All requestors access the same destina-
tion, such as the same local store, at the
same time.

• All transfers are in the same direction and
cause idling on two of the four data rings.

• A large number of partial cache line
transfers lowers bus efficiency.

• All transfers must travel halfway around
the ring to reach their destinations,
inhibiting units on the way from using
the same ring.

Memory flow controller
Each SPE contains an MFC that connects

the SPE to the EIB and manages the various
communication paths between the SPE and the
other Cell elements. The MFC runs at the EIB’s
frequency—that is, at half the processor’s speed.
The SPU interacts with the MFC through the
SPU channel interface. Channels are unidirec-
tional communication paths that act much like
first-in first-out fixed-capacity queues. This
means that each channel is defined as either
read-only or write-only from the SPU’s per-
spective. In addition, some channels are defined
with blocking semantics, meaning that a read
of an empty read-only channel or a write to a
full write-only channel causes the SPU to block
until the operation completes. Each channel has
an associated count that indicates the number
of available elements in the channel. The SPU
uses the read channel (rdch), write channel
(wrch), and read channel count (rchcnt) assem-
bly instructions to access the SPU channels.

DMA. The MFC accepts and processes DMA
commands that the SPU or the PPE issued
using the SPU channel interface or memory-
mapped I/O (MMIO) registers. DMA com-
mands queue in the MFC, and the SPU or PPE
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(whichever issued the command) can continue
execution in parallel with the data transfer,
using either polling or blocking interfaces to
determine when the transfer is complete. This
autonomous execution of MFC DMA com-
mands allows convenient scheduling of DMA
transfers to hide memory latency.

The MFC supports naturally aligned trans-
fers of 1, 2, 4, or 8 bytes, or a multiple of 16
bytes to a maximum of 16 Kbytes. DMA list
commands can request a list of up to 2,048
DMA transfers using a single MFC DMA
command. However, only the MFC’s associ-
ated SPU can issue DMA list commands. A
DMA list is an array of DMA source/destina-
tion addresses and lengths in the SPU’s local
storage. When an SPU issues a DMA list com-
mand, the SPU specifies the address and
length of the DMA list in the local store.9 Peak
performance is achievable for transfers when
both the effective address and the local storage
address are 128-byte aligned and the transfer
size is an even multiple of 128 bytes.

Signal notification and mailboxes. The signal
notification facility supports two signaling
channels: Sig_Notify_1 and Sig_Notify_2. The
SPU can read its own signal channels using the
read-blocking SPU channels SPU_RdSigNo-
tify1 and SPU_RdSigNotify2. The PPE or an
SPU can write to these channels using memo-
ry-mapped addresses. A special feature of the
signaling channels is that they can be config-
ured to treat writes as logical OR operations,
allowing simple but powerful collective com-
munication across processors.

Each SPU also has a set of mailboxes that can
function as a narrow (32-bit) communication
channel to the PPE or another SPE. The SPU
has a four-entry, read-blocking inbound mail-
box and two single-entry, write-blocking out-
bound mailboxes, one of which will also
generate an interrupt to the PPE when the SPE
writes to it. The PPE uses memory-mapped
addresses to write to the SPU’s inbound mail-
box and read from either of the SPU’s outbound
mailboxes. In contrast to the signal notification
channels, mailboxes are much better suited for
one-to-one communication patterns such as
master-slave or producer-consumer models. A
typical round-trip communication using mail-
boxes between two SPUs takes approximately
300 nanoseconds (ns).

Atomic operations. To support more complex
synchronization mechanisms, the SPU can use
special DMA operations to atomically update
a lock line in main memory. These operations,
called get-lock-line-and-reserve (getllar) and
put-lock-line-conditional (putllc), are con-
ceptually equivalent to the PowerPC load-and-
reserve (lwarx) and store-conditional (stcwx)
instructions.

The getllar operation reads the value of a
synchronization variable in main memory and
sets a reservation on this location. If the PPE
or another SPE subsequently modifies the syn-
chronization variable, the SPE loses its reser-
vation. The putllc operation updates the
synchronization variable only if the SPE still
holds a reservation on its location. If putllc
fails, the SPE must reissue getllar to obtain the
synchronization variable’s new value and then
retry the attempt to update it with another
putllc. The MFC’s atomic unit performs the
atomic DMA operations and manages reser-
vations held by the SPE.

