
Scheduling

…from CPUs to Clusters to Grids…

1 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Outline

2 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

•  Terminology
•  CPU Scheduling
•  Real-time Scheduling
•  Cluster Scheduling
•  Grid Scheduling
•  Cloud Scheduling

General

•  Scheduling refers to allocate limited resources
to activities over time
–  assigning a resource and a start time to a task
–  A related term is mapping that assigns a resource to

a task but not the start time
•  Activities:

–  executables
–  steps of a project
–  operations
–  lectures

•  Resource:
–  processors
–  workers
–  machines
–  rooms

3 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Terminology

arrival time r

start time s end time f

(absolute) deadline d

computation time C

(relative) deadline D

•  Lateness L = f – d (can be negative)
•  Tardiness E = max(0, L)
•  Laxity Lx = D – C
•  Completion time Rt = f – r (a.k.a. response time)

task

4 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

General Problem

Assign a set of tasks to a limited set of resources
and find starting times for each task in such a
way that some constraints are satisfied and

some objective function is minimized.

•  Constraints
•  Temporal (deadlines)
•  Precedence (DAGs)
•  Resource (sharing)

•  Objective functions:
•  Maximum lateness
•  Total tardiness
•  Average response time
•  Average weighted response time
•  Total computation time
•  Number of late tasks
•  Schedulability

5 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Taxonomies

•  Scheduling taxonomy:
–  Online/Offline
–  Local/Global
–  Optimal/Suboptimal
–  Approximate/Heuristic

•  System taxonomy:
–  Real-time
–  General purpose
–  Parallel
–  Distributed
–  Shared
–  Heterogeneous

6 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Basic CPU Scheduling

7 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Basic CPU Scheduling

•  First Come First Served (FCFS)
•  Round Robin (RR)
•  Shortest Job First (SJF)
•  Multilevel Queue (MLQ)

8 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

FCFS

 Process C
 P1 24
 P2 3
 P3 3

•  Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 30 0

•  Simple “first in first out” queue
•  Assign the resource to the first task in queue
•  Long average waiting time
•  Non-preemptive

9 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Example

Suppose that the processes arrive in the order
 P2 , P3 , P1

•  The Gantt chart for the schedule is:

•  Average waiting time: (6 + 0 + 3)/3 = 3

P1 P3 P2

6 3 30 0

10 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

RR

•  Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this
time has elapsed, the process is preempted
and added to the end of the ready queue.

•  If there are n processes in the ready queue and
the time quantum is q, then each process gets
1/n of the CPU time in chunks of at most q time
units at once. No process waits more than (n-1)
q time units.

•  Performance
–  q large ! FIFO
–  q small ! q must be large with respect to context

switch, otherwise overhead is too high.

11 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

SJF

•  Order the tasks in increasing order of
computation time

•  Assign the CPU to the first task in queue
•  Can be preemptive
•  SJF gives minimum average waiting time

12 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

 Process r C
 P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example (Non-Preemptive)

P1 P3 P2

7 3 16 0

P4

8 12

13 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

MLQ

•  A process can move between the various
queues.

•  Multilevel-feedback-queue scheduler
defined by the following parameters:
–  number of queues
–  scheduling algorithms for each queue
–  method used to determine when to upgrade a

process
–  method used to determine when to demote a

process
–  method used to determine which queue a

process will enter when that process needs
service

14 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Real Time Scheduling

15 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Real-Time Scheduling

•  Hard real-time systems – required to
complete a critical task within a guaranteed
amount of time.

•  Soft real-time computing – requires that
critical processes receive priority over less
fortunate ones.

16 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Rate-Monotonic (RM)

•  A set of independent periodic tasks
•  Relative deadline is period
•  Static priority scheduling: the shorter the

period of a task, the higher is its priority
•  The tasks can be scheduled by the rate

monotonic policy if
 C1/P1 + C2/P2 + … + Cn/Pn " n (21/n - 1)
 The upper bound on utilization is ln2 = 0.69

as n approaches infinity.
•  If RM can not find a schedule for a set of

independent periodic tasks, no other static
priority assignment strategy can find a
feasible schedule

17 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Earliest Deadline First (EDF)

•  Dynamic Priority Scheduling

•  The first and the most effectively widely used
dynamic priority-driven scheduling algorithm.

•  Effective for both preemptive and scheduling
periodic and aperiodic tasks.

