OpenCL

An Introduction for HPC programmers

(based on a tutorial presented at ISC’11 by Tim Mattson and Udeepta Bordoloi)

Tim Mattson, Intel

Acknowledgements: Ben Gaster (AMD), Udeepta Bordoloi (AMD)
and colleagues in the Khronos OpenCL Group.

-Page 1

Preliminaries:

*Disclosures
- The views expressed in this tutorial are those of the people

delivering the tutorial.
- We are not speaking for our employers.
- We are not speaking for Khronos

*We take our tutorials VERY seriously:
- Help us improve ... give us feedback and tell us how you
would make this tutorial even better.

- Page 2

Agenda

==> « Heterogeneous computing and the origins of OpenCL
*OpenCL overview
*Mapping OpenCL onto CPUs

*Exploring the spec with code: embarrassingly parallel
- Vector addition: the basic platform layer
- Matrix multiplication: kernel programming language

*Exploring the spec with code: dealing with dependencies
- Optimizing matrix mul.: work groups and the memory model
- Reduction: synchronization

* A survey of the rest of OpenCL

-Page 3

It's a Heterogeneous world

e A modern platform
Includes:

— One or more CPUs
— One or more GPUs
— DSP processors
—... other?

OpenCL lets Programmers write a single portable program that
uses ALL resources in the heterogeneous platform

GMCH = graphics memory control hub, ICH = Input/output control hub - Page 4

Microprocessor trends

Individual processors are many core (and often heterogeneous) processors.

gtk

! ;30' cbres

X oy o=

PR Tl S s s be
St A

tiie -

i T8 Wwide SIMD-

|
TR T s snnre
Fhwe wie W WS

Intel SCC Processor NVIDIA Tesla C1060

" IBM Cell
The Heterogeneous many-core challenge: How are we to build a
software ecosystem for the Heterogeneous many core platform?

3t party names are the property of their owners. Thank you to Lee Howes (AMD) for help with the GPU core counts. -Page 5

It's a Heterogeneous world - part 2

e A modern platform includes:
- CPU(s)
- GPU(s)
— DSP processors
— ... other?

e And System on a Chip (SOQC)
trends are putting this all onto
one chip

The future belongs to heterogeneous, many core SOC
as the standard building block of computing

GMCH = graphics memory control hub, ICH = Input/output control hub SOC = system on a chip

-Page 6

Industry Standards for Programming
Heterogeneous Platforms

CPUs _ GPUs
Multiple cores driving // Emerglng Increasingly general purpose
performance increases /" Intersection data-parallel computing

‘=P .

| OpenCL
Multi-processor | Graphics APls
programming — Heterogen_eous and Shading
e.g. OpenMP \ Computing Languages

AN

OpenCL - Open Computing Language
Open, royalty-free standard for portable, parallel programming of heterogeneous
parallel computing CPUs, GPUs, and other processors

=Page 7

The BIG idea behind OpenCL

*Replace loops with functions (a kernel) executing at each
point in a problem domain.

- E.g., process a 1024 x 1024 image with one kernel invocation
per pixel or 1024 x 1024 = 1,048,576 kernel executions

Traditional loops

Data Parallel OpenCL

void
trad mul (int n,
const float *a,
const float *b,
float *c)
{
int 1i;
for (i=0; i<n; i++)
c[i] = a[1] * b[1i];

kernel void

dp mul (global const float *a,
global const float *b,

* global float *c)
{

int id = get global id(0) ;

c[1d] = a[id] * b[id];

} // execute over “n” work-items |

The origins of OpenCL [Ericsson
— Nokia
AMD Merged, — IBM
needed
commonality | | sony
across
ATI products —| EA ‘
—— GPU vendor - —!| Freescale ‘
Nvidia — wr?nts ';o ste?:lprskt Wrote a Khronos -
share from rough draft | compute |
straw man roup formed | \.monY
CPU vendor - AP 9 P ore
Intel —— wants to steal mkt
share from GPU
was tired of recoding for
——— many core, GPUs.
Apple Pushed vendors to Opencl
standardize. Dec 2008

Third party names are the property of their owners. -Page 9

OpenCL Working Group within Khronos

* Diverse industry participation ...
- Processor vendors, system OEMs, middleware vendors, application

developers.
* OpenCL became an important standard “on release” by
virtue of the market coverage of the companies behind it.

LABS aaivision BIZBRY AMDCU ARM srodbeon @

(intel)’

-
-

7 . = O ®
@ codeply ERICSSON 2 =“freescate &I #4......

\
[
[HH
!!:I|'"
Tl

-

Ga N\ 4 QD .. 3 &8ss
Imagination ‘%\ *IORNAMOS eoromowa ‘\mt-mi nNOoRIA NVIDIA, ™omwesms
7z *3 > %
RAPIDMMIND . 1] T
@ Seaweed TAKUMI]NSTRI::L}J{QENTS
SYSTEMS
KHRCONOS

GROUP

http://www.codeplay.com/
http://www.amd.com/
http://www.umu.se/umu/index_eng.html
http://www.gshark.com/

OpenCL Timeline

* Launched Jun’08 ... 6 months from “strawman” to OpenCL 1.0.
« Rapid innovation to match pace of HW innovation

* 18 months from 1.0 to 1.1 ... Goal: a new OpenCL every 18 months.
« We are committed to backwards compatibility .. To protect your SW investments.

During 2H09
Multiple conformant implementations
ship across a diverse range of platforms.

Dec08 | Jun10 \ Q4’11
t . ! t
Khronos Khronos publicly releases Planned release
publicly releases OpenCL 1.1 specification. of OpenCL 1.2
OpenCL 1.0 Conformant implementations

specification available shortly thereafter

OpenCL: From cell phone to supercomputer

* OpenCL Embedded profile for
mobile and embedded silicon
- Relaxes some data type and
precision requirements
- Avoids the need for a separate
“ES” specification
- Khronos APIs provide
computing support for imaging
& graphics
- Enabling advanced
applications in, e.g.,
Augmented Reality

* OpenCL W'I_I enable parallel A camera phone with GPS processes
computing in new markets images to recognize buildings and

- Mobile phones, cars, avionics |landmarks and provides relevant
data from internet

- Page 12

Agenda

* Heterogeneous computing and the origins of OpenCL
==> « OpenCL overview
*Mapping OpenCL onto CPUs

*Exploring the spec with code: embarrassingly parallel
- Vector addition: the basic platform layer
- Matrix multiplication: kernel programming language

* Exploring the spec with code: dealing with dependencies
- Optimizing matrix mul.: work groups and the memory model
- Reduction: synchronization

* A survey of the rest of OpenCL

-Page 13

OpenCL Platform Model

Processing

Element

M
M
M

|
|
|

it

3

H

Compute Unit

\
OpenCL Device

Host

* One Host + one or more OpenCL Devices

- Each OpenCL Device is composed of one or more Compute Units
- Each Compute Unit is further divided into one or more Processing

Elements

- Page 14

Context

 What is an OpenCL Context:
- The environment within which the kernels execute,
- The domain in which synchronization and memory management is defined.

* The context includes:

- A set of devices,
- The memory accessible to those devices
- One or more command-queues used to schedule execution of a kernel(s) or

operations on memory objects.

« Contexts are used to contain and manage the state of the “world” in

OpenCL.
- Kernel execution commands
- Memory commands - transfer or mapping of memory object data
- Synchronization commands - constrains the order of commands

-Page 15

Command-Queues

All commands to a device are
submitted through a command-queue.

Execution of the command-queue is
guaranteed to be completed at sync
points

Each Command-queue points to a
single device within a context.

A single device can simultaneously be

attached to multiple command queues.

Multiple command-queues can be
created to handle independent
commands that don’t require
synchronization

Context

Commands Queued in-order.
Can execute in-order or out-of
order depending on the queue.

-Page 16

Execution model (kernels)

* OpenCL execution model ... define a problem domain and execute an
instance of a kernel for each point in the domain

Input

Output

kernel void square (
global float* input,
global float* output)

{
int i = get global id(0);

output[i] = input[i] * input[i];

}

get global id(0)

v
10

110{9(2(4[1|1|9|7|6[1(2(21|9|8|4[1]|9

\d

36

1108|4161 |18 4936|144 1]8 64|16 1|81

49

64

- Page 17

An N-dimension domain of work-items

* Global Dimensions: 1024 x 1024 (whole problem space)
* Local Dimensions: 128 x 128 (work group ... executes together)

Synchronization between work-items
possible only within workgroups:
barriers and memory fences

Cannot synchronize outside
of a workgroup

1024

* Choose the dimensions that are “best” for your algorithm

-Page 18

Keeping track of work-items and
work-groups

get_work_dim =1

get_global_size = 26

input61109241197612219841920078

get_num_groups = 2
e —————————————
get_group_id=0 get_local_size =13
O —
get_local_id =8
P e —
get_global_id = 21

workgroups <

-Page 19

Kernel Execution

A command to execute a kernel must be enqueued to

the command-queue
- clEnqueueNDRangeKernel()
- Data-parallel execution model
- Describes the index space for kernel execution
- Requires information on NDRange dimensions and work-group
Size

- cIEnqueueTask? _ _
- Task-parallel execution model (multiple queued tasks)
- Kernel is executed on a single work-item

- clEnqueueNativeKernel()
- Task-parallel execution model
- Executes a native C/C++ function not compiled using the
OpenCL compiler
- This mode does not use a kernel object so arguments must be
passed in

- Page 20

OpenCL Memory Model

* Private Memory

Private Private Private Private

- Per work-item Memory Memory Memory Memory
o Local Memory Work-ltem | [Work-ltem Work-ltem | |Work-ltem

- Shared within a workgroup - L
’ . Workgroup Workgroup

- Visible to all workgroups I

I Global/Constant Memory I

’ HOSt Memory Computer Device

- On the CPU

Host Memory

* Memory management is explicit
You must move data from host -> global -> local and back

- Page 21

Memory Consistency

« “OpenCL uses a relaxed consistency memory model; i.e.
- the state of memory visible to a work-item is not guaranteed to be
consistent across the collection of work-items at all times.”