Using atomic updates, the SPU can partic-
ipate with the PPE and other SPUs in locking
protocols, barriers, or other synchronization
mechanisms. The atomic operations available
to the SPU also have some special features,
such as notification through an interrupt
when a reservation is lost, that enable more
efficient and powerful synchronization than
traditional approaches.

Memory-mapped I/O (MMIO) resources. Mem-
ory-mapped resources play a role in many of
the communication mechanisms already dis-
cussed, but these are really just special cases of
the Cell architecture’s general practice of mak-
ing all SPE resources available through MMIO.
These resources fall into four broad classes:

• Local storage. All of an SPU’s local storage
can be mapped into the effective-address
space. This allows the PPE to access the
SPU’s local storage with simple loads and
stores, though doing so is far less efficient
than using DMA. MMIO access to local
storage is not synchronized with SPU exe-
cution, so programmers must ensure that
the SPU program is designed to allow
unsynchronized access to its data (for
example, by using the “volatile” variables)
when exploiting this feature.
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• Problem state memory map. Resources in
this class, intended for use directly by
application programs, include access to
the SPE’s DMA engine, mailbox chan-
nels, and signal notification channels.

• Privilege 1 memory map. These resources
are available to privileged programs such
as the operating system or authorized
subsystems to monitor and control the
execution of SPU applications.

• Privilege 2 memory map. The operating
system uses these resources to control the
resources available to the SPE.

DMA flow
The SPE’s DMA engine handles most com-

munications between the SPU and other Cell
elements and executes DMA commands
issued by either the SPU or the PPE. A DMA
command’s data transfer direction is always
referenced from the SPE’s perspective. There-
fore, commands that transfer data into an SPE
(from main storage to local store) are consid-
ered get commands (gets), and transfers of
data out of an SPE (from local store to main
storage) are considered put commands (puts).

DMA transfers are coherent with respect to
main storage. Programmers should be aware
that the MFC might process the commands in
the queue in a different order from that in
which they entered the queue. When order is
important, programmers must use special
forms of the get and put commands to enforce
either barrier or fence semantics against other
commands in the queue.

The MFC’s MMU handles address transla-
tion and protection checking of DMA access-
es to main storage, using information from
page and segment tables defined in the Pow-
erPC architecture. The MMU has a built-in
translation look-aside buffer (TLB) for caching
the results of recently performed translations.

The MFC’s DMA controller (DMAC)
processes DMA commands queued in the
MFC.  The MFC contains two separate DMA
command queues:

• MFC SPU command queue, for com-
mands issued by the associated SPU
using the channel interface; and

• MFC proxy command queue, for com-
mands issued by the PPE or other devices
using MMIO registers.

The Cell architecture doesn’t dictate the size
of these queues and recommends that soft-
ware not assume a particular size. This is
important to ensure functional correctness
across Cell architecture implementations.
However, programs should use DMA queue
entries efficiently because attempts to issue
DMA commands when the queue is full will
lead to performance degradation. In the Cell
processor, the MFC SPU command queue
contains 16 entries, and the MFC proxy com-
mand queue contains eight entries.

Figure 3 illustrates the basic flow of a DMA
transfer to main storage initiated by an SPU.
The process consists of the following steps:

1. The SPU uses the channel interface to
place the DMA command in the MFC
SPU command queue.

2. The DMAC selects a command for pro-
cessing. The set of rules for selecting the
command for processing is complex, but,
in general, a) commands in the SPU
command queue take priority over com-
mands in the proxy command queue, b)
the DMAC alternates between get and
put commands, and c) the command
must be ready (not waiting for address
resolution or list element fetch or depen-
dent on another command).

3. If the command is a DMA list command
and requires a list element fetch, the
DMAC queues a request for the list ele-
ment to the local-store interface. When
the list element is returned, the DMAC
updates the DMA entry and must rese-
lect it to continue processing.