•  For a set of preemptive periodic, aperiodic,
tasks, EDF is optimal in the sense that EDF will
find a schedule if a schedule is possible for other
algorithms.

•  Scheduling periodic and aperiodic non-
preemptive tasks is NP-hard.

18 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Cluster Scheduling

19 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Execution Alternatives

Time sharing:
•  The local scheduler starts multiple processes per physical CPU

with the goal of increasing resource utilization.
–  multi-tasking

•  The scheduler may also suspend jobs to keep the system load
under control
–  preemption

Space sharing:
•  The job uses the requested resources exclusively; no other job

is allocated to the same set of CPUs.
–  The job has to be queued until sufficient resources are free.

20 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Job Classifications

•  Batch Jobs vs interactive jobs
–  batch jobs are queued until execution
–  interactive jobs need immediate resource allocation

•  Parallel vs. sequential jobs
–  a job requires several processing nodes in parallel

•  the majority of HPC installations are used to run batch jobs in
space-sharing mode!
–  a job is not influenced by other co-allocated jobs
–  the assigned processors, node memory, caches etc. are

exclusively available for a single job.
–  overhead for context switches is minimized
–  important aspects for parallel applications

21 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

FCFS

•  Well known and very simple: First-Come First-Serve
•  Jobs are started in order of submission
•  Ad-hoc scheduling when resources become free again

–  no advance scheduling

•  Advantage:
–  simple to implement
–  easy to understand and fair for the users

(job queue represents execution order)
–  does not require a priori knowledge about job lengths

•  Problems:
–  performance can extremely degrade; overall utilization of a

machine can suffer if highly parallel jobs occur, that is, if a
significant share of nodes is requested for a single job.

22 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

FCFS Schedule

Resources
Procssing Nodes

Time

Scheduler

Schedule

tim
e

Job-Queue

Compute
Resource

Queue

1.

2.

3.

4…

23 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Backfilling

•  Improvement over FCFS
•  A job can be started before an earlier submitted job if it does not

delay the first job in the queue
–  may still cause delay of other jobs further down the queue

•  Some fairness is still maintained
•  Advantage:

–  utilization is improved

•  Information about the job execution length is needed
–  sometimes difficult to provide
–  user estimation not necessarily accurate
–  Jobs are usually terminated after exceeding its allocated execution

time;
–  otherwise users may deliberately underestimate the job length to get

an earlier job start time

24 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Backfilling Schedule

•  Job 3 is started before Job 2 as it does not delay it

Resources
Procssing Nodes

Time

Scheduler

Schedule

tim
e

Job-Queue

Compute
Resource

Queue

1.

2.

3.

25 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

However, if a job finishes earlier than expected, the backfilling
causes delays that otherwise would not occur

–  need for accurate job length information (difficult to obtain)

Resources
Procssing Nodes

Time

Job finishes earlier!

Scheduler

Schedule

tim
e

Job-Queue

Compute
Resource

Queue

1.

2.

3.

4…

26 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Grid Scheduling

27 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Grid Scheduling

Scheduler

Schedule

tim
e

Job-Queue

Machine 1

Scheduler

Schedule

tim
e

Job-Queue

Machine 2

Scheduler

Schedule

tim
e

Job-Queue

Machine 3

Grid-Scheduler Grid User

28 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Different Level of Scheduling

•  Resource-level scheduler
–  low-level scheduler, local scheduler, local resource manager
–  scheduler close to the resource, controlling a supercomputer,

cluster, or network of workstations, on the same local area
network

–  Examples: Open PBS, PBS Pro, LSF, SGE

•  Enterprise-level scheduler
–  Scheduling across multiple local schedulers belonging to the

same organization
–  Examples: PBS Pro peer scheduling, LSF Multicluster

•  Grid-level scheduler
–  also known as super-scheduler, broker, community scheduler
–  Discovers resources that can meet a job’s requirements
–  Schedules across lower level schedulers

29 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Activities of a Grid Scheduler

30 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Grid Scheduling

•  A Grid scheduler allows the user to specify the
required resources and environment of the job
without having to indicate the exact location of
the resources
–  A Grid scheduler answers the question: to which local

resource manger(s) should this job be submitted?