* Within a work-item:

- Memory has load/store consistency to its private view of memory
* Within a work-group:

- Local memory is consistent between work-items at a barrier.

* Global memory is consistent within a work-group, at a
barrier, but not guaranteed across different work-groups

» Consistency of memory shared between commands (e.g.
kernel invocations) are enforced through
synchronization (barriers, events, in-order queue)

- Page 22

Building Program objects
* The program object encapsulates:

- A context
- The program source/binary

- List of target devices and build options

* The Build process ... to create a program object

- clCreateProgramWithSource()
- clCreateProgramWithBinary()

Kernel Code

kernel void
horizontal reflect(read only image2d t src,

{

write only image2d t dst)

int x = get_global id(0); // x-coord
int y = get_global id(l); // y-coord

int width = get_image_ width (src);

float4 src_val = read imagef(src, sampler,
(int2) (width-1-x, y));

write imagef (dst, (int2) (x, y), src_val);

Compile for

GPU

Compile for

CPU

Program

GPU
code

CPU
code

- Page 23

OpenCL C for Compute Kernels

* Derived from ISO C99

- A few restrictions: recursion, function pointers, functions in C99
standard headers ...

- Preprocessing directives defined by C99 are supported

* Built-in Data Types
- Scalar and vector data types, Pointers
- Data-type conversion functions:
convert_type<_ sat>< roundingmode>
- Image types: image2d _t, image3d_t and sampler _t
* Built-in Functions — Required
- work-item functions, math.h, read and write image
- Relational, geometric functions, synchronization functions

* Built-in Functions — Optional
- double precision, atomics to global and local memory
- selection of rounding mode, writes to image3d_t surface

- Page 24

OpenCL C Language Highlights

Function qualifiers

- “ _kernel” qualifier declares a function as a kernel
- Kernels can call other kernel functions

Address space qualifiers
- __global, local, constant, private
- Pointer kernel arguments must be declared with an address space
gualifier

Work-item functions

- Query work-item identifiers

- get_work_dim(), get_global id(), get_local id(),
get_group_id()

Synchronization functions

- Barriers - all work-items within a work-group must execute the

barrier function before any work-item can continue
- Memory fences - provides ordering between memory operations

- Page 25

OpenCL C Language Restrictions

* Pointers to functions are not allowed

* Pointers to pointers allowed within a kernel, but not as an
argument

* Bit-fields are not supported
* Variable length arrays and structures are not supported
* Recursion is not supported

* Writes to a pointer of types less than 32-bit are not
supported

* Double types are optional in OpenCL, but the key word is
reserved

- Page 26

Vector Types

* Portable between different vector instruction sets
* Vector length of 2, 4, 8, and 16

* char2, ushort4, int8, float16, double2, ...
 Endian safe

* Aligned at vector length
* Vector operations (elementwise) and built-in functions

- Page 27

Vector Operations

* Vector literal
int4 vi0 = (int4) -7;

int4 vil = (int4) (0, 1, 2, 3);

* Vector components
vi0.lo = vil.hi;

int8 v8 = (int8) (vi0, wvil.s01l, wvil.odd);

* Vector ops

vi0 += wvil;

vi0 = abs(vi0) ;

7 |7 [-7 |7
| of] 1 3 |
2| 3]-7]-7]
21371710 1] 3
3 7 | 7
1 2 3
4 | 5 | =4
4 5 4

= Page 28

OpenCL sum

- &

Context
Programs Kernels Memory Objects Command Queues
dp_mul | Buff II
__kernel void — mages urters
dp_mul(global const float *a, dp_mul In Out of
global const float *b, CPU program binary arg[0] value
global float *c) j—— Order Order
d |
int id = get_global_id(0); GPU pr:g_r?r: binary i Queue | Queue
clid] = a[id] * b[id]; [
ol vae |] Compute Device !

Compile code /

- Page 29

Agenda

* Heterogeneous computing and the origins of OpenCL
*OpenCL overview
==« Mapping OpenCL onto CPUs

*Exploring the spec with code: embarrassingly parallel
- Vector addition: the basic platform layer
- Matrix multiplication: kernel programming language

* Exploring the spec with code: dealing with dependencies
- Optimizing matrix mul.: work groups and the memory model
- Reduction: synchronization

* A survey of the rest of OpenCL

- Page 30

Heterogeneous computing and the CPU

S EEE ,,:,@Mﬁ";}* Mu éﬂiiu%ﬂié@uén%&@?h

d T = S T =
151302, o -

- Challenge ... how do you exploit
the performance of modern
CPU’s

- Multi-Core / SMT
- Vector Units

« Hypothesis: OpenCL is an effective platform for programming a CPU
— OpenCL can handle multiple cores, multiple CPUs, and vector units.
— Uses a single programming model which simplifies programming.
— OpenCL provides a portable interface to vector instructions (SSE, AVX, etc).

— The long term hope ... Performance portable across CPU product lines and
eventually between CPU and GPUs.

- Page 31

OpenCL view of Core™ |7

= l] % 4
E:'ocessing = i l] Host
ement N U

/30mpute Unit Compute Device

Core™ |7 975

« 8 Compute Units
- Quad Core + SMT

* 4/8/16 Processing Elements per Unit
- 128bit XMM registers
- Data type determines # of elements...

* (32K L1 + 256K L2) Per Core, 8M L3 Shared

- Page 32

OpenCL’s Two Styles of Data-Parallelism

* Explicit SIMD data parallelism:
- The kernel defines one stream of instructions
- Parallelism from using wide vector types
- Size vector types to match native HW width
- Combine with task parallelism to exploit multiple cores.

*Implicit SIMD data parallelism (i.e. shader-style):
- Write the kernel as a “scalar program”
- Kernel automatically mapped onto the lanes of the SIMD-compute-
resources and cores by the compiler/runtime/hardware.

Both approaches are viable CPU options

- Page 33

Explicit SIMD data parallelism

* OpenCL as a portable interface to vector instruction sets.
- Block loops and pack data into vector types (float4, ushortl16, etc).
- Replace scalar ops in loops with blocked loops and vector ops.
- Unroll loops, optimize indexing to match machine vector width

float a[N], b[N], c[N];
for (i=0; 1i<N; i++)
cli] = ali]l*b[1];

<<< the above becomes >>>>

float4 a[N/4], b[N/4], c[N/47;
for (1=0; 1<N/4; i++)
cl[i] = al[i1]l*b[1i];

- Page 34

SUcCCEessive
improve

Explicit SIMD data parallelism: Case Study

e VVideo contrast/color optimization kernel on a dual core CPU.

5%

ment
N
o
o

Hand-tuned SSE +
Multithreading

Unroll loops

Optimize vector indexing

Vectorize (block loops, pack
into ushort8 and ushortl16)

éé/o 1 work-item per core + loops

20% 100% % peak performance

- Page 35

Implicit Data Parallelism on the CPU

OCL CPU
One workitem runs on a single SSE lane l O]
Workitem
Workitems are packed to SSE reqisters l l l l
as part of the OpenCL Compilation
process

WL [

Workgroup

Workgroup is executed on a compute unit
(HW Thread)

[T NIYINTIT R ATTINTIT
Kernel is executed over an N-D Range, [[HHHHHN R
which is divided to workgroups T

Several Workgroups run concurrently on HHHEIA] (AL
all compute unit (HW threads) N-D Range

Implicit vs. explicit SIMD: N-body Simulation

Given N bodies with an initial position x; and velocity v; for, the
force f; on body i caused by body | is given by following (G is

gravity):
F-‘f — G PP m:. - I | - Z F{I
| ||r-."r'] ” Lif |*_-':}r' <N

where m; and m; are the masses of bodies i and |, respectively; r; = X;-X;

The acceleration is computed as a, = F,/m,

Note: we are well aware that for values of N found in realistic systems, this direct sum algorithm
(order N squared) is inferior to well known order N or order N log, N algorithms. As with our matrix
multiplication examples, this simple algorithm was selected for its pedagogical value.

