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OpenCL Introduction 
Neil Trevett 

Vice President NVIDIA, President Khronos 
OpenCL Working Group Chair 
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Give us YOUR Feedback! 
• Full OpenCL 2.0 Documentation available 
- Final Specification 
- Header files 
- Reference Card 
- Online Reference pages 

•OpenCL Registry contains all specifications 
- www.khronos.org/registry/cl/  

•Open Resources Area 
- Community submitted resources  
- http://www.khronos.org/opencl/resources 

• Public Forum and Bugzilla is open for comments 
- All feedback welcome! 

http://www.khronos.org/registry/cl/
http://www.khronos.org/opencl/resources
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OpenCL Presentations in This Session 
•OpenCL 2.0 Overview 
- Allen Hux, Intel 

•Accelerated Science – use of OpenCL in Land Down Under  
- Tomasz Bednarz, CSIRO 
- Sydney Khronos Chapter Leader 
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OpenCL 2.0 Overview 
Allen Hux 

Intel Corporation 
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Goals 
• Enable New Programming Patterns 
• Performance Improvements 
• Well-defined Execution & Memory Model 
• Improve CL / GL sharing 
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Shared Virtual Memory 
• In OpenCL 1.2 buffer objects can only be passed as kernel arguments 
• Buffer object described as pointer to type in kernel 
• Restrictions 
- Pass a pointer + offset as argument value 
- Store pointers in buffer object(s) 

• Why? 
- Host and OpenCL device may not share the same virtual address space 
- No guarantee that the same virtual address will be used for a kernel argument 

across multiple enqueues 
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Shared Virtual Memory 
• clSVMAlloc – allocates a shared virtual memory buffer 
- Specify size in bytes 
- Specify usage information 
- Optional alignment value 

• SVM pointer can be shared by the host and OpenCL device 
• Examples 

 
 
 

• Free SVM buffers 
- clEnqueueSVMFree, clSVMFree 

clSVMAlloc(ctx, CL_MEM_READ_WRITE, 1024 * 1024, 0) 
 
clSVMAlloc(ctx, CL_MEM_READ_ONLY, 1024 * 1024, sizeof(cl_float4)) 
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Shared Virtual Memory 
• clSetKernelArgSVMPointer 
- SVM pointers as kernel arguments 
- A SVM pointer 
- A SVM pointer + offset 

 

kernel void 
vec_add(float *src, float *dst) 
{ 
    size_t id = get_global_id(0); 
    dst[id] += src[id]; 
} 

// allocating SVM pointers 
cl_float *src = (cl_float *)clSVMAlloc(ctx, CL_MEM_READ_ONLY, size, 0); 
cl_float *dst = (cl_float *)clSVMAlloc(ctx, CL_MEM_READ_WRITE, size, 0); 

// Passing SVM pointers as arguments 
clSetKernelArgSVMPointer(vec_add_kernel, 0, src); 
clSetKernelArgSVMPointer(vec_add_kernel, 1, dst); 

// Passing SVM pointer + offset as arguments 
clSetKernelArgSVMPointer(vec_add_kernel, 0, src + offset); 
clSetKernelArgSVMPointer(vec_add_kernel, 1, dst + offset); 
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typedef struct { 
   … 
   float *pB; 
   … 
} my_info_t; 
 
kernel void 
my_kernel(global my_info_t *pA, …) 
{ 
    … 
    do_stuff(pA->pB, …); 
    … 
} 

// allocating SVM pointers 
my_info_t *pA = (my_info_t *)clSVMAlloc(ctx, 
            CL_MEM_READ_ONLY, sizeof(my_info_t), 0); 
pA->pB = (cl_float *)clSVMAlloc(ctx,  
            CL_MEM_READ_WRITE, size, 0); 

// Passing SVM pointers 
clSetKernelArgSVMPointer(my_kernel, 0, pA); 
 
clSetKernelExecInfo(my_kernel,  
                        CL_KERNEL_EXEC_INFO_SVM_PTRS,  
                        1 * sizeof(void *), &pA->pB); 

Shared Virtual Memory 
• clSetKernelExecInfo 
- Passing SVM pointers in other SVM pointers or buffer objects 
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Shared Virtual Memory 
• Three types of sharing 
- Coarse-grained buffer sharing 
- Fine-grained buffer sharing 
- System sharing 
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Shared Virtual Memory – Coarse & Fine Grained 
• SVM buffers allocated using clSVMAlloc 
• Coarse grained sharing 
- Memory consistency only guaranteed at synchronization points 
- Host still needs to use synchronization APIs to update data 
- clEnqueueSVMMap / clEnqueueSVMUnmap or event callbacks 
- Memory consistency is at a buffer level 

