
The MPI Message-passing Standard
Lab Time Hands-on

SPD Course
2015-2016

Massimo Coppola

Remember!

•  Simplest programs do not need much beyond
Send and Recv, still...

•  Each process lives in a separate memory space
–  Need to initialize all your data structures
–  Need to initialize your instance of the MPI library
–  Use MPI_COMM_WORLD
–  Need to define all your DataTypes
–  Should you make assumptions on process number?
–  How portable will your program be?

•  Check your MPI man page about launching
–  E.g. mpirun –np 4 myprogram parameters

SPD - MPI Lab hands-on 2

Initializing the runtime

•  MPI_Init()
–  Shall be called before using any MPI calls (very few

exceptions)
–  Initializes the MPI runtime for all processes in the

running program, some kind of handshaking implied
•  e.g. creates MPI_COMM_WORLD

–  check its arguments!

•  MPI_Finalize()
–  Frees all MPI resources and cleans up the MPI runtime,

taking care of any operation pending
–  Any further call to MPI is forbidden
–  some runtime errors can be detected at finalize

•  e.g. calling finalize with communications still pending and
unmatched

SPD - MPI Lab hands-on 3

Note on mpich

•  Mpich installation in the lab machine
(centos 7) requires this in your .bash_profile

MPICH
export PATH=/usr/local/bin:/usr/lib64/mpich/
bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:/usr/
lib64/mpich/lib:$LD_LIBRARY_PATH
export MANPATH=/usr/share/man/mpich/:`manpath`
export PATH

•  Mpirun becomes mpiexec, e.g.
mpiexec –np 2 ./pingpong “Hello world(s)”

–  explicit relative path to the executable

SPD - MPI Lab hands-on 4

Exercise 1

•  Define the classical ping-pong program with 2
processes
–  they send back and fort a data buffer, the second process

executes an operation on the data (e.g. sum 1).
–  Verify after a given number N of iterations, that the

expected result is achieved.
–  Add printouts close to communications
–  Does it work? Why?

•  Generalize the ping-pong example to N processes
–  Each process sends to the next one, with some processes

being special, e.g.
–  Token ring (a process has to start and stop the token)
–  One-way pipeline (one process starts, one only receives)
–  Can you devise the proper communicator structure?

SPD - MPI Lab hands-on 5

Getting your identity

•  MPI_Comm_rank
–  After the MPI_Init
–  Returns the rank of the current process within a

specified communicator
–  For now let’s just use ranks related to

MPI_COMM_WORLD
–  Example:

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

SPD - MPI Lab hands-on 6

Writing “structured” MPI

•  We’ll never stress this enough
–  Aim at separation of concern : avoid chaotically

mixing up MPI primitives and sequential code
–  When possible, write a separate function/class

for each type of process in your program
•  Parametric wrt to sequential program parameters and

arguments, AND wrt parallel environment
•  E.g. Operates in a give communicator with known

assumptions
•  Global initialization done by all processes, local

initialization may be done locally (e.g. build a worker-
specific communicator inside the farm implementation)

–  Sometimes it may be possible to write MPI code
which is generic and may be reused à try to
decouple these parts into separate functions

SPD - MPI Lab hands-on 7

Exercise 2

•  Build datatypes for
–  a square matrix of arbitrary element types and

constant size 120*120
–  a column of the matrix
–  a row of the matrix
–  a group of 3 columns of the matrix
–  the upward and downward diagonals of the matrix

•  Perform a test of the datatypes within the code
of exercise 1
–  Initialize the matrix in a known way, perform

computation on the part that you pass along (e.g.
multiply or increment its elements) and check the
result you receive back

SPD - MPI Lab hands-on 8

Derived Datatypes – don’t forget

•  MPI_TYPE_COMMIT(datatype)
–  Mandatory to enables a newly defined datatype

for use in all other MPI primitives
–  Consolidates datatype definition, making it

permanent
–  May compile internal information needed to the

MPI library runtime
•  e.g. : optimized routines for data packing & unpacking

•  MPI_TYPE_FREE(datatype)
–  Free library memory used by a datatype that is

no longer needed

SPD - MPI Lab hands-on 9

Exercise 3

•  Define a datatype for a square matrix with
parametric size
–  Define a datatype for its lower triagular matrix
–  Define one for its upper triangular.

•  Test the them within the code of exercise 1
Ai,j i,j in 1.. n Ai,j i≥j Ai,j i≤j

SPD - MPI Lab hands-on 10

Exercise 3 (cont.)

