
5/18/10

1

The ASSIST Programming
Environment

Massimo Coppola

14/05/2010 – Computer Science & Networking, SPD Course
With contributions from the whole Research Group on

Parallel Architectures at Dip. di Informatica, Univ. di Pisa

07/06/2007 M. Coppola - The ASSIST Programming Environment 2

Summary
•  The ASSIST skeleton system
•  Basic Concepts

•  Code encapsulation
•  Execution

•  Syntax and Semantics
•  The ASSIST Constructs
•  Parallelism expression

•  Advanced features
•  Run-time, Dynamic Adaptivity
•  Heterogeneous Platforms
•  Component orientation

•  Future Extensions

07/06/2007 M. Coppola - The ASSIST Programming Environment 3

The ASSIST skeleton system
•  Skeleton-based parallel programming

environment
–  Compilation, deployment, execution
–  Targets scientific and industrial needs

•  High performance
•  Programmability, portability, interoperability, time-to-market,

•  Developed with ideas from other prototypes
–  P3L (classical skeletons, C -based implementation)
–  SkIE (classical skeletons, multi language)
–  Muskel (data-flow Java based)

•  Paradigm shift: “modable” skeletons, “escapes”

07/06/2007 M. Coppola - The ASSIST Programming Environment 4

The ASSIST skeleton system
•  Separation of concerns

–  Application programmer vs. system programmer
•  Expressive power

–  Most current patterns available through parmod
•  Code reuse

–  C, C++, F77 (Java)
•  External objects/library access support

–  Provide escapes to unstructured / external resources
•  Layered implementation

–  Compiler, deploy tools, multitarget run time
•  Multiple target architectures

–  Different CPUs/Memory & different Operating Systems

5/18/10

2

07/06/2007 M. Coppola - The ASSIST Programming Environment 5

Basic Concepts
•  Data flow-interaction

– Typed streams

•  Code encapsulation
– Well defined interfaces around code modules

•  Which parallel skeletons?
– Flexible, extendable approach

•  Execution
•  Deployment tools
•  Adaptivity

07/06/2007 M. Coppola - The ASSIST Programming Environment 6

The ASSIST Constructs
•  Streams

–  main interaction mechanism
–  complemented by shared memory data structures

•  Seq
–  the simplest case of a code module
–  multi language code encapsulation

•  Generic
–  pipeline, DAG, generic graph task parallelism

•  Parmod
–  Multiple-pattern parallel skeleton

07/06/2007 M. Coppola - The ASSIST Programming Environment 7

Streams and data types
•  Interaction mechanism among modules
•  Typed (stream packets are ASSIST types)
•  ASSIST types = CORBA types

– C-like syntax
–  serializable data structures
– predefined inter-language equivalence
–  technology ages fast…

•  Stream management within the run-time
–  Implementation details are hidden
– exploit binary or XDR formats

07/06/2007 M. Coppola - The ASSIST Programming Environment 8

Sequential code modules
•  Seq defines a simple code module

–  To run sequentially on any single computing resource
–  With specified interface: type of input and output

parameters
–  Code defined by a proc section

•  Proc specifies sequential code behavior
–  General use in ASSIST (also within parallel modules)
–  Which language
–  What is the actual code, and what are its interfaces

5/18/10

3

07/06/2007 M. Coppola - The ASSIST Programming Environment 9

The seq and proc Constructs
My_seq_module(input_stream long x 	
	 	 	 	output_stream long y) 	
	{ f(in x out y); } 	

proc f(in long a out long b) 	
	inc<“myHeader.cpp”,	
	 “mySource.cpp”> 	
	path<“/home/marcod/myIncludes”> 	
	obj<“myObjectCode.o”> 	
	src<“mySource.c”> 	

$c++{ /* here goes your code…*/ }c++$	

can include/link:
source, headers, externally
generated object-code files

and sequential libraries
also different source

languages

07/06/2007 M. Coppola - The ASSIST Programming Environment 10

The generic Construct
•  Short for generic graph

–  can have loops
–  pipeline and direct acyclic graphs (DAG) as special cases

•  Allows to define unconstrained data-flow graphs of
modules
–  Sequential, parallel modules and nested generic

•  Each module represented by its functional
interfaces
–  input and output streams
–  Multiple inputs and outputs: supports nondeterministic

behavior

•  Data-flow + shared status
–  Unsynchronized shared var.s (rely on program structure!)

07/06/2007 M. Coppola - The ASSIST Programming Environment 11

Generic example
generic main (. . .)
{
 stream int s13;
 stream int [N][N] s23;
 stream int [N][N] s34;
 stream int s25;

M1 (ouput_stream s13);
M2 (output_stream s23, s25);
M3 (input_stream s13, s23;
output_stream s34);
M4 (input_stream s34);
M5 (input_stream s25);

}

M1

M2

M3

M4

M5

s13

s23

s34

s25

07/06/2007 M. Coppola - The ASSIST Programming Environment 12

parmod = generic PARallel MODule
•  structured way of defining parallel

computations
•  abstracting away from actual mechanisms

–  logical parallel activities
–  logical data sharing
–  specification of cooperation with the “outside”

•  syntax special cases : farm, map, ….
•  + expressiveness = deal with special cases

–  classical skeletons are enough, usually
– mix skeleton behaviors / switch among them

5/18/10

4

07/06/2007 M. Coppola - The ASSIST Programming Environment 13

parmod abstract schema

non det!
control!
on input!

multiple!
output!
streams!user def virtual processes!

external object!
access!

shared state!