- Allows sharing of pointers between host and OpenCL device 

• Fine grained sharing 
- No synchronization needed between host and OpenCL device 
- Host and device can update data in buffer concurrently 
- Memory consistency using C11 atomics and synchronization operations 

- Optional Feature 
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Shared Virtual Memory – System Sharing 
• Can directly use any pointer allocated on the host 
- No OpenCL APIs needed to allocate SVM buffers 

• Both host and OpenCL device can update data using C11 atomics and 
synchronization functions 

• Optional Feature 
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Nested Parallelism 
• In OpenCL 1.2 only the host can enqueue kernels 
• Iterative algorithm example 
- kernel A queues kernel B 
- kernel B decides to queue kernel A again 

• Requires host - device interaction and for the 
host to wait for kernels to finish execution 
- Can use callbacks to avoid waiting for kernels to 

finish but still overhead 

• A very simple but extremely common nested 
parallelism example 

Kernel A 

Kernel B 

done 

Example 
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Nested Parallelism 
• Allow a device to queue kernels to itself 
- Allow a work-item(s) to queue kernels 

• Use similar approach to how host queues commands 
- Queues and Events 
- Functions that queue kernels and other commands 
- Event and Profiling functions 
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kernel void my_func(global int *a, global int *b) 
{ 
    … 
    void (^my_block_A)(void) =  
            ^{   
                  size_t id = get_global_id(0); 
                  b[id] += a[id]; 
              }; 
 
   enqueue_kernel(get_default_queue(), 
                      CLK_ENQUEUE_FLAGS_WAIT_KERNEL, 
                      ndrange_1D(…), 
                      my_block_A); 
} 

• Use clang Blocks to describe kernel to queue 
 
 

Nested Parallelism 
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Nested Parallelism 

int enqueue_kernel(queue_t queue,  
                       kernel_enqueue_flags_t flags, 
                       const ndrange_t ndrange, 
                       void (^block)()) 
 
int enqueue_kernel(queue_t queue,  
                       kernel_enqueue_flags_t flags, 
                       const ndrange_t ndrange, 
                       uint num_events_in_wait_list, 
                       const clk_event_t *event_wait_list, 
                       clk_event_t *event_ret, 
                       void (^block)()) 
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Nested Parallelism 

int enqueue_kernel(queue_t queue,  
                       kernel_enqueue_flags_t flags, 
                       const ndrange_t ndrange, 
                       void (^block)(local void *, …), uint size0, …) 
 
int enqueue_kernel(queue_t queue,  
                       kernel_enqueue_flags_t flags, 
                       const ndrange_t ndrange, 
                       uint num_events_in_wait_list, 
                       const clk_event_t *event_wait_list, 
                       clk_event_t *event_ret, 
                       void (^block)(local void *, …), uint size0, …) 
 

• Queuing kernels with pointers to local address space as arguments 
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Nested Parallelism 
• Example showing queuing kernels with local address space arguments 

 
 

void my_func_local_arg (global int *a, local int *lptr, …) { … } 
 
kernel void my_func(global int *a, …) 
{ 
    … 
    uint local_mem_size = compute_local_mem_size(…); 
 
    enqueue_kernel(get_default_queue(), 
                      CLK_ENQUEUE_FLAGS_WAIT_KERNEL, 
                      ndrange_1D(…), 
                      ^(local int *p){my_func_local_arg(a, p, …);}, 
                      local_mem_size); 
} 
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Nested Parallelism 
• Specify when a child kernel can begin execution (pick one) 
- Don’t wait on parent 
- Wait for kernel to finish execution 
- Wait for work-group to finish execution 

 
• A kernel’s execution status is complete 
- when it has finished execution 
- and all its child kernels have finished execution 
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Nested Parallelism 
• Other Commands 
- Queue a marker 

• Query Functions 
- Get workgroup size for a block 

• Event Functions 
- Retain & Release events 
- Create user event 
- Set user event status 
- Capture event profiling info 

• Helper Functions 
- Get default queue 
- Return a 1D, 2D or 3D ND-range descriptor 
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Generic Address Space 
• In OpenCL 1.2, function arguments that are a pointer to a type 

must declare the address space of the memory region pointed to 
• Many examples where developers want to use the same code but 

with pointers to different address spaces 
 
 
 