4. If the command requires address trans-
lation, the DMAC queues it to the
MMU for processing. When the transla-
tion is available in the TLB, processing
proceeds to the next step (unrolling). On
a TLB miss, the MMU performs the
translation, using the page tables stored
in main memory, and updates the TLB.
The DMA entry is updated and must be
reselected for processing to continue.

5. Next, the DMAC unrolls the command—
that is, creates a bus request to transfer the
next block of data for the command. This
bus request can transfer up to 128 bytes of
data but can transfer less, depending on
alignment issues or the amount of data the
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DMA command requests. The DMAC
then queues this bus request to the bus
interface unit (BIU).

6. The BIU selects the request from its
queue and issues the command to the
EIB. The EIB orders the command with
other outstanding requests and then
broadcasts the command to all bus ele-
ments. For transfers involving main
memory, the MIC acknowledges the
command to the EIB which then informs
the BIU that the command was accept-
ed and data transfer can begin. 

7. The BIU in the MFC performs the reads
to local store required for the data trans-
fer. The EIB transfers the data for this
request between the BIU and the MIC.
The MIC transfers the data to or from
the off-chip memory.

8. The unrolling process produces a sequence
of bus requests for the DMA command,

that pipeline through the communication
network. The DMA command remains
in the MFC SPU command queue until
all its bus requests have completed. How-
ever, the DMAC can continue to process
other DMA commands. When all bus
requests for a command have completed,
the DMAC signals command completion
to the SPU and removes the command
from the queue.

In the absence of congestion, a thread run-
ning on the SPU can issue a DMA request in
as little as 10 clock cycles—the time needed to
write to the five SPU channels that describe
the source and destination addresses, the
DMA size, the DMA tag, and the DMA com-
mand. At that point, the DMAC can process
the DMA request without SPU intervention.

The overall latency of generating the DMA
command, initially selecting the command,
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and unrolling the first bus request to the
BIU—or, in simpler terms, the flow-through
latency from SPU issue to injection of the bus
request into the EIB—is roughly 30 SPU
cycles when all resources are available. If list
element fetch is required, it can add roughly
20 SPU cycles. MMU translation exceptions
by the SPE are very expensive and should be
avoided if possible. If the queue in the BIU
becomes full, the DMAC is blocked from
issuing further requests until resources
become available again.

A transfer’s command phase involves
snooping operations for all bus elements to
ensure coherence and typically requires some
50 bus cycles (100 SPU cycles) to complete.
For gets, the remaining latency is attributable
to the data transfer from off-chip memory to
the memory controller and then across the bus
to the SPE, which writes it to local store. For
puts, DMA latency doesn’t include transfer-
ring data all the way to off-chip memory
because the SPE considers the put complete
once all data have been transferred to the
memory controller.

Experimental results
We conducted a series of experiments to

explore the major performance aspects of the
Cell’s on-chip communication network, its
protocols, and the pipelined communication’s
impact. We developed a suite of microbench-
marks to analyze the internal interconnection
network’s architectural features. Following the
research path of previous work on traditional
high-performance networks,2 we adopted an
incremental approach to gain insight into sev-
eral aspects of the network. We started our
analysis with simple pairwise, congestion-free
DMAs, and then we increased the bench-
marks’ complexity by including several pat-
terns that expose the contention resolution
properties of the network under heavy load.

Methodology
Because of the limited availability of Cell

boards at the time of our experiments, we per-
formed most of the software development on
IBM’s Full-System Simulator for the Cell
Broadband Engine Processor (available at
http://www-128.ibm.com/developerworks/
power/cell/).10,11 We collected the results pre-
sented here using an experimental evaluation

board at the IBM Research Center in Austin.
The Cell processor on this board was running
at 3.2 GHz. We also obtained results from an
internal version of the simulator that includes
performance models for the MFC, EIB, and
memory subsystems. Performance simulation
for the Cell processor is still under develop-
ment, but we found good correlation between
the simulator and hardware in our experi-
ments. The simulator let us observe aspects of
system behavior that would be difficult or
practically impossible to observe on actual
hardware.

