
DATA DISTRIBUTION 
[DDIA, Ch 5-6, DSCD, Ch 18]



Why more machines?
• Scalability  

• Deal with more data, higher read/write loads 

• Scaling up vs scaling out 

• scaling up = vertical scaling (shared-memory or shared-disk architectures) 

• scaling out = horizontal scaling (shared-nothing architectures) 

• Performance  

• If you have users around the world, you might want to have have servers at 
various locations worldwide, so that users can be served from a datacenter that is 
geographically close to them.  

• Fault tolerance/high availability  

• Use multiple machines to give you redundancy: when one or more fail, another 
one can take over



Scalability
• The ability of a system, network, or process, to handle a growing amount of work in a 

capable manner or its ability to be enlarged to accommodate that growth. 

• We can measure growth in almost any terms. But there are three particularly interesting 
things to look at: 

• Size scalability: adding more nodes should make the system linearly faster; growing 
the dataset should not increase latency 

• Geographic scalability: it should be possible to use multiple data centers to reduce 
the time it takes to respond to user queries, while dealing with cross-data center 
latency in some sensible manner. 

• Administrative scalability: adding more nodes should not increase the administrative 
costs of the system (e.g. the administrators-to-machines ratio). 

• A scalable system is one that continues to meet the needs of its users as scale 
increases. There are two particularly relevant aspects - performance and availability - 
which can be measured in various ways.



Performance (and latency)
• Characterization of the amount of useful work accomplished by a computer 

system compared to the time and resources used. 

• Depending on the context, this may involve achieving one or more of the 
following: 

•  Short response time/low latency for a given piece of work 

•  High throughput (rate of processing work) 

•  Low utilization of computing resource(s) 

• Latency: the state of being latent; delay, a period between the initiation of 
something and the occurrence. 

• Latent: From Latin latens, latentis, present participle of lateo ("lie hidden"). 
Existing or present but concealed or inactive.



Availability (and fault tolerance)
• the proportion of time a system is in a functioning condition. If a user cannot 

access the system, it is said to be unavailable. 

• In formula, availability = uptime / (uptime + downtime) 

• from a technical perspective, availability is mostly about being fault tolerant. 

• Fault tolerance is the ability of a system to behave in a well-defined manner 
once faults occur

Availability Nickname Downtime per year
90% one nine more than a month
99% two nines less than 4 days

99.9% three nines less than 9 hours
99.99% four nines less than 1 hour
99999% five nines about 5 minutes

99.9999% six nines about 31 seconds



Examples
• One single server 
• On average, one crash per week  

• Mean Time Between Failures (MTBF) 10800 mins 
• Two minutes to reboot 

• Mean Time To Restart (MTTR) 2 mins

• 10 servers 
• MTBF, MTTR as before 
• All servers needed to perform operations

A = 10080/10802 = 0.9998

pf = 2/10802 
A = (1-pf)10= 0.998



Replication & Partitioning



System Model
• The data in our system consist of a collection of items that we shall 

call objects.  

• An ‘object’ could be a file, say, or a Java object.  

• Each logical object is implemented by a collection of physical 
copies called replicas.  

• The replicas are physical objects, each stored at a single computer. 

•  The ‘replicas’ of a given object are not necessarily identical, at 
least not at any particular point in time. Some replicas may have 
received updates that others have not received.  

• We assume an asynchronous system in which processes may fail 
only by crashing 



Basic Replication Architecture



General Request Phases
• Request: The front end issues the request to one or more replica managers:  

• either the front end communicates with a single replica manager, which in turn 
communicates with other replica managers;  

• or the front end multicasts the request to the replica managers.  

• Coordination: The replica managers coordinate in preparation for executing the 
request consistently. They agree, if necessary at this stage, on whether the request is 
to be applied (it might not be applied at all if failures occur at this stage). They also 
decide on the ordering of this request relative to others (mostly FIFO). 

• Execution: The replica managers execute the request 

• Perhaps tentatively: that is, in such a way that they can undo its effects later.  

• Agreement: The replica managers reach consensus on the effect of the request – if 
any – that will be committed. 

• Response: One or more replica managers responds to the front end.



Correctness criteria
• Intuitively, a service based on replication is correct  

• if it keeps responding despite failures and 

• if clients cannot tell the difference between the service they 
obtain from an implementation with replicated data and one 
provided by a single correct replica manager  

• A single server managing a single copy of the objects would 
serialize the operations of the clients.  

• We need some consistency criteria capturing the requirements 
concerning the ordering (virtual interleaving) in which the requests 
are processed by replica managers. 

• There are several consistency models



Message from Amazon
“Whether or not 
inconsistencies are 
acceptable depends on 
the client application. In 
all cases the developer 
must be aware that 
consistency guarantees 
are provided by the 
storage systems and 
must be taken into 
account when 
developing applications.”

Amazon vice-president and Chief 
Scientific Officer 

W. Vogels. Eventual consistent. 
Comm. of the ACM, 52(1):40–44, 
2009

Se non lo sapevi, sallo!!!!