- Page 37

NBody Performance

Results from Intel’s A Performance
internal OpenCL 20 1
implementation:* x25 e

* Implicit Data Parallelism
- “shader-style” code
- Benefit from multi-core/SMT

* Explicit Data-Parallelism
- Hand tuned OpenCL C code,. . |
- OpenCL Explicit version is

x15

x25 faster than Naive C * l
- Explicit version is only 14%
slower than highly optimized & N N - IS Vercions
code * N & & Q S
N OO F X
S O O R
S EE
_&QS‘ @eﬁ"

* Results measured on Core™ 7 975, 3.3 GHz, 6GB DDR3
Results depends on the algorithm/code running - Page 38

Agenda

* Heterogeneous computing and the origins of OpenCL
*OpenCL overview
*Mapping OpenCL onto CPUs

*Exploring the spec with code: embarrassingly parallel
===p - \/ector addition: the basic platform layer
- Matrix multiplication: kernel programming language

* Exploring the spec with code: dealing with dependencies
- Optimizing matrix mul.: work groups and the memory model
- Reduction: synchronization

* A survey of the rest of OpenCL

- Page 39

Example: vector addition

* The “hello world” program of data parallel programming
IS a program to add two vectors

C[i] = A[i] + B[i] fori=1to N

* For the OpenCl solution, there are two parts
- Kernel code
- Host code

- Page 40

Vector Addition - Kernel

__kernel void vadd (_ _global const float *a,
__global const float *b,
__global float *c)

int gid = get global id(0);
c[gid] = al[gid] + b[gid];

- Page 41

Vector Addition - Host

* The host program ... the code that runs on the host to:
- Setup the environment for the OpenCL program
- Create and mange kernels

*5 simple steps in a basic Host program

Define the platform ... platform = devices+context+queues
Create and Build the program (dynamic library for kernels)

Setup memory objects

Define kernel (attach kernel function to arguments)

Submit commands ... move memory objects and execute kernels

abhwnNPE

Our goal is extreme portability so we expose everything (i.e. we are a bit verbose).
But most of a host code is the same from one application to the next ... the re-use
makes the verbosity a non-issue

- Page 42

1. Define the platform

* Grab the first available Platform:

err = clGetPlatformIDs(1, &firstPlatformld, &numPlatforms);

* Use the first| gpy |device the platform provides

err = clGetDevicelDs(firstPlatformld, | CL_DEVICE _TYPE_GPU), 1,
&device id, NULL);

- Create a simple context with a single device

context = clCreateContext(firstPlatformlid, 1, &device id, NULL,
NULL, &err);

* Create a simple command queue to feed our compute device

commands = clCreateCommandQueue(context, device_id, O, &err);

2. Create and Build the program

* Define source code for the kernel-program as a string literal (great
for toy programs) or read from a file (common in real apps).

* Build the program object:

program = clCreateProgramWithSource(context, 1,
(const char **) & KernelSource, NULL, &err);

- Compile the program to create a “dynamic library” from which
specific kernels can be pulled:

err = clBuildProgram(program, O, NULL, NULL, NULL, NULL);

- Fetch and print error messages (if(err I= CL_SUCCESS))

size_t len; char buffer[2048];
clGetProgramBuildinfo(program, device_id, CL_PROGRAM_BUILD_LOG, sizeof(buffer),
buffer, &len);

printf("%s\n", buffer);

- Page 44

3. Setup Memory Objects

* For vector addition, 3 memory objects ... one for each
Input vector (A and B) and one for the output vector (C).

* Create Input vectors and assign values on the host:

float ~ a_data]LENGTH], b_data[LENGTH], c_res [LENGTH];
for(i = 0; i < count; i++){

a_data[i] = rand() / (float) RAND_MAX;

b_data[i] = rand() / (float)RAND_MAX;

* Define OpenCL memory objects

a_in = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * count, NULL, NULL);
b_in = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * count, NULL, NULL);
c_out = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * count, NULL, NULL);

4. Define the kernel

* Create kernel object from the kernel function “vadd”

kernel = clCreateKernel(program, "vadd", &err);

» Attach arguments to the kernel function “vadd” to memory objects

err
err
err
err

= clSetKernelArg(kernel, 0O, sizeof(cl_mem), &a_in);

= clSetKernelArg(kernel, 1, sizeof(cl_mem), &b_in);

= clSetKernelArg(kernel, 2, sizeof(cl_mem), &c_out);

= clSetKernelArg(kernel, 3, sizeof(unsigned int), &count);

- Page 46

5. Submit commands

» Write Buffers from host into global memory (as non-blocking operations)

err = clEnqueueWriteBuffer(commands, a_in, CL_FALSE, 0O,
sizeof(float) * count, a_data, O, NULL, NULL);

err = clEnqueueWriteBuffer(commands, b_in, CL_FALSE, O,
sizeof(float) * count, b_data, O, NULL, NULL);

* Enqueue the kernel for execution (note: in-order queue so this is OK)

err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL,
&global, &local, 0, NULL, NULL);

 Read back the result (as a blocking operation). Use the fact that we have an
in-order queue which assures the previous commands are done before the
read begins.

err = clEnqueueReadBuffer(commands, ¢c_out, CL_TRUE, O,
sizeof(float) * count, c_res, O, NULL, NULL);

- Page 47

Vector Addition - Host Program

// create the OpenCL context on a GPU device

cl_context = clCreateContextFromType (0,
CL DEVICE TYPE GPU, NULL, NULL, NULL) ;

// get the list of GPU devices associated with context
clGetContextInfo (context, CL_CONTEXT DEVICES, O,

NULL, &cb);
devices = malloc(cb) ;

clGetContextInfo (context, CL_CONTEXT DEVICES, cb,
devices, NULL) ;

// create a command-queue

cmd queue = clCreateCommandQueue (context, devices[0],
T, NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer (context, CL MEM READ ONLY |
CL_MEM COPY HOST PTR, sizeof(cl_float)*n, srcA,
NULL) ; }
memobjs[l] = clCreateBuffer (context,CL MEM READ ONLY |
CL MEM COPY HOST PTR, sizeof(cl float)*n, srcB,
- = - - - NULL) ;
memobjs[2] = clCreateBuffer (context,CL MEM WRITE ONLY,
sizeof (cl_float)*n, NULL,
NULL) ;
// create the program

program = clCreateProgramWithSource (context, 1,
&program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL, NULL, NULL,
NULL) ;

// create the kernel
kernel = clCreateKernel (program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],
sizeof (cl_mem)) ;

err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],
sizeof (cl_mem)) ;

err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],

sizeof (cl_mem)) ;
// set work-item dimensions
global work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel (cmd queue, kernel, 1,
NULL, global work size, NULL, 0, NULL, NULL);

// read output array

err = clEnqueueReadBuffer (cmd queue, memobjs[2],
CL_TRUE, 0, n*sizeof(cl_float), dst, 0, NULL, NULL);

- Page 48

Vector Addition - Host Program

// create the OpenCL context on a GPU device // 1
cl context = clCreateContextFromType (0, er Bu.ld the program NULL, NULL,
Define platform and queues
/7 Yyeu o tue J_J_apul UL WUru uevices aaauugwu wrtir context / Create and setup kernel
clGetContextInfo (context, CL CONTEXT DEVICES, 0, || k_____ e I __INT.) ;
NULL, &cb);
devices = malloc(cb); // set the args values
clGetContextInfo (context, CL CONTEXT DEVICES, cb, err = clSetKernelArg(kernel, 0, (void *) &memobijs[0],
devices, NULL) ; sizeof (cl mem));
err |= clSetKernelArg(kernel, 1, (void *)&memobijs[1l],
// create a command-queue sizeof (cl mem)) ;
cmd queue = clCreateCommandQueue (context, devices[0], err |= clSetKernelArg(kernel, 2, (void *)&Bemobjs[2],
e sizeof (cl mem)):

// set work- 1tem dlmen51ons
Define Memory objects global w
Execute the kernel

// execUo— _________

err = clEnqueueNDRangeKernel(cmd queue, kernel, 1,
NULL, global work size, NULL, 0, NULL, NULL);

// rea

e = Read results on the host BRUE,

7 S R R S

// create *h~ mrrmom

eroaran © Create the program .

It's complicated, but most of this is “boilerplate” and not as bad as it looks.

- Page 49

Agenda

* Heterogeneous computing and the origins of OpenCL
*OpenCL overview
*Mapping OpenCL onto CPUs

*Exploring the spec with code: embarrassingly parallel
- Vector addition: the basic platform layer
===p - Matrix multiplication: kernel programming language

* Exploring the spec with code: dealing with dependencies
- Optimizing matrix mul.: work groups and the memory model
- Reduction: synchronization

* A survey of the rest of OpenCL

- Page 50

Linear Algebra

* Definition:
- The branch of mathematics concerned with the study of vectors, vector
spaces, linear transformations, and systems of linear equations.

« Example: Consider the following system of linear equations

X+2y+ z =1
X+3y+3z=2
X+ y+ 4z=6
- This system can be represented in terms of vectors and a matrix as the classic
“Ax = b” problem.
r 3)
1 2 1) [x) 1
1 3 3 y = 2
1 1 4 Z 6
\ J \ J \ J

- Page 51

Solving Ax=b

* LU Decomposition:

- transform a matrix into the product of a lower triangular and upper
triangular matrix. It is used to solve a linear system of equations.

(1 0 0)
1 1 0 ©
1 -1 1
\ J
L (@]
m Solving for x
Ax=b
Ux=(L1)b

Given a problem Ax=Db
LUx=b
x = (U)L1b

(1
1

N WN

AW =

- Page 52

L inear transformations

* A matrix, A € R™® multiplies a vector, x € RP to define a linear
transformation of that vector into R™,

» Matrix multiplication defines the composition of two linear
transformations on that vector space

Compute C = A*B where
C € RNxM
A€ RNxP
B e RPxM

m Matrix multiplication is the core building block of Linear Algebra

- Page 53

Matrix Multiplication: Sequential code
void mat_mul(int Mdim, int Ndim, int Pdim, float *A, float *B, float *C)
{

inti,j, k;

for (i=0; i<Ndim; i++){

for (j=0; j<Mdim; j++){
for(k=0;k<Pdim;k++){ //C(i,j) = sum(over k) A(i,k) * B(k,))
C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}
} C(i, C(i, A(l,)
) H) _ H) - - * B(..j)
}
Dot product of a row of A and a column of B for each element of C

- Page 54

Matrix Multiplications Performance

* Results on an Apple laptop (OS X Snow Leopard) with an
Intel CPU. Gcc compiler ... no optimization.