 
 
 

• Above example is not supported in OpenCL 1.2 
• Results in developers having to duplicate code 

void 
my_func (global int *ptr, …) 
{ 
    … 
    foo(ptr, …);  
    … 
} 

void 
my_func (local int *ptr, …) 
{ 
    … 
    foo(ptr, …);  
    … 
} 
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Generic Address Space 
• OpenCL 2.0 no longer requires an 

address space qualifier for 
arguments to a function that are a 
pointer to a type 
- Except for kernel functions 

• Generic address space assumed if no 
address space is specified 

• Makes it really easy to write 
functions without having to worry 
about which address space 
arguments point to 

 

void 
my_func (int *ptr, …) 

{ 

    … 

} 
 

kernel void 

foo(global int *g_ptr, local int *l_ptr, …) 

{ 
    … 

    my_func(g_ptr, …); 

    my_func(l_ptr, …); 
} 
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Generic Address Space – Casting Rules 
• Implicit casts allowed from named to generic address space 
• Explicit casts allowed from generic to named address space 
• Cannot cast between constant and generic address spaces 

kernel void foo() 
{ 
    int *ptr; 
    local int *lptr; 
    global int *gptr; 
    local int val = 55; 
 
    ptr = gptr; // legal 
    lptr = ptr; // illegal 
    lptr = gptr; // illegal 
    ptr = &val; // legal 
    lptr = (local int *)ptr; // legal 
} 
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Generic Address Space – Built-in Functions 
• global gentype* to_global(const gentype*) 

local gentype* to_local(const gentype *) 
private gentype* to_private(const gentype *) 
- Returns NULL if cannot cast 

• cl_mem_fence_flags get_fence(const void *ptr) 
- Returns the memory fence flag value 
- Needed by work_group_barrier and mem_fence functions 
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C11 Atomics 
• Implements a subset of the C11 atomic and synchronization operations 
- Enable assignments in one work-item to be visible to others 

• Atomic operations 
- loads & stores 
- exchange, compare & exchange 
- fetch and modify (add, sub, or, xor, and, min, max) 
- test and set, clear 

• Fence operation 
• Atomic and Fence operations take  
- Memory order 
- Memory scope  

• Operations are supported for global and local memory 
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C11 Atomics 
• memory_order_relaxed 
- Atomic operations with this memory order are not synchronization operations 
- Only guarantee atomicity 

• memory_order_acquire, memory_order_release, memory_order_acq_rel 
- Atomic store in work-item A for variable M is tagged with memory_order_release 
- Atomic load in work-item B for same variable M is tagged with 

memory_order_acquire 
- Once the atomic load is completed work-item B is guaranteed to see everything 

work-item A wrote to memory before atomic store 
- Synchronization is only guaranteed between work-items releasing and acquiring 

the same atomic variable 

• memory_order_seq_cst 
- Same as memory_order_acq_rel, and  
- A single total order exists in which all work-items observe all modifications 
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C11 Atomics 
• Memory scope - specifies scope of memory ordering constraints  
- Work-items in a work-group 
- Work-items of a kernel executing on a device 
- Work-items of a kernel & host threads executing across devices and host  
- For shared virtual memory 
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C11 Atomics 
• Supported Atomic Types 
- atomic_int, atomic_uint 
- atomic_long, atomic_ulong 
- atomic_float 
- atomic_double 
- atomic_intptr_t, atomic_uintptr_t, atomic_ptrdiff_t 
- atomic_size_t 
- atomic_flag 

• Atomic types have the same size & representation as the non-atomic types 
except for atomic_flag 

• Atomic functions must be lock-free 
 
 

 



© Copyright Khronos Group 2013 - Page 26 

Images 
• 2D image from buffer 
- GPUs have dedicated and fast hardware for texture addressing & filtering 
- Accessing a buffer as a 2D image allows us to use this hardware 
- Both buffer and 2D image use the same data storage 

• Reading & writing to an image in a kernel 
- Declare images with the read_write qualifier 
- Use barrier between writes and reads by work-items to the image 
- work_group_barrier(CLK_IMAGE_MEM_FENCE) 

- Only sampler-less reads are supported 
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Images 
• Writes to 3D images is now a core feature 
• New image formats 
- sRGB 
- Depth 