We developed the benchmarks in C, using
several Cell-specific libraries to orchestrate
activities between the PPE and various SPEs.
In all tests, the DMA operations are issued by
the SPUs. We wrote DMA operations in C
language intrinsics,12 which in most cases pro-
duce inline assembly instructions to specify
commands to the MFC through the SPU
channel interface. We measured elapsed time
in the SPE using a special register, the SPU
decrementer, which ticks every 40 ns (or 128
processor clock cycles).

PPE and SPE interactions were performed
through mailboxes, input and output SPE reg-
isters that can send and receive messages in as
little as 150 ns. We implemented a simple syn-
chronization mechanism to start the SPUs in
a coordinated way. SPUs notify the comple-
tion of benchmark phases through an atomic
fetch-and-add operation on a main memory
location that is polled infrequently and unin-
trusively by the PPE.

Basic DMA performance
The first step of our analysis measures the

latency and bandwidth of simple blocking
puts and gets, when the target is in main
memory or in another SPE’s local store. Table
1 breaks down the latency of a DMA opera-
tion into its components.

Figure 4a shows DMA operation latency
for a range of sizes. In these results, transfers
between two local stores were always per-
formed between SPEs 0 and 1, but in all our
experiments, we found no performance dif-
ference attributable to SPE location. The
results show that puts to main memory and
gets and puts to local store had a latency of
only 91 ns for transfers of up to 512 bytes
(four cache lines). There was little difference
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between puts and gets to local store because
local-store access latency was remarkably
low—only 8 ns (about 24 processor clock
cycles). Main memory gets required less than
100 ns to fetch information, which is remark-
ably fast.

Figure 4b presents the same results in terms
of bandwidth achieved by each DMA opera-
tion. As we expected, the largest transfers
achieved the highest bandwidth, which we
measured as 22.5 Gbytes/s for gets and puts to
local store and puts to main memory and 15
Gbytes/s for gets from main memory.

Next, we considered the impact of non-
blocking DMA operations. In the Cell proces-
sor, each SPE can have up to 16 outstanding
DMAs, for a total of 128 across the chip, allow-
ing unprecedented levels of parallelism in on-
chip communication. Applications that rely
heavily on random scatter or gather accesses to
main memory can take advantage of these com-
munication features seamlessly. Our bench-
marks use a batched communication model, in
which the SPU issues a fixed number (the batch
size) of DMAs before blocking for notification
of request completion. By using a very large
batch size (16,384 in our experiments), we
effectively converted the benchmark to use a
nonblocking communication model.

Figure 5 shows the results of these experi-
ments, including aggregate latency and band-
width for the set of DMAs in a batch, by batch
size and data transfer size. The results show a
form of performance continuity between
blocking—the most constrained case—and
nonblocking operations, with different
degrees of freedom expressed by the increasing
batch size. In accessing main memory and
local storage, nonblocking puts achieved the
asymptotic bandwidth of 25.6 Gbytes/s,
determined by the EIB capacity at the end-
points, with 2-Kbyte DMAs (Figure 5b and
5f ). Accessing local store, nonblocking puts
achieved the optimal value with even smaller
packets (Figure 5f ).

Gets are also very efficient when accessing
local memories, and the main memory laten-
cy penalty slightly affects them, as Figure 5c
shows. Overall, even a limited amount of
batching is very effective for intermediate
DMA sizes, between 256 bytes and 4 Kbytes,
with a factor of two or even three of bandwidth
increase compared with the blocking case (for

example, 256-byte DMAs in Figure 5h).

Collective DMA performance
Parallelization of scientific applications gen-

erates far more sophisticated collective
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Table 1. DMA latency components for a clock

frequency of 3.2 GHz.

Latency component Cycles Nanoseconds
DMA issue 10 3.125
DMA to EIB 30 9.375
List element fetch 10 3.125
Coherence protocol 100 31.25
Data transfer for inter-SPE put 140 43.75
Total 290 90.61
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Figure 4. Latency (a) and bandwidth (b) as a function of DMA message size
for blocking gets and puts in the absence of contention. 
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Figure 5. DMA performance dimensions: how latency and bandwidth are affected by the choice of DMA tar-
get (main memory or local store), DMA direction (put or get), and DMA synchronization (blocking after each
DMA, blocking after a constant number of DMAs, ranging from two to 32, and nonblocking with a final fence).



communication patterns than the single pair-
wise DMAs discussed so far. We also analyzed
how the system performs for several common
patterns of collective communications under
heavy load, in terms of both local perfor-
mance—what each SPE achieves—and aggre-
gate behavior—the performance level of all
SPEs involved in the communication.