•  In the two-process program
–  initialize randomly a square matrix
–  send the lower triangular and
–  receive it back as upper triangular in the same buffer.

•  Is the result a symmetric matrix?
–  How do you need to modify one of the two triangular

datatypes in order to achieve that?

•  In the end we
want Ai,j = Bj,i

SPD - MPI Lab hands-on 11

a

b

a

b

Exercis e 4

•  How do you implement an asynchronous
communication with given asynchrony?
–  Implement a communication with asynchrony 1
–  Implement a communication with asynchrony K

•  Assigned asynchrony of degree K:
asynchronous communication (sender does not
block) which becomes synchronous if more
than K messages are still pending.

•  Receiver can skip at most K receives before
sender blocks

•  Can you rely on MPI buffering?
•  How would you implement a fixed size buffer?

SPD - MPI Standard Use and Implementation 12

Exercise 5

•  Build a task farm skeleton program aiming at general
reusability of MPI code

•  Should allow to change the data structures, computing functions and
possibly load distribution policies without changing the MPI
implementation code

–  Simplifying assumptions
•  single emitter and collector
•  stream generation and consumption are functions called within the

emitter and collector processes
•  explicitly manage End-of-stream conditions via messages/tags

–  Separation of concerns
•  Each kind of process is a C function
•  Each computing task is a function called by the generic process

–  Different communication and load balancing strategies
•  Simple round-robin, explicit task request, degree of worker buffering
•  explicit task request, implicit request via Ssend,

–  What pros and cons in using separate communicators for the
farm skeleton and its substructures?
•  Think of how you could implement some common extensions of the

basic farm semantics: initial/periodic worker initialization, workers with
status and status collection, work stealing strategies

SPD - MPI Lab hands-on 13

Exercise 5 – example computation

•  Mandelbrot set
•  Compute the escape time

(number of iterations before
diverging) of the Z=Z^2+c
complex sequence for any
starting point c
–  c within the square (-2,-2) (2,2)

•  Computation cannot be
optimized, has rather high
variance

•  You can aggregate several
points in a single task
–  Passing a square or a row of

points to compute can be quite
effective in the emitter, only
needing two coordinates and
the number of samples to take

http://en.wikibooks.org/wiki/Fractals/
Iterations_in_the_complex_plane/Mandelbrot_set

int GiveEscapeTime(double C_x, double C_y, int iMax,
double _ER2)

{ int i;

 double Zx, Zy;

 double Zx2, Zy2; /* Zx2=Zx*Zx; Zy2=Zy*Zy */
 Zx=0.0; /* initial value of orbit = critical point
Z= 0 */

 Zy=0.0;

 Zx2=Zx*Zx;

 Zy2=Zy*Zy;

 for (i=0;i<iMax && ((Zx2+Zy2)<_ER2);i++)

 { Zy=2*Zx*Zy + C_y;

 Zx=Zx2-Zy2 +C_x;

 Zx2=Zx*Zx;

 Zy2=Zy*Zy;

 };

 return i;

}

/* Example of the worker function computing the escape
time for a single point on the complex plane.

Here a sequence escapes if its squared modulo becomes
greater than _ER2

_ER2 == 4 usually (modulo >= 2 implies divergence)

*/

SPD - MPI Lab hands-on 14

Exercise 5 (cont.)

•  Pitfalls and suggestions
–  Can you just change a communicator and plug the

farm source code in a different program?
–  Stream management should never depend on

knowing the stream length in advance
–  How do you add task grain management? Can you

dynamically vary the grain?
•  Aggregation of a square or row of points in a single task is

problem-specific à nice feat but it is not a general form of
farm grain control

–  Can you model the execution time of the farm from a
small execution and try to predict for a longer one?
How do the grid resolution and iteration parameters,
as well as choices about communication and load
balancing affect the prototype?

SPD - MPI Lab hands-on 15

Exercise 6

•  Add to the farm skeleton a mechanism to reinitialize
the workers
–  The stream computation depends on the status; each part

of the stream (substream) is associated with a specific
status

–  Example: the status is the max number of iteration in
Mandelbrot
•  You cannot just assume to send the status within the job (status

updates may be sporadic and quite larger than ordinary tasks)
–  How do you send/receive status updates (ISSend, IBSend,

Ssend versus non-determinism control in the worker
receives)

–  Should you serialize the communications and how?
(adding a progressive identifier to the task, the status
messages or both, and how to link them)

–  Manage substream ordering in the emitter (chose
semantics: no ordering, reordering the results by the tasks,
reordering the result by substreams but not by the tasks

SPD - MPI Lab hands-on 16

