
Intel Thread Building Blocks, Part IV

SPD course 2018-19
Massimo Coppola

16/05/2019

1 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Mutexes

•  TBB Classes to build mutex lock objects
•  The lock object will
–  Lock the associated data object (the mutex) for

use by the current thread
–  Allow any thread to wait and obtain the lock

according to a specific semantics for locking
–  Have a scope locking pattern

•  TBB releases locks when destroyed at end of scope
•  Automatically release locks when they are no longer in

scope, including the case of uncaught exceptions
–  No need for std::lock_guard like in C++11/14

–  Possibly account for reading and writing
behaviour of the locking thread

2 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Mutexes are low-level

•  TBB mutexes and locks are designed to
provide best performance and lowest
overhead in different situations
–  low/high contention, small/large critical

sections…

•  It is up to the programmer to avoid
–  deadlocks (when threads get more lock….)
–  performance degradation due to SW lockout
–  performance loss due to thread de-scheduling

while inside critical sections

•  C++ style mutexes are avoided in TBB
because they are not exception safe

3 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Mutex and scoped lock

•  Mutex and lock; example of scoped locking
–  The mutex and its locks are not copiable nor moveable

int count;
tbb::mutex countMutex;

{ // Implements ANNOTATE_LOCK_ACQUIRE()
tbb::mutex::scoped_lock lock(countMutex);
result = count++;

 // Implicit ANNOTATE_LOCK_RELEASE() when leaving the scope below.
} // scoped lock is automatically released here

•  Mutexes / Scoped_lock basic primitives
–  Type signatures
–  Construct
–  Construct and acquire
–  Destroy (and possibly release)
–  acquire
–  Try_acquire
–  release

4 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Mutexes primitives

5 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Mutexes

•  Mutexes are available in different
implementations, with various features
–  Scalability – whether lock may withstand heavy

contention with low overhead
–  Fairness – whether lock takes into account the order

of lock attempts and prevents any starvation
–  Reentrant behaviour – wheter recursive locking is

allowed and correctly managed (no undue
overhead, no misbehaving / deadlock)

–  Yield / Block – whether the thread waiting for a lock
may be suspended and yield the CPU core

–  Size – size of the lock structure, relevant when a large
number of mutexes are used to fine-grain lock
portions of dynamic data structures

6 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Mutex and recursive mutex

•  Plain mutex is a wrapper class for the native
mutex of the OS
–  i.e. pthreads, except for Windows
–  They add the scope-locking behaviour on top
–  Other behavior depends on the OS

•  recursive_mutex can be acquired
repeatedly by the same thread
–  Allow easier use with some recursive code
–  Performs proper lock counting
–  A (different) wrapper around the OS mutexes

7 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Spin_mutex, Queueing_mutex

Spin_mutex = simplest lock implementation
•  Spinning = busy-waiting checking for the lock to

become available
•  Spin locks are not fair or efficient
•  Good for very short, quickly executed scopes

–  Avoid it with very high contention

Queueing_mutex is the swiss’ army knife
•  Queue locks provide fairness by managing the

waiting threads as a FIFO queue
•  Implementation is scalable and moderate

overhead

8 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Transactional memory support

•  Groups several read and writes from
memory made within a region of program
code (the lock scope) into a single atomic
transaction

•  HW support detects if the read and write
regions of a transaction are touched by any
other thread (Bernstein conditions check)

•  All the writes are only performed if there was
no concurrent conflict

•  Otherwise HW performs a full rollback of the
processor status and caches
–  thread restarts before the lock attempt

9 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Speculative spin mutex

•  Exploits HW support of transactional memory
–  e.g. TSX machine instructions if available
–  degrades to a spinning lock if no HW support

•  No actual locking, no spinning (just marks the
start of an “atomic transaction” for the CPU)

•  Convenient when conflict is unlikely and critical
section is short
–  No overhead if no conflict
–  Penalty in case of rollback is the whole critical section

•  Comes also in a reader/writer variant
•  Subject to HW limitations, typically

–  Granularity of memory access is a cache line
–  All read ad write regions must fit in L1 cache