•  Answering this question is hard:
–  resources may dynamically join and leave a

computational grid
–  not all currently unused resources are available to

grid jobs:
•  resource owner policies such as “maximum number of grid

jobs allowed”
–  it is hard to predict how long jobs will wait in a queue

31 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Select a Resource for Execution
•  Most systems do not provide advance information about

future job execution
–  user information not accurate as mentioned before
–  new jobs arrive that may surpass current queue entries due to

higher priority

•  Grid scheduler might consider current queue situation,
however this does not give reliable information for future
executions:
–  A job may wait long in a short queue while it would have been

executed earlier on another system.

•  Available information:
–  Grid information service gives the state of the resources and

possibly authorization information
–  Prediction heuristics: estimate job’s wait time for a given resource,

based on the current state and the job’s requirements.

32 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Selection Criteria

•  Distribute jobs in order to balance load across resources
–  not suitable for large scale grids with different providers

•  Data affinity: run job on the resource where data is located
•  Use heuristics to estimate job execution time.
•  Best-fit: select the set of resources with the smallest capabilities

and capacities that can meet job’s requirements

33 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Co-allocation

•  It is often requested that several resources are used for a single
job.
–  that is, a scheduler has to assure that all resources are available when

needed.
•  in parallel (e.g. visualization and processing)
•  with time dependencies (e.g. a workflow)

•  The task is especially difficult if the resources belong to different
administrative domains.
–  The actual allocation time must be known for co-allocation
–  or the different local resource management systems must synchronize

each other (wait for availability of all resources)

•  Co-allocation and other applications require a priori information
about the precise resource availability

•  With the concept of advanced reservation, the resource provider
guarantees a specified resource allocation.
–  includes a two- or three-phase commit for agreeing on the

reservation

34 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Example Multi-Site Job Execution

Scheduler

Schedule

tim
e

Job-Queue

Machine
2

Scheduler

Schedule

tim
e

Job-Queue

Machine
3

!  A job uses several resources at different sites in parallel.
"  Network communication is an issue.

Scheduler

Schedule

tim
e

Job-Queue

Machine
1

Grid-Scheduler

Multi-Side Job

35 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Available Information from the Local
Schedulers

•  Decision making is difficult for the Grid scheduler
–  limited information about local schedulers is available
–  available information may not be reliable

•  Possible information:
–  queue length, running jobs
–  detailed information about the queued jobs

•  execution length, process requirements,…

–  tentative schedule about future job executions

•  These information are often technically not provided by the
local scheduler

•  In addition, these information may be subject to privacy
concerns!

36 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Applications taxonomy

•  Bag of tasks – Independent tasks

•  Workflows – dependent tasks
–  Generally Directed Acyclic Graphs (DAGs)

37 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Min-Min Heuristic

•  For each task determine its minimum
completion time over all machines

•  Over all tasks find the minimum completion
time

•  Assign the task to the machine that gives this
completion time

•  Iterate till all the tasks are scheduled

38 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Example of Min-Min

T1 T2 T3

M1 140 20 60

M2 100 100 70

Stage 1: Stage 2: Stage 3:
T1-M2 = 100 T1-M2 = 100 T1-M1 = 160
T2-M1 = 20 T3-M2 = 70
T3-M1 = 60
Assign T2 to M1 Assign T3 to M2 Assign T1 to M1

T1 T3

M1 160 80

M2 100 70

T1

M1 160

M2 170

T2

T3

T1 M1

M2

20

70

160

39 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Max-Min Heuristic

•  For each task determine its minimum
completion time over all machines

•  Over all tasks find the maximum completion
time

•  Assign the task to the machine that gives this
completion time

•  Iterate till all the tasks are scheduled

40 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Example of Max-Min

T1 T2 T3

M1 140 20 60

M2 100 100 70

Stage 1: Stage 2: Stage 3:
T1-M2 = 100 T2-M1 = 20 T2-M1 = 80
T2-M1 = 20 T3-M1 = 60
T3-M1 = 60
Assign T1 to M2 Assign T3 to M1 Assign T2 to M1

T2 T3

M1 20 60

M2 200 170

T2

M1 80

M2 200

T3

T1

T2 M1

M2

60

100

80

41 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Sufferage Heuristic

•  For each task determine the difference
between its minimum and second minimum
completion time over all machines
(sufferage)

