
The MPI Message-passing Standard
Lab Time Hands-on

SPD Course
2015

Massimo Coppola

Remember!

•  Simplest programs do not need much beyond
Send and Recv, still...

•  Each process lives in a separate memory space
–  Need to initialize all your data structures
–  Need to initialize your instance of the MPI library
–  Use MPI_COMM_WORLD
–  Need to define all your DataTypes
–  Should you make assumptions on process number?
–  How portable will your program be?

•  Check your MPI man page about launching
–  E.g. mpirun –np 4 myprogram parameters

SPD - MPI Lab hands-on 2

Initializing the runtime

•  MPI_Init()
–  Shall be called before using any MPI calls (very few

exceptions)
–  Initializes the MPI runtime for all processes in the

running program, some kind of handshaking implied
•  e.g. creates MPI_COMM_WORLD

–  check its arguments!

•  MPI_Finalize()
–  Frees all MPI resources and cleans up the MPI runtime,

taking care of any operation pending
–  Any further call to MPI is forbidden
–  some runtime errors can be detected at finalize

•  e.g. calling finalize with communications still pending and
unmatched

SPD - MPI Lab hands-on 3

Note on mpich

•  Mpich installation in the lab machine
(centos 7) requires this in your .bash_profile

MPICH
export PATH=/usr/local/bin:/usr/lib64/mpich/
bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:/usr/
lib64/mpich/lib:$LD_LIBRARY_PATH
export MANPATH=/usr/share/man/mpich/:`manpath`
export PATH

•  Mpirun becomes mpiexec, e.g.
mpiexec –np 2 pingpong “Hello world(s)”

SPD - MPI Lab hands-on 4

Exercise 1

•  Define the classical ping-pong program with 2
processes
–  they send back and fort a data buffer, the second process

executes an operation on the data (e.g. sum 1).
–  Verify after a given number N of iterations, that the

expected result is achieved.
–  Add printouts close to communications
–  Does it work? Why?

•  Generalize the ping-pong example to N processes
–  Each process sends to the next one, with some processes

being special, e.g.
–  Token ring (a process has to start and stop the token)
–  One-way pipeline (one process starts, one only receives)
–  Can you devise the proper communicator structure?

SPD - MPI Lab hands-on 5

Getting your identity

•  MPI_Comm_rank
–  After the MPI_Init
–  Returns the rank of the current process within a

specified communicator
–  For now let’s just use ranks related to

MPI_COMM_WORLD
–  Example:

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

SPD - MPI Lab hands-on 6

Writing “structured” MPI

•  We’ll never stress this enough
–  Aim at separation of concern : avoid chaotically

mixing up MPI primitives and sequential code
–  When possible, write a separate function/class

for each type of process in your program
•  Parametric wrt to sequential program parameters and

arguments, AND wrt parallel environment
•  E.g. Operates in a give communicator with known

assumptions
•  Global initialization done by all processes, local

initialization may be done locally (e.g. build a worker-
specific communicator inside the farm implementation)

–  Sometimes it may be possible to write MPI code
which is generic and may be reused à try to
decouple these parts into separate functions

SPD - MPI Lab hands-on 7

Exercise 2

•  Build datatypes for
–  a square matrix of arbitrary element types and

constant size 120*120
–  a column of the matrix
–  a row of the matrix
–  a group of 3 columns of the matrix
–  the upward and downward diagonals of the matrix

•  Perform a test of the datatypes within the code
of exercise 1
–  Initialize the matrix in a known way, perform

computation on the part that you pass along (e.g.
multiply or increment its elements) and check the
result you receive back

SPD - MPI Lab hands-on 8

Remember

•  MPI_TYPE_COMMIT(datatype)
–  Mandatory to enables a newly defined datatype

for use in all other MPI primitives
–  Consolidates datatype definition, making it

permanent
–  May compile internal information needed to the

MPI library runtime
•  e.g. : optimized routines for data packing & unpacking

•  MPI_TYPE_FREE(datatype)
–  Free library memory used by a datatype that is

no longer needed

SPD - MPI Lab hands-on 9

Exercise 3

•  Define a datatype for a square matrix with
parametric size
–  Define a datatype for its lower triagular matrix
–  Define one for its upper triangular.

•  Test the them within the code of exercise 1
Ai,j i,j in 1.. n Ai,j i≥j Ai,j i≤j

SPD - MPI Lab hands-on 10

Exercise 3 (II)

•  In the two-process program
–  initialize randomly a square matrix
–  send the lower triangular and
–  receive it back as upper triangular in the same buffer.

•  Is the result a symmetric matrix?
–  How do you need to modify one of the two triangular

datatypes in order to achieve that?

•  In the end we
want Ai,j = Bj,i

SPD - MPI Lab hands-on 11

a

b

a

b

Exercis e 4

•  How do you implement an asynchronous
communication with given asincrony?
–  Implement a communication with asynchrony 1
–  Implement a communication with asynchrony K

•  Assigned asynchrony of degree K:
asynchronous communication (sender does not
block) which becomes synchronous if more
than K messages are still pending.

•  Receiver can skip at most K receives before
sender blocks

•  Can you rely on MPI buffering?
•  How would you implement a fixed size buffer?

SPD - MPI Standard Use and Implementation 12