• Extended list of required image formats 
• Improvements to CL / GL sharing 
- Multi-sampled GL textures 
- Mip-mapped GL textures 
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Pipes 
• Memory objects that store data organized as a FIFO 
• Kernels can read from or write to a pipe object 
• Host can only create pipe objects  
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Pipes 
• Why introduce a pipe object? 
- Allow vendors to implement dedicated hardware to support pipes 
- Read from and write to a pipe without requiring atomic operations to global 

memory 
- Enable producer – consumer relationships between kernels 



© Copyright Khronos Group 2013 - Page 30 

Pipes – Read & Write Functions 
• Work-item read pipe functions 
- Read a packet from a pipe 
- Read with reservation 
- Reserve n packets for reading 
- Read individual packets (identified by reservation ID and packet index) 
- Confirm that the reserved packets have been read 

• Work-item write pipe functions 
- Write a packet to a pipe 
- Write with reservation 

• Work-group pipe functions 
- Reserve and commit packets for reading / writing 
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Other 2.0 Features 
• Program scope variables 
• Flexible work-groups 
• New work-item functions 
- get_global_linear_id, get_local_linear_id 

• Work-group functions 
- broadcast, reduction, vote (any & all), prefix sum 

• Sub-groups 
• Sharing with EGL images and events 
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OpenCL 2.1 and 
SPIR-V 1.0 Launch

November 2015
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OpenCL 
A State of the Union 

Neil Trevett | Khronos President 
NVIDIA Vice President Developer Ecosystem 

OpenCL Working Group Chair 
ntrevett@nvidia.com | @neilt3d 

Vienna, April 2016 

mailto:ntrevett@nvidia.com
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OpenCL 2.2 
• Provisional - seeking industry feedback before finalization at SIGGRAPH or SC16 
• OpenCL C++ kernel language into core 
• SPIR-V 1.1 adds OpenCL C++ support 
• SYCL 2.2 fully leverages OpenCL 2.2 from a single source file 
• Runs on any OpenCL 2.0-capable hardware 

OpenCL 1.0 
Specification 

Dec08 Jun10 
OpenCL 1.1 

Specification 

Nov11 
OpenCL 1.2  

Specification 
OpenCL 2.0  

Specification 

Nov13 

Device partitioning 
Separate compilation and linking 

Enhanced image support 
Built-in kernels / custom devices 
Enhanced DX and OpenGL Interop 

Shared Virtual Memory 
On-device dispatch 

Generic Address Space 
Enhanced Image Support 

C11 Atomics 
Pipes 

Android ICD 

3-component vectors 
Additional image formats 

Multiple hosts and devices 
Buffer region operations 

Enhanced event-driven execution 
Additional OpenCL C built-ins 

Improved OpenGL data/event interop 

18 months 18 months 24 months 

OpenCL 2.1  
Specification 

Nov15 24 months 

SPIR-V in Core 
Subgroups into core 

Subgroup query operations 
clCloneKernel 

Low-latency device  
timer queries  

OpenCL C++ Kernel Language 
SPIR-V 1.1 with C++ support 

SYCL 2.2 for single source C++  

OpenCL 2.2  
PROVISIONAL 

May16 7months 
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OpenCL C++ Kernel Language 
• The OpenCL C++ kernel language is a static subset of C++14 
- Frees developers from low-level coding details without sacrificing performance  

• C++14 features removed from OpenCL C++ for parallel programming 
- Exceptions, Allocate/Release memory, Virtual functions and abstract classes Function 

pointers, Recursion and goto 

• Classes, lambda functions, templates, operator overloading etc.. 
- Fast and elegant sharable code - reusable device libraries and containers 
- Templates enable meta-programming for highly adaptive software 
- Lambdas used to implement nested/dynamic parallelism 

• Enhanced support for authoring libraries 
- Increased safety, reduced undefined behavior while accessing atomics, iterators, images, 

samplers, pipes, device queue built-in types and address spaces 

Safer, more adaptable, more reusable parallel software 
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SYCL – Single Source Heterogeneous C++
• Pronounced ‘sickle’ 
- To go with ‘spear’ (SPIR)

• C++11 code for multiple OpenCL devices
- Construct complex reusable algorithm 

templates using OpenCL for acceleration

• C++ templates contain host & device code
- e.g. parallel_sort<MyType> (myData);