All results reported in this section are for
nonblocking communication. Each SPE
issues a sequence of 16,384-byte DMA com-
mands. The aggregate bandwidth reported is
the sum of the communication bandwidths
reached by each SPE.

The first important case is the hot spot, in
which many or, in the worst case, all SPEs are
accessing main memory or a specific local
store.13 This is a very demanding pattern that
exposes how the on-chip network and the
communication protocols behave under stress.
It is representative of the most straightforward
code parallelizations, which distribute com-
putation to a collection of threads that fetch
data from main memory, perform the desired
computation, and store the results without
SPE interaction. Figure 6a shows that the Cell
processor resolves hot spots in accesses to local
storage optimally, reaching the asymptotic per-
formance with two or more SPEs. (For the
SPE hot spot tests, the number of SPEs
includes the hot node; x SPEs include 1 hot
SPE plus x − 1 communication partners.)

Counterintuitively, get commands outper-
form puts under load. In fact, with two or more
SPEs, two or more get sources saturate the
bandwidth either in main or local store. The
put protocol, on the other hand, suffers from
a minor performance degradation, approxi-
mately 1.5 Gbytes/s less than the optimal value.

The second case is collective communica-
tion patterns, in which all the SPES are both
source and target of the communication. Fig-
ure 6b summarizes the performance aspects
of the most common patterns that arise from
typical parallel applications. In the two static
patterns, complement and pairwise, each SPE
executes a sequence of DMAs to a fixed tar-
get SPE. In the complement pattern, each
SPE selects the target SPE by complementing
the bit string that identifies the source. In the
pairwise pattern, the SPEs are logically orga-
nized in pairs < i, i + 1 >, where i is an even
number, and each SPE communicates with its

partner. Note that SPEs with numerically con-
secutive numbers might not be physically
adjacent on the Cell hardware layout.

The first static pattern, complement, is
resolved optimally by the network, and can
be mapped to the four rings with an aggregate
performance slightly below 200 Gbytes/s (98
percent of aggregate peak bandwidth).

The direction of data transfer affects the
pairwise pattern’s performance. As the hot spot
experiments show, gets have better contention
resolution properties under heavy load, and
Figure 6b further confirms this, showing a gap
of 40 Gbytes/s in aggregate bandwidth
between put- and get-based patterns.

The most difficult communication pattern,
arguably the worst case for this type of on-chip
network, is uniform traffic, in which each SPE
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randomly chooses DMA a target across SPEs’
local memories. In this case, aggregate band-
width is only 80 Gbytes/s. We also explored
other static communication patterns and
found results in the same aggregate-perfor-
mance range.

Finally, Figure 7 shows the distribution of
DMA latencies for all SPEs during the main-
memory hot-spot pattern execution. One
important result is that the distributions show
no measurable differences across the SPEs, evi-
dence of a fair and efficient algorithm for net-
work resource allocation. The peak of both
distributions shows a sevenfold latency
increase, at about 5.6 µs. In both cases, the
worst-case latency is only 13 µs, twice the aver-
age. This is another remarkable result, demon-
strating that applications can rely on a

responsive and fair network even with the
most demanding traffic patterns.

Major obstacles in the traditional path to
processor performance improvement

have led chip manufacturers to consider mul-
ticore designs. These architectural solutions
promise various power-performance and area-
performance benefits. But designers must take
care to ensure that these benefits are not lost
because of the on-chip communication net-
work’s inadequate design. Overall, our exper-
imental results demonstrate that the Cell
processor’s communications subsystem is well
matched to the processor’s computational
capacity. The communications network pro-
vides the speed and bandwidth that applica-
tions need to exploit the processor’s
computational power. MMIICCRROO
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