CPU: Sequential C (not OpenCL) 167

Device is Intel® Core™2 Duo CPU T8300 @ 2.40GHz

Note: The goal of this study is to explore features of the OpenCL API. If we want high
performance matrix multiplication we’d use the OpenCL native function interface to call MKL.

3™ party names are the property of their owners.

- Page 55

Matrix Multiplication: OpenCL kernel (1/4)
void mat_mul(int Mdim, int Ndim, int Pdim, float *A, float *B, float *C)
{
inti,j, k;
for (i=0; i<Ndim; i++){
for (j=0; j<Mdim; j++){
for(k=0;k<Pdim;k++){ /IC(i,)) = sum(over k) A(i,k) * B(k,))
C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];
}
}

}
}

- Page 56

Matrix Multiplication: OpenCL kernel (2/4)

veid-mat mul(

. im i lim_i i

__kernel mat_mul(
L, const int Mdim, const int Ndim, const int Pdim,

float *A, float *B, float *C)

4 _ global float *A, _ global float *B, __global float *C)

{
inti,j, k;
for (i=0; i<Ndim; i++){
for (j=0; j<Mdim; j++){
for(k=0;k<Pdim;k++){
C[i*Ndim+j] += A[i*Ndi
}
}
}
}

Mark as a kernel function and specify memory qualifiers

//C(i,)) = sum(over k) A(i,k) * B(k,))
m+k] * B[k*Pdim+j];

- Page 57

Matrix Multiplication: OpenCL kernel (3/4)

__kernel mat_mul(
const int Mdim, const int Ndim, const int Pdim,
__global float *A, __global float *B, __global float *C)
{
inti, |, k;
1=0; iI<Ndim; i+

oy i = get_global_id(0);
—> | j=get_global_id(1);

for(k=0;k<Pdim;k++){ /IC(i,)) = sum(over k) A(i,k) * B(k,))
C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}
X Remove outer loops and set work item coordinates

}

- Page 58

Matrix Multiplication: OpenCL kernel (4/4)

__kernel mat_mul(
const int Mdim, const int Ndim, const int Pdim,
__global float *A, __global float *B, __global float *C)
{
inti, |, k;
| = get_global id(0);
j =get_global id(1);
for(k=0;k<Pdim;k++){ /IC(i,j) = sum(over k) A(i,k) * B(k,))
Cl[iI*Ndim+j] += A[iI*Ndim+k] * B[k*Pdim+j];
}

- Page 59

Matrix Multiplication: OpenCL kernel

Rearrange a bit and use a local scalar for intermediate C element values (a
common optimization in Matrix Multiplication functions)

__kernel mmul(
const int Mdim,
const int Ndim,
const int Pdim,
__global float* A,
__global float* B,
__global float* C)

{

int k;
int i = get_global id(0);
int] = get_global id(1);
float tmp;
tmp = 0.0;

for(k=0;k<Pdim;k++)

tmp += A[i*Ndim+k] * B[k*Pdim+j];

C[i*Ndim+j] = tmp;

- Page 60

Matrix Multiplication host program

#include "mult.h"
int main(int argc, char **argv)
{
float *A, *B, *C;
int Mdim, Ndim, Pdim;
int err, szA, szB, szC;
size_t global[DIM];
size_t local[DIM];
cl_device_id device_id;
cl_context context;
cl_command_queue commands;
cl_program program;
cl_kernel kernel;
cl_uint nd;
cl_mem a_in, b_in, c_out;
Ndim = ORDER;
Pdim = ORDER;
Mdim = ORDER;
szA = Ndim*Pdim;
szB = Pdim*Mdim;
szC = Ndim*Mdim;
A = (float *)malloc(szA*sizeof(float
B = (float *)malloc(szB*sizeof(float
C = (float *)malloc(szC*sizeof(float
initmat(Mdim, Ndim, Pdim, A, B, C

~

);
);
);

~_

err = clGetDevicelDs(NULL, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);
context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
commands = clCreateCommandQueue(context, device_id, 0, &err);

a_in = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * szA, NULL, NULL);
b_in = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * szB, NULL, NULL);
c_out = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * szC, NULL, NULL);

err = clEnqueueWriteBuffer(commands, a_in, CL_TRUE, 0, sizeof(float) * szA, A, 0, NULL, NULL);
err = clEnqueueWriteBuffer(commands, b_in, CL_TRUE, 0, sizeof(float) * szB, B, 0, NULL, NULL);

*program = clCreateProgramWithSource(context, 1, (const char **) & C_elem_KernelSource, NULL, &err);
err = cIBuildProgram(*program, 0, NULL, NULL, NULL, NULL);

*kernel = clCreateKernel(*program, "mmul", &err);

err = clSetKernelArg(*kernel, 0, sizeof(int), &Mdim);

err |= clSetKernelArg(*kernel, 1, sizeof(int), &Ndim);

err |= clSetKernelArg(*kernel, 2, sizeof(int), &Pdim);

err 1= clSetKernelArg(*kernel, 3, sizeof(cl_mem), &a_in);
(
(

—_2

err |= clSetKernelArg(*kernel, 4, sizeof(cl_mem), &b_in);
err |= clSetKernelArg(*kernel, 5, sizeof(cl_mem), &c_out);

—_2

global[0] = (size_t) Ndim; global[1] = (size_t) Mdim; *nd = 2;

err = clEnqueueNDRangeKernel(commands, kernel, nd, NULL, global, NULL, 0, NULL, NULL);
clFinish(commands);

err = clEnqueueReadBuffer(commands, c_out, CL_TRUE, 0, sizeof(float) * szC, C, 0, NULL, NULL);
test_results(A, B, c_out);

- Page 61

Matrix Multiplication host program

#include "mult.n"
int main(int argc, char **argv)

{

float *A, *B, *C;
int Mdim, Ndim, Pdim;
int err, szA, szB, szC;

err = clGetDevicelDs(NULL, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);
context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
commands = clCreateCommandQueue(context, device_id, 0, &err);

a_in = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * szA, NULL, NULL);
b_in = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * szB, NULL, NULL);
c_out = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * szC, NULL, NULL);

Size_tgnknlrnll\lﬂ- LY.V PN o FIY < PN H ol _TDLIC O H £L£] AN A_A O NILLLL ALY
o Note: Th|s isn't as bad as you might think.
‘ool This is almost the same as the host code we wrote for vector add.
ko It's “boilerplate” ... you get it right once and just re-use it.
cl_uint nd; err = clSetKernelArg(*kernel, 0, sizeof(int), &Mdim);
cl_mem a_in, b_in, c_out; err |= clSetKernelArg(*kernel, 1, sizeof(int), &Ndim);
Ndim = ORDER; err |= clSetKernelArg(*kernel, 2, sizeof(int), &Pdim);
Pdim = ORDER; err 1= clSetKernelArg(*kernel, 3, sizeof(cl_mem), &a_in);
Mdim = ORDER,; err |= clSetKernelArg(*kernel, 4, sizeof(cl_mem), &b_in);
(

szA = Ndim*Pdim;
szB = Pdim*Mdim;
szC = Ndim*Mdim;
A = (float *)malloc(szA*sizeof(float));
B = (float *)malloc(szB*sizeof(float));
C = (float *)malloc(szC*sizeof(float));
Initmat(Mdim, Ndim, Pdim, A, B, C);

—_2

err |= clSetKernelArg(*kernel, 5, sizeof(cl_mem), &c_out);
global[0] = (size_t) Ndim; global[1] = (size_t) Mdim; *nd = 2;
err = clEnqueueNDRangeKernel(commands, kernel, nd, NULL, global, NULL, 0, NULL, NULL);

clFinish(commands);

err = clEnqueueReadBuffer(commands, c_out, CL_TRUE, 0, sizeof(float) * szC, C, 0, NULL, NULL);

test_results(A, B, c_out);

kerr);

- Page 62

Matrix Multip

#include "mult.n"
int main(int argc, char **argv)
{

Ication host program

err = clGetDevicelDs(NULL, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);

context = clCreateContext(0, 1, &device_id, NULL, NULL, &err); f
commands = clCreateCommandQueue(context, device_id, 0, &err); SetUp the plat orm

float *A, *B, *C;

int Mdim, Ndim, Pdim;

int err, szA, szB, szC;

size_t global[DIM];

size_t local[DIM];

cl_device_id device_id;
cl_context context;
cl_command_queue commands;
cl_pr
c_kei Declare and
cuinl
o me INnitialize data
Ndim = ORDER;

Pdim = ORDER;

Mdim = ORDER,;

szA = Ndim*Pdim;

szB = Pdim*Mdim;

szC = Ndim*Mdim;

A = (float *)malloc(szA*sizeof(float
B = (float *)malloc(szB*sizeof(float
C = (float *)malloc(szC*sizeof(float
initmat(Mdim, Ndim, Pdim, A, B, C

~

);
);
);

~_ =

a_in = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * szA, NULL, NULL);

b_in = clCreateBuffer(context, CL_MEM_R .
¢_out = clCreateBuffer(context, L Mem_ | S€tup buffers and write Aand B

err = clEnqueueWriteBuffer(commands, a matrices to the device memory

err = clEnqueueWriteBuffer(commands, b_in, CL_TRUE, 0, sizeof{(float) * szB, B, 0, NULL, NULL);