• Cross-toolchain as well as cross-platform
- No language extensions – so standard C++ 

compilers can process SYCL source

• Device compilers enable SYCL on devices 
- Can have multiple device compilers linking 

into final executable

#include <CL/sycl.hpp>

int main ()
{

// Device buffers
// Device buffers

buffer<float, 1 > buf_a(array_a, range<1>(count));
buffer<float, 1 > buf_b(array_b, range<1>(count));
buffer<float, 1 > buf_c(array_c, range<1>(count));
buffer<float, 1 > buf_r(array_r, range<1>(count));
queue myQueue;
myQueue.submit([&](handler& cgh)

{
// Data accessors
auto a = buf_a.get_access<access::read>();
auto b = buf_b.get_access<access::read>();
auto c = buf_c.get_access<access::read>();
auto r = buf_r.get_access<access::write>();
// Kernel
cgh.parallel_for<class three_way_add>(count, [=](id<> i)

{
r[i] = a[i] + b[i] + c[i];

})
);

});}

Standard CPU Compiler 
(e.g. gcc, Intel C/C++, 

Visual C/C++)

Device 
Compiler

Linker

LLVM

CPU
Executable

GPU
Executable

SPIR to Binary 
Convertor

Single Standard C++
Source File
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SYCL Status and Benefits
• SYCL 1.2 Final spec released
- At IWOCL in May 2014

• Multiple implementations
- Including open source triSYCL from AMD
- https://github.com/amd/triSYCL

• Developers can move quickly into writing SYCL code
- Provides methods for dealing with targets that do not have OpenCL(yet!)

• A fallback CPU implementation is debuggable!
- Using normal C++ debuggers
- Profiling tools also work on CPU device

• Huge bonus for productivity and adoption
- Cost of entry to use SYCL very low

SYCL is a practical, open, royalty-free standard to deliver 
high performance software on today’s highly-parallel systems

https://github.com/amd/triSYCL
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The Choice of SYCL 2.2 or OpenCL C++ 

C++ Kernel Language 
Low Level Control 

‘GPGPU’-style  separation 
of device-side kernel 

source code and host code 

Single-source C++ 
Programmer Familiarity 

Approach also taken by  
C++ AMP, OpenMP and the  

C++ 17 Parallel STL 

Developer Choice 
The development of the two 

specifications are aligned so code 
can be easily shared between the 

two approaches 

SYCL is an important initiative to 
represent the OpenCL perspective as 
the industry as a whole figures out 

parallel programming from C++ 
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More OpenCL 2.2 – with help from SPIR-V 1.1 
• SPIR-V 1.1 adds full support for OpenCL C++ 
- Initializer/finalizer function execution modes to support constructors/destructors 
- Enhances the expressiveness of kernel programs by supporting named barriers, 

subgroup execution, and program scope pipes 

• SPIR-V specialization constants - previously available in Vulkan shaders 
- SPIR-V module can express a family of parameterized OpenCL kernel programs  
- Embedded compile-time settings can be specialized at runtime 
- Eliminates the need to ship or recompile multiple variants of a kernel 

• Pipe storage device-side type - useful for FPGA implementations 
- Makes connectivity size and type known at compile time 
- Enables efficient device-scope communication between kernels 

• Enhanced optimization of generated code 
- Query non-trivial constructors/destructors of program scope global objects 
- User callbacks can be set at program release time 
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SPIR-V Transforms the Language Ecosystem
• First multi-API, intermediate language for parallel compute and graphics
- Native representation for Vulkan shader and OpenCL kernel source languages
- https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf

• Cross vendor intermediate representation
- Language front-ends can easily access multiple hardware run-times 
- Acceleration hardware can leverage multiple language front-ends 
- Encourages tools for program analysis and optimization in SPIR form

Diverse Languages 
and Frameworks

Hardware 
runtimes on

multiple architectures

Tools for
analysis and 
optimization

Standard 
Portable
Intermediate
Representation

Multiple Developer Advantages
Same front-end compiler for multiple platforms

Reduces runtime kernel compilation time
Don’t have to ship shader/kernel source code

Drivers are simpler and more reliable

https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf
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Evolution of SPIR Family
• SPIR–V is first fully specified Khronos-defined SPIR standard
- Does not use LLVM to isolate from LLVM roadmap changes 
- Includes full flow control, graphics and parallel constructs beyond LLVM
- Khronos has open sourced SPIR-V <-> LLVM conversion tools to enable 

construction of flexible toolchains that use both intermediate languages

SPIR 1.2 SPIR 2.0 SPIR-V 1.0

LLVM Interaction Uses LLVM 3.2 Uses LLVM 3.4 100% Khronos defined
Round-trip lossless conversion

