SPD 2018 —-19
COURSE INTRODUCTION

Programming Tools for Distributed and Parallel Systems

Strumenti di programmazione per sistemi paralleli e
distribuiti (SPD)
M. Coppola massimo.coppola@isti.cnr.it

http://isti.cnr.it

Course structure

- Programming Tools for Parallel and Distributed Systems (SPD)

2"d term (Feb. 2021- May. 2021)
6 credits
48hours : ~36 lessons, ~12 laboratory

Final test: lab project + oral examination
¢ Includes discussing the project

New Course pages on didawiki :
http://didawiki.cli.di.unipi.it/doku.php/magistraleinformaticanetworking/spd/start

MCSN = M. Coppola - Course infroduction on 17/02/2021

http://didawiki.cli.di.unipi.it/doku.php/magistraleinformaticanetworking/spd/start

Overview

Description and Analysis of parallel and distributed programming
platforms and models, to tackle problems of daunting size,
scale and performance requirements

Parallelism at different levels of scale

- Standards for platforms and programming systems
- State-of-the-art solutions
* Practical use

MCSN = M. Coppola - Course infroduction on 17/02/2021

Course topics

- Parallel programming tools & platforms for HPC
« HPC as well as large scalable systems: Clouds
- Many different parallelism levels

Clouds
Distributed Systems / Clusters

Multiprocessor systems

Many-core systems

Specialized multicores: GPU

Reconfigurable Hardware : FPGA

MCSN = M. Coppola - Course infroduction on 17/02/2021

Message Passing and Shared Memory

« MPI — Message Passing Interface
message passing standard

distributed memory
 Cluster and Cloud computing

linked library

multi-language standard
« C, C++, Fortran, more from 3™ parties

« TBB — Intel-Thread Building Blocks library
« C++ template library
« shared memory
- multiple threads
* aims at multi-core CPUs

MCSN — M. Coppola - Course infroduction on 17/02/2021

High-Level Parallel Prog. Frameworks

* OpenCL

 High-level approach to various kind of accelerators

» High-level approaches are often tied to chip producers
and their dev-kit : e.g. CUDA

 Exploit Many-core on-chip parallelism for general purpose programs
* General Purpose GPU programming
* Modern CPUs vector instruction support
* Digital Signal Processors
« Vulkan / Spir-V
- SYCL

 Single source C++ code for transparent OpenCL exploitation
« on CPU as well as on all kind of supported accelerator devices: GPU, FPGA...

MCSN — M. Coppola - Course infroduction on 17/02/2021

High-Level Parallel Prog. Frameworks

- oneAPI

« Umbrella project or unifying methodology?

- Encapsulates several other frameworks: DPC++, OpenMP, SYCL, TBB into
a common API

* itis expected to support a broad range of parallel computing devices,
including GPUs and FPGAs

« Other “Structured” Parallel Programming approaches

« High-Level SPP language for Clusters/Clouds, dynamic and autonomic
management

- BSP-based approaches (e.g. Apache Hama / Giraph, or MulticoreBSP)

- Low-level structured parallelism for FPGA devices
MCSN — M. Coppola - Course infroduction on 17/02/2021

Execution environments

« Ordinary multicore CPUs
« GPUs

« Commercial and high-end devices (OpenCL or CUDA)
« Clouds, Clusters, multi / many-core systems

- FPGA devices
 Exploit the options of oneAPI to FPGA, or OpenCL-to-FPGA

« There are recent advances on Open Source CPU Cores
 RiscV, openRisc.

 Support tools
 Using the SLURM Workload Manager
« Python as a scripting mechanism for HPC applications

MCSN — M. Coppola - Course infroduction on 17/02/2021

MCSN - M. Coppola — Course infroduction on 17/02/2021

Prerequisite notions

Computer e CPU, memory hierarchy and caching
architecture 1/0, networking

Structure and meaning
e use in programs
abstract implementation

Basic parallelism
patterns/skeletons

use and analysis of standard ones,
basic skills at developing/refining models
verifying models against experimental data

Parallel performance
models

C / C++ knowledge required in order to use the programming frameworks

9

MCSN - M. Coppola — Course introduction on 17/02/2021 10

Prerequisite notions

- Example:

« We may study a farm skeleton implemented on a given technology
(SW+HW)
« We will assume
* itis known what a farm skeleton is
« what is its purpose
« and what are its standard implementation and performance model
« We will require from the students
 to learn how to code the farm implementation on the technology
« to learn how to apply/customize the performance model to the technology
 to design experiments that can validate their model and its basic assumptions

- to experimentally evaluate results, possibly revising the model and/or
identifying issues within the implementation

Links to other courses

« HPC s a prerequisite

 High-performance Computing Systems and Enabling Platforms

SPM Distributed systems: paradigms and models
« SPM theoretical foundations, surveys of systems
« SPD focuses on few programming systems + lab time

