
The Thread Building Blocks
Lab Time Hands-on

SPD Course
2017-18

Massimo Coppola

TBB Installation

•  Download latest TBB either as binary package (for your
OS) or as source package
–  unpack in your working directory
–  If starting from source, check out the readme and compile it

•  Be sure to have a suitable tool chain
(e.g. recent C++ compiler and linker version)
–  https://www.threadingbuildingblocks.org/system-requirements

•  EITHER Set up your environment for command line usage
–  Look for the script …/bin/tbbvars.* (sh / csh versions)
–  Add your install directory inside the script by editing it
–  Call it from a shell every time you need TBB (or add to .profile)

•  OR follow the instructions in TBB readme files to use GUI-
based coding environments
–  Check your own : Eclipse, MS Visual Studio, Xcode
–  Note that many configurations work besides those officially

listed - Eclipse with CDT plugins is known to support TBB on
Linux and OS X

SPD - MPI Lab hands-on 2

Details

•  Set up the install dir of TBB inside the tbbvars
script

•  Call the script in your bash/csh profile
passing arguments <architecture> <os>
–  On ottavinareale: intel64 linux
–  On the xeon phi: intel64

•  Example:
source /opt/intel/tbb/bin/tbbvars.sh intel64

SPD - MPI Lab hands-on 3

Exercise 1

•  Write a parallel for with 1d and 2 ranges in
steps
–  Without any actual computation (leave

operator() empty)
–  Without an actual value passed, just the indexes
–  Passing an initialized array of given type: have

the operator() perform some computation
–  Add another array to store the results

•  Take the 2d version, add a Mandelbrot
function and compute over a 2D range that
spans a rectangle in the complex plane
–  result is an integer = number of iterations

performed before detecting divergence

SPD - MPI Lab hands-on 4

Exercise 1

•  Some code snippets are found here
http://didawiki.cli.di.unipi.it/doku.php/
magistraleinformaticanetworking/spd/2018/mandel
–  Code for the Mandelbrot function
–  Code for saving array data as .ppm files you can

view

•  Other ideas:
–  compute any long, iterative function and write

the result somewhere, so that the compiler does
not optimize it away

SPD - MPI Lab hands-on 5

Exercise 2

•  Starting from the Mandelbrot example do
the following
–  Set the investigated area to cover at least part of

the mandelbrot set
–  Raise the number of pixels and the number of

iterations of a couple of order of magnitude
•  Set TBB to only use one thread – see example there:

https://software.intel.com/en-us/node/506296
where explicit task scheduler init allows to control the
thread pool size

•  Experimentally find values that cause a sequential
running time in the range in between 15 and 60 s

•  Allow TBB to create TN>1 threads, measure the
difference in execution time with varying TN

SPD - MPI Lab hands-on 6

Exercise 2 �

•  Devise a mechanism for approximating the
distribution of computation time over the
tasks due to the function imbalance)
–  E.g. use an array of buckets where you total how

many times a certain number of iterations shows
up

–  This is a source of thread conflicts: evaluate the
use of atomics, locking, or thread-local structures
in order to gather the sums efficiently (reduce the
performance impairment due to the monitoring)

–  Is it possible to model the program computation
time using this information?

SPD - MPI Lab hands-on 7

Exercise 3 �
•  Starting up from the description of the K-means algorithm and

the example code on the didawiki page, implement a TBB
version of the K-means code
–  The provided code has a random data generator function you can

use to test your own code
–  Code is in C, you will have to port it to C++
–  Code should be general, but stay with 2D data to be able to see the

output
–  There is support for showing results of the algorithm using gnuplot over

the dataset and the code output

•  One useful level of parallelism is among different rows of the
dataset
–  Store the data in a suitable container
–  Employ a parallel for, analyze the impact of different partitioners and

grain size choices
–  For this test, adopt a fixed number of iteration as the stopping criteria

•  If the space dimension is fixed to 2D, is may be worth to use
vectorized types fro storing the dataset

SPD - MPI Lab hands-on 8

Exercise 4 �

•  Evolution of the K-means algorithm in TBB
•  A second useful level of parallelism in these settings

is among several runs at the same time
–  Modify the code to manage multiple sets of centroids at

the same time
•  At least 3
•  Allow for one or more centroid sets to be inactive

–  Select a termination criteria to be applied to the search
•  e.g. magnitude of centroid movement, or number of points which

change assignment at each iteration

–  Apply the criteria separately to each centroid set
•  Allow a terminated search to save its result and restart at random

points

–  Evaluate performance/efficiency over a (1) fixed number
of iterations (which may produce a varying number of
solutions) and (2) a fixed amount of time in the search

SPD - MPI Lab hands-on 9