Compute Constructs Metadata/Intrinsics Metadata/Intrinsics Native

Graphics Constructs No No Native

Supported Language
Feature Sets OpenCL C 1.2 OpenCL C 1.2

OpenCL C 2.0
OpenCL C 1.2 / 2.0

OpenCL C++ and GLSL

OpenCL Ingestion OpenCL 1.2 
Extension

OpenCL 2.0 
Extension

OpenCL 2.1 Core
OpenCL 1.2 / 2.0 Extensions

Vulkan Ingestion - - Vulkan 1.0 Core 
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SPIR-V Ecosystem 

LLVM 

Third party kernel and 
shader Languages 

SPIR-V 
• Khronos defined and controlled 
cross-API intermediate language 
• Native support for graphics  

and parallel constructs  
• 32-bit Word Stream 

• Extensible and easily parsed 
• Retains data object and control 

flow information for effective  
code generation and translation 

OpenCL C++ OpenCL C 

GLSL Khronos has open sourced 
these tools and translators 

IHV Driver 
Runtimes 

Other 
Intermediate 

Forms 

SPIR-V Validator 

SPIR-V Tools 

SPIR-V (Dis)Assembler 

LLVM to SPIR-V 
Bi-directional 

Translator  

Khronos plans to open 
source these tools soon 

https://github.com/KhronosGroup/SPIR/tree/spirv-1.1 
Open source C++ front-end released 

https://github.com/KhronosGroup/SPIR/tree/spirv-1.1
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SPIR-V Open Source Community Activity 
• Python byte code to SPIR-V Convertor

- Write shaders or kernels in Python, Encode and decode SPIR-V in Python
- Dis(Assembler) with high level human readable assembler syntax

• .NET IL to SPIR-V Convertor
- Write and debug shaders or kernels using C# , SPIR-V interpreter

• Shade SPIR-V virtual machine
- Test and debug SPIR-V binaries for binary correctness in human readable format

• Otherside SPIR-V virtual machine
- Academic software rasterizer project to produce C code from SPIR-V

• Rust (Dis)Assembler
- Encode and decode SPIR-V binaries in Rust

• Go (Dis)Assembler
- Encode and decode SPIR-V in Go, SPIR-V represented in Go data structures

• Haskell EDSL
- SPIR-V like language embedded in Haskell with significantly relaxed layout constraints

• Lisp SPIR-V Specification
- Lisp readable SPIR-V specification

• JSON SPIR-V specification
- Conversion of HTML SPIR-V specification to JSON format

• This is just the start….
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Support for Both SPIR-V and LLVM 
• LLVM is an SDK, not a formally defined standard 
- Khronos moved away from trying to use LLVM IR as a standard 
- Issues with versioning, metadata, etc. 

• But LLVM is a treasure chest of useful transforms 
- SPIR-V tools can encapsulation and use LLVM to do useful SPIR-V transforms 

• SPIR-V tools can all use different rules – and there will be lots of these 
- May be lossy and only support SPIR-V subset 
- Internal form is not standardized 
- May hide LLVM version, metadata 

 

 
SPIR-V 

 

‘Rendezvous’ format 
for interchange 

Native expression of graphics 
and parallel functionality for 

Khronos APIs 

Tool-encapsulated 
LLVM 

HLSL 
GLSL OpenCL C 

OpenCL C++ 

Transform  
Tool 

- Compression 
- Optimization 

- Stripping 
- Linker/Merger 

Driver 
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OpenCL Implementations 

OpenCL 1.0 
Specification 

Dec08 Jun10 
OpenCL 1.1 
Specification 

Nov11 
OpenCL 1.2  
Specification 

OpenCL 2.0  
Specification 

Nov13 

1.0 | Jul13 

1.0 | Aug09 

1.0 | May09 

1.0 | May10 

1.0 | Feb11 

1.0 | May09 

1.0 | Jan10 

1.1 | Aug10 

1.1 | Jul11 

1.2 | May12 

1.2 | Jun12 

1.1 | Feb11 

1.1 |Mar11 

1.1 | Jun10 

1.1 | Aug12 

1.1 | Nov12 

1.1 | May13 

1.1 | Apr12 

1.2 | Apr14 

1.2 | Sep13 

1.2 | Dec12 
Desktop 

Mobile 

FPGA 

2.0 | Jul14 

OpenCL 2.1  
Specification 

Nov15 

1.2 | May15 

2.0 | Dec14 

1.0 | Dec14 

1.2 | Dec14 

1.2 | Sep14 

Vendor timelines are 
first implementation of 
each spec generation 

1.2 | May15 

Embedded 

1.2 | Aug15 

1.2 | Mar16 

2.0 |  Nov15 
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OpenCL at a Crossroads 

