
Simple Scenario
Suppose you’re building a big web cache that holds copies of
web pages your users have downloaded:

How do you allocate pages/images to the cache servers?

Static Partitioning
• Items A–C go to this server/bucket/bin, D–Fd-f go to that

server/bucket/bin, ...
• Requires planning

• If you used the server name, what if “cowpatties.com”
had 1’000’000 pages, but “zebras.com” had only 10?

• This may cause load imbalance
• Could fill up the bins as they arrive

• Requires tracking the location of every object at the front-
end.

• May be reasonable design for huge objects

Conventional Hashing
• Recall that a hash function maps elements of a (usually

super-big) universe U, like URLs, to “buckets”, such as 32-bit
values

• A “good” hash function is easy to remember and evaluate.
• For all practical purposes, a “good” hash function behaves

like a totally random function.
• Given a “good” hash function, we can set

bucket = hash(x) mod num_buckets

• Now the server we use is a deterministic function of the item

• e.g., sha1(URL) → 160 bit ID % 20 → a server ID

Conventional Hashing
• Recall that a hash function maps elements of a (usually

super-big) universe U, like URLs, to “buckets”, such as 32-bit
values

• A “good” hash function is easy to remember and evaluate.
• For all practical purposes, a “good” hash function behaves

like a totally random function.
• Given a “good” hash function, we can set

bucket = hash(x) mod num_buckets

• Now the server we use is a deterministic function of the item

• e.g., sha1(URL) → 160 bit ID % 20 → a server ID
• But what happens if we want to add or remove a server?

Consistent Hashing
• The key idea is: in addition to hashing the names of all objects

(URLs) x, like before, we also hash the names of all the
servers s. The object and server names need to be hashed to
the same range, such as 32-bit values.

• Given an object x that hashes to the bucket h(x), we scan
buckets to the right of h(x) until we find a bucket h(s) to which
the name of some server s hashes.

• We wrap around the array, if necessary.

Consistent Hashing

• Hash of object = closest clockwise bucket (“successor”)
• N servers partition the circle into N segments, with each server

responsible for all objects in one of these segments.

Properties

• Balance: assuming reasonable hash functions, by symmetry,
the expected load on each of the N servers is exactly a 1/N
fraction of the objects.

• Smoothness: suppose we add a new server s — which
objects have to move? Only the objects stored at s. When a
server is added, the expected number of items that move to
the newly added server is (#items)/(1+#servers).

• Complexity: to implement Lookup and Insert we can use a
hash table, a heap, a balanced binary search tree, with
O(log(n)) lookup and insert implementations.

• To insert an item x:

(a) Find the successor of hi(x) in the BST (if it has no
successor in the BST then return the machine with the
smallest hm value)

(b) Store x in the returned machine.
• To delete an item x:

(a) Find the successor of hi(x) in the BST (if it has no
successor in the BST then return the machine with the
smallest hm value)
(b) Delete x in the returned machine.

Implementation

• BST: a Binary Search Tree whose keys are the values
assigned to the machines.

• hi: the function hashing items to the interval [0, 1].
• hm: the function hashing machines to the interval [0, 1].

• To insert a new machine Y:
There may be some existing items that should be stored in the new machine
Y, but these items now are all stored in the successor of hm(Y) (or the
machine with the smallest hm if hm(Y) is the largest value).

(a) Find the successor of hm(Y) in the BST (if it has no successor in the
BST then return the machine with the smallest hm value)
(b) Move all items whose hi value is less than hm(Y) to the newly inserted
machine Y .

• To delete an existing machine Y:

(a) Find the successor of hm(Y) in the BST (if it has no successor in the
BST then return the machine with the smallest hm value)
(b) Move all items in Y to the returned machine.

Implementation

• BST: a Binary Search Tree whose keys are the values
assigned to the machines.

• hi: the function hashing items to the interval [0, 1].
• hm: the function hashing machines to the interval [0, 1].

Virtual Nodes

• While the expected load of each server is a 1/N fraction of the
N objects, the actual load of each server will vary.
• If you pick N random points on the circle, you’re very

unlikely to get a perfect partition of the circle into equal-
sized segments.

• To reduce imbalance, systems often represent each physical
node as k different buckets, sometimes called “virtual
nodes” (but really, it’s just multiple buckets).
• For example, we can hash a server with K different hash

functions on the same co-domain.
• Objects are assigned as before.

Virtual Nodes

• With N servers and K virtual nodes per server, by symmetry, each virtual
node still expects to get a 1/(KN) fraction of the objects.

• This replication increases the number of keys stored in the balanced
binary search by a factor of K, but it reduces the variance in load across
servers significantly.

• Choosing K ≈ log2(N) is large enough to obtain reasonably balanced
loads.

Use of consistent hashing

• The implementation of consistent hashing first appeared in a
research paper in 1997 (STOC).

• In 1999, the trailer “Star Wars: The Phantom Menace” release
put apple.com servers offline, while akamai.com, implementing
consistent hashing, was able to serve a unauthorised copy.

• Consistent hashing is re-purposed in 2001 to address
technical challenges that arise in peer-to-peer (P2P) networks
(e.g., Chord and BitTorrent).

• In 2006 Amazon implements its internal Dynamo system using
consistent hashing.

http://apple.com
http://akamai.com