*program = clCreateProgramWithSource(context, 1, (const char **) & C_elem_KernelSource, NULL, &err);
err = clBuildProgram(*program, 0, NULL, NULL, NULL, NULL);

*kernel = cICreateKernel(*program, "mmul", &err); Build the program, define
err = clSetKernelArg(*kernel, 0, sizeof(int), &Mdim);

err |= clSetKernelArg(*kernel, 1, sizeof(int), &Ndim); the Kemel;and SetUp
err |= clSetKernelArg(*kernel, 2, sizeof(int), &Pdim);

err 1= clSetKernelArg(*kernel, 3, sizeof(cl_mem), &a_in); arguments

cl_mem), &b_in);

(
(

err |= clSetKernelArg(*kernel, 4, sizeof
(* cl_mem), &c_out);

err |= clSetKernelArg(*kernel, 5, sizeof

—_=

global[0] = (size_t) Ndim; global[1] = (size_t) Mdim; *nd = 2;

err = clEnqueueNDRangeKernel(commands, ke

cIFinish(commands); Run the kernel and collect results

err = clEnqueueReadBuffer(commands, ¢_out, CC_TRUE, U, SIZE0T(10at) ~SZC, U, U, NULL, NULL J;
test_results(A, B, c_out);

- Page 63

Matrix Multiplication host program

err = clGetDevicelDs(NULL, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);
rantavt = plCroataCantaviiN 1 RAdoviea id NIHT NI Raorr):

#includel The only parts new to us ...

int main(. .)

{ 1. 2D ND Range set to dimensions of C matrix
float *A : .
~val 2. Local sizes setto NULL in clEnqueueNDRangeKernel() to tell system
i:i;ee”t’ to pick local dimensions for us.)
size._t local[DIM]; rT = clEnqueueWriteBuffer(commands, b_in, CL_TRUE. 0, sizeof(float) * szB. B, 0, NULL, NULL):
cl_device_id device_id;
cl_context context: | *proaram = c|CreateProaramWithSource(context, 1. (const char **) & C_elem KernelSource. NULL, &err):]

global[0] = (size_t) Ndim; global[1] = (size_t) Mdim; *nd =2;

err = clEnqueueNDRangeKernel(commands, kernel, ndim, NULL, global, NULL, 0, NULL, NULL);
clFinish(commands);

err = clEnqueueReadBuffer(commands, ¢_out, CL_TRUE, 0, sizeof(float) * szC, C, 0, NULL, NULL);
test_results(A, B, c_out);

\ err |= clSetKernelArg(*kernel, 5, sizeof(cl_mem), &c_out);

global[0] = (size_t) Ndim; global[1] = (size_t) Mdim; *nd = 2;

err = clEnqueueNDRangeKernel(commands, kernel, nd, NULL, global, NULL, 0, NULL, NULL);

clFinish(commands);

err = clEnqueueReadBuffer(commands, c_out, CL_TRUE, 0, sizeof(float) * szC, C, 0, NULL, NULL);
test_results(A, B, c_out);

initmat(Mdim, Ndim, Pdim, A, B, C)}

- Page 64

Matrix Multiplications Performance

*Results on an Apple laptop with an NVIDIA GPU and an
Intel CPU. Matrices are stored in global memory.

CPU: Sequential C (not OpenCL) 167
GPU: C(i,j) per work item, all global 511
CPU: C(i,)) per work item, all global 744

Note: The goal of this study is to explore features of the OpenCL API. If we want high
performance matrix multiplication we'd use the OpenCL native function interface to call MKL.

Device is GeForce® 8600M GT GPU from NVIDIA with a max of 4 compute units
Device is Intel® Core™2 Duo CPU T8300 @ 2.40GHz

3™ party names are the property of their owners.

Agenda

* Heterogeneous computing and the origins of OpenCL
*OpenCL overview
*Mapping OpenCL onto CPUs

*Exploring the spec with code: embarrassingly parallel
- Vector addition: the basic platform layer
- Matrix multiplication: kernel programming language

* Exploring the spec with code: dealing with dependencies
== - Optimizing matrix mul.: work groups and the memory model
- Reduction: synchronization

* A survey of the rest of OpenCL

- Page 66

Optimizing Matrix Multiplication
 Cost determined by flops and memory movement:

m 2*n3 = O(n3) Flops

m operates on 3*n? numbers

 To optimize matrix multiplication, we must assure that for every memory
movement, we execute as many flops as possible.

 Quter product algorithms are faster, but for pedagogical reasons, lets stick
to the simple dot-product algorithm.

cw cw Ali,?) s
1 L

I
+
*

Dot product of a row of A and a column of B for each element of C

» We will work with work-item/work-group sizes and the memory model to
optimize matrix multiplication

- Page 67

An N-dimension domain of work-items

* Global Dimensions: 1024 x 1024 (whole problem space)
* Local Dimensions: 128 x 128 (work group ... executes together)

Synchronization between work-items
possible only within workgroups:
barriers and memory fences

Cannot synchronize outside
of a workgroup

1024

* Choose the dimensions that are “best” for your algorithm

- Page 68

OpenCL Memory Model

* Private Memory

Private Private Private Private

- Per work-item Memory Memory Memory Memory
o Local Memory Work-ltem | [Work-ltem Work-ltem | |Work-ltem

- Shared within a workgroup - L
’ . Workgroup Workgroup

- Visible to all workgroups I

I Global/Constant Memory I

’ HOSt Memory Computer Device

- On the CPU

Host Memory

* Memory management is explicit
You must move data from host -> global -> local and back

- Page 69

Optimizing Matrix Multiplication

* There may be significant overhead to manage work items and work
groups.

* Let’s have each work item compute a full row of C

Cl'l Cii"i A(l,?)

B(.)

[
+
*

Dot product of a row of A and a column of B for each element of C

- Page 70

An N-dimension domain of work-items

* Whole problem space: 1000 x 1000
* Global Dimensions: 1000 (A 1D NDRange, one row per work-item)
* Local Dimensions: 250 (One work group for each compute unit*)

| 1000 |

250

!

1000

*Remember ... the device we are optimizing for is a GeForce® 8600M GT GPU from NVIDIA with 4 compute units

-Page 71

Reduce work-item overhead ...

do one row of C per work-item

__kernel mmul({ _ |
const int Mdim, nt _k,J; |
const int Ndim, int i = get_global id(0);
const int Pdim, flogt tmp; o
global float* A, for(j=0;j<Mdim;j++){
- tmp = 0.0;

__global float* B,

__global float* C) for(k=0;k<Pdim;k++)

tmp += A[i*Ndim+k] * B[k*Pdim+j];
C[iI*Ndim+j] = tmp;

- Page 72

#include
int main(

{

MatMult host program: one row of C per work-item

err = clGetDevicelDs(NULL, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);

ecantavt = plCraataContaviiN 1 RAdoviea id NIHT NI Rarr):

Changes to host program:
1. 1 D ND Range set to number of rows in the C matrix

4l 2. Local Dim set to 250 so number of work-groups match number of
is"i;eej’ compute units (4 in this case) for our order 1000 matrices

size_t local[DIM];

cl_device_id device_id;
cl_context context;
cl_command_queue commands;
cl_program program;

cl_kernel kernel;

cI _uint nd;

: : —)i
err = clEnqueueWriteBuffer(commands, b_in, CL_TRUE, 0, sizeof{(float) * szB, B, 0, NULL, NULL);

*program = clCreateProgramWithSource(context, 1, (const char **) & C_elem_KernelSource, NULL, &err);

err = clBuildProgram(*program, 0, NULL, NULL, NULL, NULL);

*kernel = clCreateKernel(*program, "mmul", &err);
err = cISetKerneIArg(kernel 0 S|zeof(|nt) &Mdlm)

gIobaI[O] (S|ze t) Ndim; IocaI[O] (size_t) 250, *nd =1;

err = cIEnqueueNDRangeKerneI(commands, kernel, nd, NULL, global, local, 0, NULL, NULL);

SZ *Pdlm

szB = Pdim '

szC = Ndim*Mdim;
A = (float *)malloc(szA*sizeof(floatyys
B = (float *)malloc(szB*sizeof(float));
C = (float *)malloc(szC*sizeof{(float));
initmat(Mdim, Ndim, Pdim, A, B, C);

err |= clSetKernelArg(*kernel, 5, sizeof(cl_mem), &c_out);

/

. 6Ir= cIEnqueueNDRanquerneI(commands kernel nd NULL, global, local, 0, NULL, NULL);

clFinish(commands);

err = clEnqueueReadBuffer(commands, c_out, CL_TRUE, 0, sizeof(float) * szC, C, 0, NULL, NULL);

test_results(A, B, c_out);

-Page 73

Results: MFLOPS

* Results on an Apple laptop with an NVIDIA GPU and an Intel CPU.

This on its own

CPU: Sequential C (not OpenCL) 167 didn’t help.
oy : Note, we made
GPU: C(i,)) per work item, all global 511 no attempt to
GPU: C row per work item, all global 258 take NVIDIA's
g : 32-warp size
CPU: C(i,)) per work item 744 nto account

Note: The goal of this study is to explore features of the OpenCL API. If we want high
performance matrix multiplication we’'d use the OpenCL native function interface to call MKL.