Embedded 
Use cases: Signal and Pixel Processing 
Roadmap: arbitrary precision  for power 

efficiency, hard real-time scheduling, 
asynch DMA 

FPGAs 
Use cases: Network and  

Stream Processing 
Roadmap: enhanced execution 

model, self-synchronized and self-
scheduled graphs, fine-grained 

synchronization between kernels, 
DSL in C++ 

HPC, SciViz, Datacenter 
Use case: Numerical Simulation, 

Virtualization  
Roadmap: enhanced streaming 

processing, enhanced library support 

Mobile 
Use case: Photo and Vision Processing 

Roadmap: arbitrary precision for  
inference engine and pixel processing 

efficiency, pre-emption and QoS 
scheduling for power efficiency 

Desktop 
Use cases: Video and Image 

Processing, Gaming Compute 
Roadmap: Vulkan interop, 

arbitrary precision for increased 
performance, pre-emption, 
Collective Programming and 
improved execution model 

CUDA, NVIDIA Shipping 
1.2 Apple Metal 

CUDA, NVIDIA Shipping 1.2, 
Lack of libraries 

RenderScript confusion 
on Android, Apple Metal 

Lack of Tools 
‘Too complex to program’ 

Performance portability is hard 

* Roadmap topics in discussion 
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The Universal Struggle for Open Standards 

Platforms 
Idealized Universe = 
Total content lock. 

All commercially significant 
apps run on your platform and 

nowhere else 

Independent 
Hardware and 

Software Vendors 
Idealized Universe = 

zero cost to monetize apps and 
processors across all platforms 

Proprietary 
Solution Providers 
Idealized Universe = 

single viable solution. 
All platforms and 

applications use your 
solution and nothing else 

Effective Open Standard Strategies 
1. Create joint investment in a solution that is too 
expensive for any one company to develop themselves  

2. Create enough momentum that companies gain more 
content than they lose by supporting an open standard  
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Vulkan Explicit GPU Control 

GPU 

High-level Driver 
Abstraction 

Context management 
Memory allocation 
Full GLSL compiler 

Error detection 
Layered GPU Control 

Application 
Single thread per context 

GPU 

Thin Driver 
Explicit GPU Control 

Application 
Memory allocation 

Thread management 
Synchronization 

Multi-threaded generation 
of command buffers 

 

Language Front-end 
Compilers 
Initially GLSL 

Loadable debug and 
validation layers  

Vulkan 1.0 provides access to  
OpenGL ES 3.1 / OpenGL 4.X-class GPU functionality 

but with increased performance and flexibility 

Loadable Layers 
No error handling overhead in 

production code  

SPIR-V Pre-compiled Shaders: 
No front-end compiler in driver  

Future shading language flexibility 

Simpler drivers: 
Improved efficiency/performance 

Reduced CPU bottlenecks 
Lower latency  

Increased portability 

Graphics, compute and DMA queues: 
Work dispatch flexibility 

Command Buffers: 
Command creation can be multi-threaded 
Multiple CPU cores increase performance 

Resource management in app code:  
Less hitches and surprises 

Vulkan Benefits 

SPIR-V pre-compiled  
shaders 
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Vulkan Tools Architecture 
• Layered design for cross-vendor tools innovation and flexibility 
- IHVs plug into a common, extensible architecture for code validation, debugging 

and profiling during development without impacting production performance 

• Khronos Open Source Loader enables use of tools layers during debug 
- Finds and loads drivers, dispatches API calls to correct driver and layers 

 
Vulkan-based Title 

IHV’s Installable Client 
Driver 

Vulkan’s Common Loader 

Production Path 
(Performance) Debug Layers can be 

installed during Development 

Validation Layers 

Debug Layers 

Interactive 
Debugger 

Debug information via 
standardized API calls 
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Vulkan Feature Sets 
• Vulkan supports hardware with a wide range of hardware capabilities 
- Mobile OpenGL ES 3.1 up to desktop OpenGL 4.5 and beyond 