« It’s assumed that you at least followed the SPM course and attempt the
exams in the right order; we will not re-tell basic notions from SPM

PAD Distributed Enabling Platforms

« PAD focuses on Cloud platforms, distributed programming, containers,
related programming and management tools

MCSN = M. Coppola - Course infroduction on 17/02/2021

Final test

1. Coding an individual project

Agree topic with the teacher, write 2-page summary

Project will use at least one of the frameworks and tools presented
* E.g. MPI, or TBB+MPI, or OpenCL + TBB
« oneAPl is a special case

Submit -1- project proposal summary before and -2- a written report

after the project work

« explains the problem, your approach; explains design choices & work done,
describes code results, analyzes test results and their modeling

Discuss project and report

2. Discussion on course topics

Either together with or after project discussion, about any topic in the
course program

 Course evaluation (required by the administration)

 Please submit by the end of the course semester
MCSN = M. Coppola - Course infroduction on 17/02/2021

Examples of projects topics

- Parallel / distributed optimization resource allocation

« Autonomic, adaptive mechanisms
- Parallel/distributed stream-based computation
« Summarization, mining, learning

- Parallel/distributed mining / learning

- Some of the previous topics may be expanded to Master thesis.
« Either as stand-alone or as a development of the course project
 Possibly multidisciplinary

* e.g. optimization/parallelization of algorithms

MCSN = M. Coppola - Course infroduction on 17/02/2021

Timetable

4 hours per week (standard)
- Starting on 17/02/2021
- Some lessons may be skipped due to work constraints

* If so, they will be moved to a different day
» See the course didawiki for rescheduling information
» This year we already skipped the first lesson due to technical issues with the

online teaching support

- Timetable changes
« if needed to get non conflicting time slot for all WIN students

 only as a last resort

« slots which comply with official constraints
« e.g. do not clash with fundamental courses of the other two C.S. curricula.

MCSN = M. Coppola - Course infroduction on 17/02/2021

Main References

Standard MPI 3.1

« Only those parts that we will cover during the lessons
« They will be specified in the slides/web site.
 Available online :
 http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
* http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
B. Wilkinson, M. Allen Parallel Programming, 2nd edition. 2005, Prentice-Hall.
« This book will be also used; the 1st edition is ok as well and it is available in the University Library of the
Science Faculty, [C.1.2 w74 INF]
M. McCool, A. Robinson, J. Reinders Structured Parallel Programming — Patterns for
Efficient Computation 2012, Morgan Kaufmann

« Useful as a comprehensive guide for TBB. However, it is redundant with SPM; CILK is not a topic of the
SPD course.

M. Voss, R. Asejo, J. Reinders — Pro TBB Book code samples ported to oneAPI
-- Springer open access

« Useful as reference to use TBB and oneAPI
J. Reinders et al. - Data Parallel C++ -- Springer open access

« May be used during the course

Reading the slides is not enough to pass the course

« Should be obvious: take notes, check the references on the web site and look for them on your own
when working out the exercises

Laboratory

« Practice on your laptops/desktop

« Ok for development with most of the programming tools
MPI, TBB, GPGPU, etc...

 For execution, testing and actual experiments

« Virtual Cluster / devices from the University ITC
- Still in the arrangement phase, details to be provided soon

MCSN = M. Coppola - Course infroduction on 17/02/2021

Provisional Timetable

* Initial timetable
- Monday 14.15-16 WTW/2
- Wednesday 16.15-18 WTW/2

« Question time
« TBD
« Via telco, possibly a channel on the course MS teams

MCSN = M. Coppola - Course infroduction on 17/02/2021

MCSN - M. Coppola - Course introduction on

17/02/2021

MCSN - M. Coppola - Course introduction on

17/02/2021

Programming Tools for Distributed
and ParaIIeI Systems (SPD)

« Goal: learn to choose and use programming tools
that exploit parallelism at different levels:
data-center, multi-processor, multicore and GPU/FPGA

* Distributed and parallel processing

« Apply performance and behavioral models
« Problem analysis and solution design
- Abstract modelling = experimental evaluation = critical analysis

- Exam: project with written report + oral discussion
- Period: second semester, 4h/week

MCSN - M. Coppola - Course introduction on

17/02/2021

Programming Tools for Distributed and Parallel
Systems (syllabus)

- Standard tools and frameworks
- Distributed / parallel programming with MPIl (Message Passing Interface)
« Multithreaded programming with oneTBB (Thread Building Blocks)
« Support Tools
« OneAPIl and other unifying approaches to
multiprocessing/manycores and on-chip parallelism
* OpenCL, SyCL, TBB; ROC
« Targets: multi-core CPU, CPU vectorization, GPUs, APUs, FPGA devices
 Application examples:
- Data Mining, Deep Learning, Graph / Optimization Algorithms
« Distributed and parallel compute- and data-intensive algorithms
« Multithread, high-memory bandwidth algorithms