Device is GeForce® 8600M GT GPU from NVIDIA with a max of 4 compute units
Device is Intel® Core™2 Duo CPU T8300 @ 2.40GHz

3™ party names are the property of their owners.

Optimizing Matrix Multiplication

* Notice that each element of C Iin a row uses the same row of A.

* Let’s copy A into private memory so we don’t incur the overhead of pulling
It from global memory for each C(i,j)) computation.

Cﬁl“

ca) { A(i)

B(.)

Private memory of
each work item

-Page 75

Row of C per work item, A row private

{

__kernel mmul(

const int Mdim,
const int Ndim,
const int Pdim,
__global float* A,
__global float* B,
__global float* C)

int k,j;

float tmp;

or(k=0;k<Pdim;k++)
Awrk[k] = A[I*Ndim+Kk];

}

inti=get_global id(0);
float Awrk[1000];

for(j=0;)<Mdim;]++){
tmp = 0.0;
for(k=0;k<Pdim;k++)

tmp += Awrk[k] * B[k*Pdim+j];

C[i*Ndim+j] = tmp;
}

Setup a work array for A in private
memory and copy into from global
memory before we start with the
matrix multiplications.

-Page 76

MatMult host program: one row of C per work-item

err = clGetDevicelDs(NULL, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);

oot - Al rontalantasd(0 4 Rdoicn A ML NIIL Zam:
ﬁ?ﬂff(Changes to host program:
1. 1D ND Range set to number of rows in the C matrix

if:fia“tﬂdf 2. Local Dim set to 250 so number of work-groups match number of

ner compute units (4 in this case) for our order 1000 matrices '

size_t local[DIM];

cl_device_id device_id;
cl_context context;
cl_command_queue commands;
cl_program program;

cl_kernel kernel;

cI _uint nd;

err = clEnqueueWriteBuffer(commands, b_in, CL_TRUE, 0, sizeof(float) * szB, B, 0, NULL, NULL);

*program = clCreateProgramWithSource(context, 1, (const char **) & C_elem_KernelSource, NULL, &err);
err = clBuildProgram(*program, 0, NULL, NULL, NULL, NULL);

*kernel = clCreateKernel(*program, "mmul", &err);
err = cISetKerneIArg(kernel 0 S|zeof(|nt) &Mdlm)

gIobaI[O] (S|ze t) Ndim; IocaI[O] (size_t) 250, *nd = 1;
err = cIEnqueueNDRangeKerneI(commands, kernel, nd, NULL, global, local, 0, NULL, NULL);

Sz
szB = Pdim
szC = Ndim*Mdim;

A = (float *)malloc(szA*sizeof(floatyys
B = (float *)malloc(szB*sizeof(float));
C = (float *)malloc(szC*sizeof{(float));

initmat(Mdim, Ndim, Pdim, A, B, C);

QrPaim; \

err |= clSetKernelArg(*kernel, 5, sizeof(cl_mem), &c_out); /

. 6Ir= cIEnqueueNDRanquerneI(commands kernel nd NULL, global, local, 0, NULL, NULL);

clFinish(commands);
err = clEnqueueReadBuffer(commands, c_out, CL_TRUE, 0, sizeof(float) * szC, C, 0, NULL, NULL);
test_results(A, B, ¢_out);

- Page 77

Matrix Multiplications Performance
* Results on an Apple laptop with an NVIDIA GPU and an Intel CPU.

CPU: Sequential C (not OpenCL) 167
GPU: C(i,j) per work item, all global 511
GPU: C row per work item, all global 258
GPU: C row per work item, A row private 873 Big impact
CPU: C(i,)) per work item 744

Note: The goal of this study is to explore features of the OpenCL API. If we want high
performance matrix multiplication we'd use the OpenCL native function interface to call MKL.

Device is GeForce® 8600M GT GPU from NVIDIA with a max of 4 compute units
Device is Intel® Core™2 Duo CPU T8300 @ 2.40GHz

3™ party names are the property of their owners.

Optimizing Matrix Multiplication
* Notice that each element of C uses the same row of A.

« Each work-item in a work-group uses the same columns of B
* Let’s store the B columns in local memory

/N
—
i i +< L)
e e E

— B(:))
/
/ NP
Private memory of \
each work item Local memory for

each work-group

-Page 79

Row of C per work item, A row private, B columns local

__kernel mmul(
const int Mdim,
const int Ndim,
const int Pdim,
__global float* A,
__global float* B,

__local float* Bwrk)

int k,j;
int i = get_global id(0);
int iloc = get_local _id(0);

float Awrk[1000];
float tmp;

int nloc = get_local_size(0);

for(k=0;k<Pdim;k++)
Awrk[k] = A[I*Ndim+k];
for(j=0;j<Mdim;j++){
=iloc;k<Pdim;k=k+nloC
Bwrk[k] = B[k*Pdim+j];)
arrier(CLK_LOCAL_MEW
tmp =0.0;
for(k=0;k<Pdim;k++)
tmp += Awrk[k] * Bwrk[K];
C[i*Ndim+j] =tmp;

} Pass in a pointer to local memory.

J Work-items in a group start by
copying the columns of B they
need into the local memory.

- Page 80

MatMult host program: No change from before

err = clGetDevicelDs(NULL, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);

oot - Al rontalantasd(0 4 Rdoicn A ML NIIL Zam:

ﬂ?ﬂf:(Changes to host program:

— 1. Modify so we pass Iogal memory to kernels. This requires a change tp
int M the kernel argument list ... a new call to clSetKernelArg is needed ... it
ner sets aside memory (sizeof(float)*Pdim) but doesn’t assign it a value

size_t local[DIM];

cl_device_id device_id;
cl_context context;
cl_command_queue commands;
cl_program program;

cl_kernel kernel;

err = clEnqueueWriteBuffer(commands, b_in, CL_TRUE, 0, sizeof(float) * szB, B, 0, NULL, NULL);

*program = clCreateProgramWithSource(context, 1, (const char **) & C_elem_KernelSource, NULL, &err);
err = clBuildProgram(*program, 0, NULL, NULL, NULL, NULL);

*kernel = clCreateKernel(*program, "mmul", &err);

cl_uint nd;

cl_mema_in, b_in, c_ouf €IT |= cl

SetKernelArg(*kernel, 6, sizeof(float)*Pdim, NULL);

Ndim = ORDER;
Pdim = ORDER;
Mdim = ORDER;
szA = Ndim*Pdim;
szB = Pdim*Mdim;
szC = Ndim*Mdim;

A = (float *)malloc(szA*sizeof(float));
B = (float *)malloc(szB*sizeof(float));
C = (float *)malloc(szC*sizeof{(float));

initmat(Mdim, Ndim, Pdim, A, B, C

err |= clSetkernelArg(“kernel, 2, sizeof(int), &Pdim);
err 1= clSetKernelArg(*kernel, 3, sizeof(cl_mem), &a_in);

=

err |= clSetkernelArg(*kernel, 5, sizeof(cl_mem), &c_out);

(

err |= clSetkernelArg(*kernel, 4, sizeof(cl_mem), &b_in);
(*
(

e —h —h

err |= ciSetKernelArg(*kernel, 6, sizeof(float)*Pdim, NULL);

global[0] = (size_t) Ndim; global[1] = (size_t) Mdim; *nd = 2;

err = clEnqueueNDRangeKernel(commands, kernel, nd, NULL, global, local, 0, NULL, NULL);
clFinish(commands);

err = clEnqueueReadBuffer(commands, c_out, CL_TRUE, 0, sizeof(float) * szC, C, 0, NULL, NULL);

h}
J1ESL_IEeSUIS(A, B, C_OUL),

- Page 81

Matrix Multiplications Performance
* Results on an Apple laptop with an NVIDIA GPU and an Intel CPU.

CPU: Sequential C (not OpenCL) 167
GPU: C(i,j) per work item, all global 511
GPU: C row per work item, all global 258
GPU: C row per work item, A row private 873
GPU: C row per work item, A private, B local 2472
CPU: C(i,}) per work item 744

Device is GeForce® 8600M GT GPU from NVIDIA with a max of 4 compute units
Device is Intel® Core™2 Duo CPU T8300 @ 2.40GHz

3™ party names are the property of their owners.

Matrix Multiplications Performance
* Results on an Apple laptop with an NVIDIA GPU and an Intel CPU.

Case

CPU: Sequential C (not OpenCL) 1
GPU: C(i,j) per work item, all global

GPU: C row per work item, all global 1.5 Wow!!l OpenCL on a

GPU: C row per work item, A row private 5.2 | GPUis radically faster
that C on a CPU, right?

GPU: C row per work item, A private, B local 15

CPU: C(i,)) per work item 4.5

Device is GeForce® 8600M GT GPU from NVIDIA with a max of 4 compute units
Device is Intel® Core™2 Duo CPU T8300 @ 2.40GHz

3™ party names are the property of their owners.

CPU vs GPU: Let’s be fair

* We made no attempt to optimize the CPU/C code but we worked hard
to optimize OpenCL/GPU code.