• One unified API framework for desktop, mobile, console, and embedded 
- No "Vulkan ES" or "Vulkan Desktop" 

• Vulkan precisely defines a set of "fine-grained features"   
- Features are specifically enabled at device creation time (similar to extensions)  

• Platform owners define a Feature Set for their platform 
- Vulkan provides the mechanism but does not mandate policy 
- Khronos will define Feature Sets for platforms where owner is not engaged 

• Khronos will define feature sets for Windows and Linux 
- After initial developer feedback 
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Vulkan Genesis 

Vulkan Working Group Participants 

Significant proposals, IP contributions 
and engineering effort from many 

working group members 

Khronos members from all 
segments of the graphics industry 

agree the need for new 
generation cross-platform GPU API 

Including an unprecedented level of 
participation from game engine developers 

Khronos’ first API 
‘hard launch’ 

16Feb16 

Specification, Conformance Tests, SDKs - all open source… 
Reference Materials, Compiler front-ends, Samples… 

Multiple Conformant Drivers on multiple OS 

18 months 
 

A high-energy 
working group effort 

http://www.amd.com/
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The Secret to Performance Portability  

Applications 
can use Vulkan 

directly for 
maximum 

flexibility and 
control Utility libraries 

and layers 

Application 

Game Engines 
fully optimized 

over Vulkan 

Application uses 
utility libraries to 

speed 
development 

Rich Area for Innovation 
• Many utilities and layers will be in open source 

• Layers to ease transition from OpenGL 
• Domain specific flexibility 

• Performance across diverse hardware  

Applications using game engines 
will automatically benefit from 
Vulkan’s enhanced performance  

Similar ecosystem dynamic as WebGL 
A widely pervasive, powerful, flexible foundation layer enables diverse middleware tools and libraries  
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Add Compute to Vulkan?  In Discussion… 

Embedded 
Use cases: Signal and Pixel Processing 
Roadmap: arbitrary precision for power 
efficiency, hard real-time scheduling, 

asynch DMA  

FPGAs 
Use cases: Network and  

Stream Processing 
Roadmap: enhanced execution model, self-

synchronized and self-scheduled graphs, fine-
grained synchronization between kernels, 

DSL in C++ 

HPC, SciViz, Datacenter 
Use case: Numerical Simulation, Virtualization 

Roadmap: enhanced streaming processing, 
enhanced library support 

Vulkan Compute? 
Gaming Compute, Pixel Processing, Inference 

Fine grain graphics and compute (no interop needed) 
SPIR-V for shading language flexibility – C/C++ 

Low-latency, fine grain run-time 
Google Android adoption 

Competes well with Metal (=C++/OpenCL 1.2) 
Roadmap: arbitrary precision, SVM,  

dynamic parallelism, pre-emption and QoS scheduling 

Desktop 
Use cases: Video and Image Processing, Gaming Compute 

Roadmap: Vulkan interop, arbitrary precision for 
increased performance, pre-emption, collective 

programming and improved execution model 

Mobile 
Use case: Photo and Vision Processing 

Roadmap: arbitrary precision for  
inference engine and pixel processing efficiency, pre-

emption and QoS scheduling for power efficiency 

Vulkan Lessons 
1. Engine developer insights were essential during design 

2. Engine prototyping during design was essential during design 
3. Open sourcing tests, tools, specs drives deeper community engagement 

4. Explicit API – supports strong middleware ecosystem 
BUT its ‘just’ a GPU API – still need OpenCL! 
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Possible OpenCL Evolution 

Increasing parallel hardware flexibility 
Execution and memory model enhancements 

Pre-emption, virtual memory, on-device dispatch, synchronization 

Increasing language expressiveness 
Guaranteeing degrees of forward progress 

Definitions of concurrency 

Evolution of OpenCL … 
… filling the gap between imprecise HLL and imperfect hardware 

Should OpenCL evolve to focus on the things that ONLY OpenCL can do…  
1. Enable low-level, explicit access to heterogeneous hardware – needed by languages and libraries 

2. Provide efficient runtime coordination of tasks, resources, scheduling on target hardware 
3. Leverage, synergize and co-exist with Vulkan compute – and learn from Vulkan … 

4. Define feature sets so target hardware does not have to implement inappropriate functionality 
5. Adopt layered tools architecture to drive tools momentum and decrease run-time overhead 
6. Leave usability, portability and performance portability to higher levels in the ecosystem 

Or what do YOU think?  
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