10 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Read write lock concept

•  Models the reader-writer problem
•  Has a read and a write mode of acquiring

the lock
–  Multiple readers or (XOR) at most one writer are

allowed to hold the lock
–  Holder can upgrade the lock (reader to writer)

•  possibly with an additional wait
•  possibly releasing and reacquiring the lock

–  Holder can also downgrade (writer to reader)
•  possibly allowing more readers in

•  Some TBB locks currently have a r/w version
–  Spin, speculative spin, queueing
–  RW locks are not recursive

11 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Null_mutex and null_rw_mutex

•  Do not perform any actual locking
•  No added size for the lock
•  Rationale:
–  templates classes for concurrent data structures
–  use a mutex class as a parameter for flexibility
–  Allow reusing the template also for lock-free

versions of the structures

12 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Summary of mutexes

13 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Task management

•  The task scheduler manages the computation
of a set of tasks by a pool of worker threads

•  Tasks are connected in a tree
–  From the initial task more are dynamically spawn, and

are distributed to worker threads
–  In general we can have a forest (a set of disjoint

trees)

•  Each worker thread has a dequeue of tasks
–  The dequeue is ordered by task oldness (older tasks

up, newer down)
–  Push and pop of new tasks to compute normally

happens at the bottom
–  Favors smaller tasks, depth-first expansion, helps

reducing the stack occupation

14 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Task management and scheduling

•  Worker thread prefer operating on their
local task dequeue
–  Lower overhead and less contention on runtime

structures

•  When a dequeue is empty, the thread
performs work stealing from a random
thread
–  Stealing happens at the top of the dequeue =

older tasks with more potentail for further
parallelism – breadth first expansion of the task
tree

15 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Task and task management

•  Task class is mainly for implementing new
algorithms
–  Provides an execute() method that is called by a

worker thread
–  Execute can also provide hints about task affinity to

the scheduler
•  Tasks can be spawn explicitly

–  Doing so naively can result in poor performance
–  Tasks can spawn child tasks (more parallelism) as well

as continuation tasks
–  Computed tasks can be recycled

•  turn into a different tasks and enqueued again
•  avoid allocation overhead

–  More complex features (e.g. scheduler bypass)
•  empty task = do nothing

16 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Scheduler initialization

•  Task_scheduler_init provides means for the user
to customize the scheduler
–  When the scheduler is constructed/destroyed
–  How many worker threads the scheduler uses
–  The stack size of worker threads

•  Either activated immediately on construction, or
subsequently
–  Via ::deferred and and initialize()

•  A task scheduler init affects all subsequently
created schedulers
–  Also wrt floating point settings

•  Warning:
–  ensure that the task_scheduler_init is not

automatically destroyed right after it has been
created.

17 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Explicitly managing the thread number

•  Since TBB 4.0+, the task_scheduler_init has
changed behaviour.
–  It will provide at least the specified thread number if

enough HW resources are available
–  they may possibly be more than required
–  still the task scheduler affects _all_ TBB parallelism

•  Other mechanism to control parallelism
•  Task Groups

–  High level interface to the scheduler, allowing to set
up a task repository served by computing threads

•  Task arena
–  Intermediate interface toward the task scheduler
–  Can set up a limited number of thread to be used

•  As specified, or less if there are not enough resources
available

18 MCSN – M. yypola – Strumenti di programmazione per sistemi paralleli e distribuiti

Task Arena

task_arena(int max_concurrency = automatic,
 unsigned reserved_for_masters = 1)

•  Create a task arena with limited
concurrency, possibly reserving some
threads to application threads
–  Can only reserve 0 or 1 threads up to TBB 4.4U1
–  TBB worker threads are needed to serve

additional tasks enqueued to the arena

19 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Task Arena example (Intel)
tbb::task_scheduler_init def_init;
// Use the default number of threads.
tbb::task_arena limited(2);
// No more than 2 threads in this arena.
tbb::task_group tg;
limited.execute([&]{
// Use at most 2 threads for this job.

 tg.run([]{ // run in task group
 tbb::parallel_for(1, N, unscalable_work());
 });

});
// Run another job concurrently with the loop above.
// It can use up to the default number of threads.
tbb::parallel_for(1, M, scalable_work());
// Wait for completion of the task group in the limited
arena.

limited.execute([&]{ tg.wait(); });

20 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