 Lets optimize the CPU code
‘ - Use compiler optimization (level O3). - Float, no opt 167 mflops
- Replace float with double (CPU ALU'’s like double) - Double, O3 272 mflops

- Reorder loops:

void mat_mul_ijk(int Mdim, int Ndim, int Pdim, void mat_mul_ikj(int Mdim, int Ndim, int Pdim,
double *A, double *B, double *C) double *A, double *B, double *C)

{ Lo

inti j, M

for (i=0; i<Ndim; i++) for (i=0; i<Ndim; i++)

for (j=0; j<Mdim; j++) —> for(k=0;k<Pdim;k++)
for(k=0;k<Pdim;k++) — —> for (j=0; j<Mdim; j++) -

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+i]: Cli*Ndim+j] += AlI*Ndim+k] * Bk*Pdim+];
} }

- ljk: 272 mflops
- 1kj: 1130 mflops
- kij: 481 mflops -Page 84

Matrix Multiplications Performance
* Results on an Apple laptop with an NVIDIA GPU and an Intel CPU.

Case

CPU: Sequential C (not OpenCL) 1
GPU: C(i,j) per work item, all global 0.45

) And we still are only
GPU: C row per work item, all global 0.23 | ysing one core ... and

GPU: C row per work item, A row private @i | e are not using SSE
so there is lots of

room to further

GPU: C row per work item, A private, B local 2.2 Op(tjimize the CPU
code.

CPU: C(i,j) per work item 0.66

Device is GeForce® 8600M GT GPU from NVIDIA with a max of 4 compute units
Device is Intel® Core™2 Duo CPU T8300 @ 2.40GHz

3t party names are the property of their owners. - Page 85

Agenda

* Heterogeneous computing and the origins of OpenCL
*OpenCL overview
*Mapping OpenCL onto CPUs

*Exploring the spec with code: embarrassingly parallel
- Vector addition: the basic platform layer
- Matrix multiplication: kernel programming language

* Exploring the spec with code: dealing with dependencies
- Optimizing matrix mul.: work groups and the memory model
===p - Reduction: synchronization

* A survey of the rest of OpenCL

- Page 86

Work-Iltem Synchronization
* Within a work-group

- void barrier()

- Takes optional flags CLK_LOCAL_MEM_FENCE and/or
CLK_GLOBAL_MEM_FENCE

- A work-item that encounters a barrier() will wait until ALL work-items in the work-
group reach the barrier()

- Corollary: If a barrier() is inside a branch, then the branch must be taken by

either
- ALL work-items in the work-group, OR
- NO work-item in the work-group

* Across work-groups
- No guarantees as to where and when a particular work-group will be executed
relative to another work-group
- Cannot exchange data, or have barrier-like synchronization between two
different work-groups

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial - Page 87

Reduction

*Goal: Reduce a set of numbers to a single value
- E.g., find sum of all elements in an array
*Sequential code

Int reduce(int Ndim, int *A)

{
sum = 0;
for (int 1=0; I<KNdIm; 1++)
sum += All];

}

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial - Page 88

Parallel Reduction (Basic Idea)

* N values read (32 bytes)
* N-1 operations (7 SP FLOP)

Intermediate
temp values

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial - Page 89

Parallel Reduction (OpenCL)

l Work-group
ﬁ)bm (+)

Memory

e Local °

Memory

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial - Page 90

Parallel Reduction (OpenCL)

q

‘/ Work-group Work-group
Global Global

Memory Memory

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial - Page 91

OpenCL Reduction Kernel (1/5)

* For each work-group:

. Work-items .

l Work-group
to local memory before next step

. (reading back from local memory)

’ "’\ ‘ l \ lLocaI Memory'
——————————————— er work-grou
Iqbgl Memor
I I I I I A e =2

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial - Page 92

Barrier
Make sure all work-items have written

OpenCL Reduction Kernel (2/5)

* For each work-group:

(Barrier h

Make sure all work-items have read

from local memory before next step
' Work-items ' . (over-writing local memory locations))
(Barrier h

jiork-group Make sure all work-items have written
to local memory before next step

\ (reading back from local memory) y

Local Memory

----— (per work-group)

* Why do we need a barrier at the end of the previous step?

* To ensure that all work-items in previous step finish writing to their respective
local memory locations, before a potentially different work-item reads from the
same memory location.

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial -Page 93

OpenCL Reduction Kernel (3/5)

* For each work-group:

(Barrier)

Make sure all work-items have read

from local memory before next step
' Work-items ' . (over-writing local memory locations))
(Barrier)

jiork-group Make sure all work-items have written
to local memory before next step

\ (reading back from local memory) y

Local Memory

S

* Put dummy barriers in the idle work-items

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial - Page 94

OpenCL Reduction Kernel (4/5)

« Each work-group writes a partial sum to global memory

. Work-items .

Work-group

Local Memory
er work-grou

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial - Page 95

OpenCL Reduction Kernel (5/5)

* The partial sums are then be added either on the host, or using
another OpenCL reduction kernel (with a single work-group)

. Work-items .

Work-group

Work-group Work-grouj

lobal Memor
JdEEEEEEEEEEEEN -

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial - Page 96

Alternative Reduction Kernel (1/5)
- Better read pattern for GPU device @

. Work-items .
l Work-group

[T T L LI
X éé’t_&%! Soand: -

————— ‘vv \/
S

lobal Memor
SR TS| S ST SE_— 1 SE_— S S| SU_— S__— | S_n_— | S 1 Su—— S_— | S—— — “. (visible to all)

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial

to local memory before next step
(reading back from local memory)

Barrier
Make sure all work-items have written

- Page 97

Alternative Reduction Kernel (2/5)
 Remove need for barrier before write to local memory

' Work-items '

Work-group

Barrier
Make sure all work-items have written
to local memory before next step
(reading back from local memory)

Local Memory

-...- (per work-group)

* Why do we not need a barrier before writing to local memory?

* In this kernel, a work-item is writing to its own read location (and not to a location
from where a potentially different work-item reads)

* But we still need a barrier after writing to local memory

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial - Page 98

Alternative Reduction Kernel (3/5)
 Remove need for barrier before write to local memory

' Work-items .

Work-group

Barrier
Make sure all work-items have written
to local memory before next step
(reading back from local memory)

Local Memory

S

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial - Page 99

Alternative Reduction Kernel (4/5)

« Each work-group writes a partial sum to global memory @

. Work-items .

Work-group

Local Memory
er work-grou

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial - Page 100

Alternative Reduction Kernel (5/5)

* The partial sums are then be added either on the host, or using
another OpenCL reduction kernel (with a single work-group)

. Work-items .

Work-group

Work-group Work-grouj

lobal Memor
JdEEEEEEEEEEEEN -

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial - Page 101

Alternative Reduction Kernel (source)

__kernel void // load data to local memory

reduce(_ global float4* input, localmem[tid]
__global float4* output,

__local float4* localmem)

{
int tid = get local id(0); repeat reduction in local memory \
for(int s = localSize/2; s > 1; s >>= 1)

= input[gid] + input[gid + globalSize];
barrier (CLK_LOCAL MEM FENCE) ;

int bid = get_group_ id(0);
int gid = get global id(0); {
if (tid < s)
int localSize = get local size(0); localmem[tid] += localmem[tid + s];

int globalSize get_global size(0);

// keep barrier outside conditional
barrier (CLK_LOCAL MEM FENCE) ;

_)

~
// write result to global memory
if (tid == 0)

output[bid] = localmem[0] + localmem[l]{)

}

Source: Udeepta Bordoloi of AMD provided these slides on Reduction for our ISC’11 OpenCL tutorial - Page 102

Agenda

* Heterogeneous computing and the origins of OpenCL
*OpenCL overview
*Mapping OpenCL onto CPUs

*Exploring the spec with code: embarrassingly parallel
- Vector addition: the basic platform layer
- Matrix multiplication: kernel programming language

* Exploring the spec with code: dealing with dependencies
- Optimizing matrix mul.: work groups and the memory model
- Reduction: synchronization

==+ A survey of the rest of OpenCL

- Page 103

Events

An event is an object that communicates the status of

commands in OpenCL ... legal values for an event:
- CL_QUEUED: command has been enqueued.
- CL_SUBMITED: command has been submitted to the compute device
- CL_RUNNING: compute device is executing the command
- CL_COMPLETE: command has completed
- ERROR_CODE: a negative value, indicates an error condition occurred.

- Can query the value of an event from the host ... for
example to track the progress of a command.

- Examples:
- CL_EVENT_CONTEXT
cl_int clGetEventinfo (/ + CL_EVENT_COMMAND_EXECUTION_STATUS
cl_event event, cl_event_info param_name, | ° CL_EVENT_COMMAND_TYPE

size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

- Page 104

Generating and consuming events

* Consider the command to enqueue a kernel. The last three
arguments optionally expose events (NULL otherwise).

cl_int clEnqueueNDRangeKernel (
cl_command_queue command_queue,
cl_kernel kernel, cl uint work _dim,
const size_t *global work_offset, - Number of events this

const size t *global work_size, command is waiting to
const size t *local work_size, / complete before executing

cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event) S

« Array of pointers to the events
being waited upon ...
Command queue and events

must share a context.

* Pointer to an event object
generated by this command.

- Page 105

Event: basic event usage

* Events can be used to impose order constraints on kernel execution.
* Very useful with out of order queues.

cl_event k_events[2];

err = clEnqueueNDRangeKernel(commands, kernell, 1,
NULL, &global, &local, 0, NULL, &k _events[0]); V> Enqueue two

kernels that
expose events

err = clEnqueueNDRangeKernel(commands, kernel2,
NULL, &global, &local, 0, NULL, &k _events[1]);

err = clEnqueueNDRangeKernel(commands, kernel3, 1,

* Wait to execute
NULL, &global, &local, 2, k_events, NULL); —_

until two

previous events
complete.