•  Over all tasks find the maximum sufferage
•  Assign the task to the machine that gives this

sufferage
•  Iterate till all the tasks are scheduled

42 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Example of Sufferage

T1 T2 T3

M1 140 20 60

M2 100 100 70

Stage 1: Stage 2: Stage 3:
T1 = 40 T1 = 60 T3 = 90
T2 = 80 T3 = 10
T3 = 10
Assign T2 to M1 Assign T1 to M2 Assign T3 to M1

T1 T3

M1 160 80

M2 100 70

T3

M1 80

M2 170

T2

T1

T3 M1

M2

20

100

80

43 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Scheduling Task Graphs

•  Task Graphs have dependencies between the tasks
in the Application

•  Scheduling methods for bag of task applications
cannot be directly applied

44 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Guided Random Search Based

•  Genetic Algorithms
–  A chromosome is an ordering of tasks
–  A rule is required to convert it to a schedule

•  Simulated Annealing
•  Local Search Techniques, taboo, etc…

45 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

List Scheduling Heuristics

•  An ordered list of tasks is constructed by assigning
priority to each task

•  Tasks are selected on priority order and scheduled
in order to minimize a predefined cost function

•  Tasks have to be in a topologically sorted order

46 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Level by Level Scheduling

•  Partition a DAG into multiple levels such that
task in each level are independent.

•  Apply Min-Min, Max-Min or other heuristics to
tasks at each level.

47 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Clustering Heuristics

•  Clustering heuristics cluster tasks together
•  Tasks in the same cluster are scheduled on

the same processor

T1

T2
T3

T4

T5

T6

T7

T1

T2
T3

T4

T5

T6

T7

T1

T2
T3

T4

T5

T6

T7

T1

T2

T5

T3
T4
T6

T 7

Time

P0 P1

48 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Scheduling Objectives in the Grid

!  In contrast to local computing, there is no general scheduling
objective anymore
"  minimizing response time
"  minimizing cost
"  tradeoff between quality, cost, response-time etc.

!  Cost and different service quality come into play
"  the user will introduce individual objectives
"  the Grid can be seen as a market where resource are concurring

alternatives
!  Similarly, the resource provider has individual scheduling policies
!  Problem:

"  the different policies and objectives must be integrated in the
scheduling process

"  different objectives require different scheduling strategies
"  part of the policies may not be suitable for public exposition

(e.g. different pricing or quality for certain user groups)

49 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

User Objective

Local computing typically has:
–  A given scheduling objective as minimization of response time
–  Use of batch queuing strategies
–  Simple scheduling algorithms: FCFS, Backfilling

Grid Computing requires:
–  Individual scheduling objective

•  better resources
•  faster execution
•  cheaper execution

–  More complex objective functions apply for individual Grid jobs!

50 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Provider/Owner Objective

Local computing typically has:
–  Single scheduling objective for the whole system:
–  e.g. minimization of average weighted response time

or high utilization/job throughput

In Grid Computing:
–  Individual policies must be considered:

•  access policy,
•  priority policy,
•  accounting policy, and other

–  More complex objective functions apply for individual resource
allocations!

–  User and owner policies/objectives may be subject to privacy
considerations!

51 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Economic Scheduling

•  Market-oriented approaches are a suitable way to implement
the interaction of different scheduling layers
–  agents in the Grid market can implement different policies and

strategies
–  negotiations and agreements link the different strategies together
–  participating sites stay autonomous

•  Needs for suitable scheduling algorithms and strategies for
creating and selecting offers
–  need for creating the Pareto-Optimal scheduling solutions

•  Performance relies highly on the available information
–  negotiation can be hard task if many potential providers are

available.

52 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Economic Scheduling (2)

! Several possibilities for market models:
! auctions of resources/services
! auctions of jobs

"  Offer-request mechanisms support:
! inclusion of different cost models, price determination
! individual objective/utility functions for optimization goals

"  Market-oriented algorithms are considered:
! robust
! flexible in case of errors
! simple to adapt
! markets can have unforeseeable dynamics

53 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Offer Creation

 R1 R2 R3 R4 R5 R6 R7 R8

t
Job

t0
t1

t2
t3

t4

t0

54 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Evaluate Offers

•  Evaluation with utility functions

#  A utility function is a mathematical representation of a
user’s preference

#  The utility function may be complex and
#  contain several different criteria

#  Example using response time (or delay time) and price:

55 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