- Page 106

Why Events? Won’t a barrier do?

« A barrier defines a synchronization point ... commands following a
barrier wait to execute until all prior enqueued commands complete

cl_int clEnqueueBarrier (
cl_command_queue command_queue)

- Events provide fine grained control ...
this can really matter with an out of
order queue.

« Events work between commands in —__ Queve —_ Queve
different queues ... as long as they B e

share a context!

« Events convey more information than a barrier ... Provide info on
state of a command, not just weather its complete or not.

- Page 107

Barriers between queues

1st Command queue

clEnqueueNDRangeKernel()

. clEnqueueBarrier doesn’t work

2" Command queue

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueNDRangeKernel() clEnqueueNDRangeKernel()
clEnqueueReadBuffer() clEnqueueReadBuffer()
clEnqueueReadBuffer() clEnqueueReadBuffer()
clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueNDRangeKernel() clEnqueueNDRangeKernel()
clEnqueueReadBuffer() clEnqueueReadBuffer()
clEnqueueBarrier() clEnqueueBarrier()
clEnqueueNDRangeKernel() clEnqueueNDRangeKernel()
clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueReadBuffer() clEnqueueReadBuffer()
clEnqueueReadBuffer() clEnqueueReadBuffer()
clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueNDRangeKernel() clEnqueueNDRangeKernel()
clEnqueueReadBuffer() clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

clEnqueueNDRangeKernel()

- Page 108

Barriers between queues: this works!

15t Command queue

clEnqueueNDRangeKernel()

2" Command queue

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueNDRangeKernel() clEnqueueNDRangeKernel()
clEnqueueReadBuffer() clEnqueueReadBuffer()
clEnqueueReadBuffer() clEnqueueReadBuffer()
clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueNDRangeKernel() clEnqueueNDRangeKernel()
clEnqueueReadBuffer() glEngueueReadBuffer()
clEnqueueBarrier() N
clEnqueueWaitForEvent(event) clEnqueueMarker(event)
clEnqueueNDRangeRaTTem) —CcIEnqueueNDRangeKernel()
clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueReadBuffer() clEnqueueReadBuffer()
clEnqueueReadBuffer() clEnqueueReadBuffer()
clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueNDRangeKernel() clEnqueueNDRangeKernel()
clEnqueueReadBuffer() clEnqueueReadBuffer()

clEnqueueNDRangeKermnel()

clEnqueueNDRangeKernel()

- Page 109

Host code influencing commands: User events

 “user code” running on a host thread can generate event objects

cl_event clCreateUserEvent (
cl_context context,
cl_int *errcode_ret)

* Created with value CL_SUBMITTED.
* It’s just another event to enqueued commands.
« Can set the event to one of the legal event values

cl_int clSetUserEventStatus (
cl_event event,
cl_int execution_status)

« Example use case: Queue up block of commands that wait on user
Input to finalize state of memory objects before proceeding.

-Page 110

Commands Influencing host code

* A thread running on the host can pause waiting on a list
of events to complete. This is done with the function:

cl_int clWaitForEvents (* Number of events
cl_uint num_events, € | to wait on

const cl_event *event_|ist)
\ * An array of
pointers to event

objects.

Example use case: Host code waiting for an event to
complete before extracting information from the event.

- Page 111

Profiling with Events

*OpenCL is a performance oriented language ... Hence
performance analysis is an essential part of OpenCL
programming.

*The OpenCL specification defines a portable way to
collect profiling data.

*Can be used with most commands placed on the

command queue ... includes:
- Commands to read, write, map or copy memory objects
- Commands to enqueue kernels, tasks, and native kernels
- Commands to Acquire or Release OpenGL objects
* Profiling works by turning an event into an opaque object

to hold timing data.

- Page 112

Using the Profiling interface

*Profiling is enabled when a queue is created with the

CL_QUEUE_PROFILING_ENABLE flag is set.

*When profiling is enabled, the following function is used
to extract the timing data

* Expected and
actual sizes of
profiling data.

S

T

cl_int clGetEventProfilinginfo (

cl_event event, e

cl_profiling_info param_name,
size_t param_value_size,

* Profiling data
to query (see
next slide)

void *param_value, <—
Size_t *param_value_size ret)

* Pointer to
memory to
hold results

-Page 113

cl_profiling _info values

* CL_PROFILING_ COMMAND_QUEUED
- the device time in nanoseconds when the command is enqueued in a
command-queue by the host. (cl_ulong)

* CL_PROFILING_COMMAND_SUBMIT
- the device time in nanoseconds when the command is submitted to
compute device. (cl_ulong)

* CL_PROFILING_COMMAND_START
- the device time in nanoseconds when the command starts execution on
the device. (cl_ulong)

* CL_PROFILING_COMMAND_END

* the device time in nanoseconds when the command has finished
execution on the device. (cl_ulong)

- Page 114

PrOfi I | n g Exam p | € cl_ulong start_time, end_time;

cl_event prof_event; size_t return_bytes;
cl_command_queue comm;

err = clGetEventProfilingInfo(

comm = clCreateCommandQueue(prof_event,
context. device id, CL_PROFILING_COMMAND_QUEUED,
CL_QUEUE_PROFILING_ENABLE, sizeof(cl_ulong),
&err); &start_time,

&return_bytes);

err = clEnqueueNDRangeKernel(

comm, kernel, err = clGetEventProfilingInfo(
nd, NULL, global, NULL, prof_event,
0, NULL,|prof_event); CL_PROFILING_ COMMAND_END,
sizeof(cl_ulong),
clFinish(comm); &end_time,
err = clWaitForEvents(1, &prof_event); &return_bytes);

run_time =(double)(end_time - start_time); N
- Page

Events inside Kernels ... Async. copy

Il A, B, C kernel args ... global buffers.

« Compute arow of C=A *B:
I/ Bwrk is a local buffer

* 1 A col. per work-item
for(k=0;k<Pdim;k++) * Work group shares rows of B

Awrk[k] = A[i*Ndim-+k]:

- Start an async. copy for
row of B returning an

for(j=0;j<Mdim;j++
or(j=0;J<Mdim;j++){ event to track progress.

event_tev _cp =async_work_group_copy(

(__local float*) Bwrk, (__global float*) B, _
(size_t) Pdim, (event t) 0): * Wait for async. copy to

— complete before
wait_group_events(l, &ev_cp);</ proceeding.

for(k=0, tmp= 0.0;k<Pdim;k++) « Compute element of C
tmp += Awrk[k] * Bwrk[k]; < using A from private
C[i*Ndim+j] = tmp; memory and B from
) local memory.

- Page 116

OpenCL 1.1 - AP

* Thread-safety
* All API calls, except clSetKernelArg, are thread safe
* Sub-buffer objects

* Create an object that represents a specific region in
a buffer object

* Easy and efficient mechanism to distribute regions
of a buffer object across multiple devices

 OpenCL™ synchronization mechanism ensures
modifications to sub-buffer object reflected in
appropriate region of parent buffer object

- Page 117

OpenCL 1.1 - AP

* User Events

* clEnqueue*** commands can wait on event

* In OpenCL™ 1.0, events can only refer to OpenCL™
commands

* Need ability to enqueue commands that wait on an external,
user defined, event

 Event CallBacks

e clSetEventCallbackFn to register a user callback function
* called when command identified by event has completed
* Allows applications to enqueue new OpenCL™ commands
based on event state changes in a non-blocking manner
e Lot’s more API stuff too

- Page 118

OpenCL 1.1 - Language

* Implicit Conversions
*OpenCL™ 1.0 requires widening for arithmetic
operators

float4 a, b;
float c;
b=a+c;//cis widened to a float4 vector
// first and then the add is performed

*OpenCL™ 1.1 extends this feature for all operators
*relational, equality, bitwise, logical, ternary

- Page 119

OpenCL 1.1 - Language
*New built-in functions
*get_global_offset

*clamp for integer data types (scalar and vector)

* Constrains integers to fall between an input min,max
range.

easync_work_group strided_copy

e strided async copy of data from global <---> local
memory

*shuffle - construct a permutation of elements from
1 or 2 input vectors and a mask

- Page 120

OpenCL 1.1 — OpenCL/OpenGL Sharing

- Improve performance of OpenCL/ OpenGL
interoperability

*Portable OpenCL/ OpenGL sharing requires
*a glFinish before clEnqueueAcquireGLObjects
*a clFinish after clEnqueueReleaseGLObjects
*glFinish / clFinish are heavyweight APIs

- Page 121

OpenCL 1.1 — OpenCL/OpenGL Sharing

*Improve performance of OpenCL/ OpenGL
interoperability

*Create a OpenCL event from an OpenGL sync object
*Create a OpenGL sync object from a OpenCL event
* Allows for a finer grained waiting mechanism

*Use event_wait_list argument for events that refer
to OpenGL commands to complete

*Use OpenGL sync APIs to wait for specific OpenCL™
commands to complete

- Page 122

Conclusion

* OpenCL defines a platform-APIl/framework for heterogeneous
computing ... not just GPGPU or CPU-offload programming.

* OpenCL has the potential to deliver portably performant code;
but only if its used correctly:
- Implicit SIMD data parallel code has the best chance of mapping
onto a diverse range of hardware ... once OpenCL implementation
guality catches up with mature shader languages.

* The future is clear:
- Mixing task parallel and data parallel code in a single program ...
balancing the load among ALL OF the platform’s available
resources.

- Page 123