Consistency
• Consistency model – A contract between a distributed data store and a set of 

processes, which specifies what the results of read/write operations are in the 
presence of concurrency 

• Strong consistency models 
• Strict consistency 
• Linearizability 
• Sequential consistency 

• Weak consistency models 
• Eventual consistency 
• Client-centric consistency models 

• Read-after-read (monotonic read) 
• Read-after-write (read your writes) 

• Causal consistency



Strict Consistency
Definition

• A read operation must return the result of the latest 
write operation which occurred on the data item 

Implementation: 
• Only possible with a global, perfectly synchronized 

clock 
• Only possible if all writes instantaneously visible to 

all 
• It is the model of uniprocessor systems!



Linearizability
Definition
An execution E is linearizable provided that there exists a 
sequence (linearization) H such that: 

• H contains exactly the same operations that occur in E, each 
paired with the return value received in E 

• H is a legal history of the sequential data type that is 
replicated 

• the total order of operations in H is compatible with the real-
time partial order < 
• o1 < o2 means that the duration of operation o1 (from 

invocation till it returns) occurs entirely before the duration 
of operation o2



Example
w(x, 5)C1

C2

r(y) → 0

r(x) → 5 w(y, 6)

P1

P2

Are the following sequences possible linearizations? 
w(x, 5)    r(x) → 5    w(y, 6)    r(y) → 0 
w(x, 5)    r(x) →5    r(y) → 0    w(y, 6) 

Is the above execution linearizable?

NO 
NO 
NO



Example
w(x, 5)C1

C2

r(y) → 0

r(x) → 5 w(y, 6)

P1

P2

Are the following sequences possible linearizations? 
w(x, 5)    r(x) → 5    w(y, 6)    r(y) → 0 
w(x, 5)    r(x) →5    r(y) → 0    w(y, 6) 

Is the above execution linearizable?

NO 
YES 
YES



Example
w(x, 5)C1

C2

r(y) → 6

r(x) → 5 w(y, 6)

P1

P2

Are the following sequences possible linearizations? 
w(x, 5)    r(x) → 5    w(y, 6)    r(y) → 6 
w(x, 5)    r(x) →5    r(y) → 6    w(y, 6) 

Is the above execution linearizable?

YES 
NO 
YES



Sequential Consistency
Definition
An execution E is sequential consistent provided that there 
exists a sequence H such that 
• H contains exactly the same operations that occur in E, each 

paired with the return value received in E 
• H is a legal history of the sequential data type that is 

replicated 
• The total order of operations in H is compatible with the 

client partial order < 
• o1 < o2 means that the o1 and o2 occur at the same client 

and that o1 returns before o2 is invoked



Example
w(x, 5)C1

C2

r(x) → 5

P1

P2

w(y, 6)

Is the execution above sequentially consistent? YES

r(y) → 0



Example
w(x, 0)C1

C2

r(x) → 5

P1

P2

w(y, 6)

Is the execution above sequentially consistent? NO

r(y) → 0



Example
w(x, 5)C1

C2

r(x) → 0

P1

P2

w(y, 6)

Is the execution above sequentially consistent? NO

r(y) → 0



Example
w(x, 5)C1

C2

r(x) → 5

P1

P2

w(y, 6)

Is the execution above sequentially consistent? YES

r(y) → 0



Issues
• It is easy to provide strong consistency through appropriate hardware and/or 

software mechanisms  
• But these are typically found to incur considerable penalties, in latency, 

availability after faults, etc.  
• Strong consistency often implies that message should arrive in the same 

order  
• Can be implemented through a sequencer replica 

• Latency: the sequencer replica becomes a bottleneck 
• Availability: a new sequencer must be elected after a failure 

• Weak consistency relaxes the precise details of which reorderings are allowed  
• Within the activity of a client  
• By whether there are any constraints at all on the information provided to 

different clients 



Passive Replication

Primary Server

Backup Servers

Clients
• Clients communicate with primary server 

• WRITES are atomically forwarded from 
primary server to backup servers 

• READS are replied by the primary server 

• Also known as Primary Copy (or Backup) 
Replication 

• Specifications: 

• At most one replica can be the 
primary server at any time. 

• Each client maintains a variable L 
(leader) that specifies the replica to 
which it will send requests. Requests 
are queued at the primary server.  

• Backup servers ignore client 
requests. 



Passive Replication Protocol



Request Phases
• Request: The front end issues the request, containing a unique 

identifier, to the primary replica manager.  

• Coordination: The primary takes each request atomically, in the order 
in which it receives it. It checks the unique identifier, in case it has 
already executed the request, and if so it simply resends the response.  

• Execution: The primary executes the request and stores the response.  

• Agreement: If the request is an update, then the primary sends the 
updated state, the response and the unique identifier to all the 
backups. The backups send an acknowledgement.  

• Response: The primary responds to the front end, which hands the 
response back to the client. 



Synchronous vs Asynchronous

• The advantage of synchronous replication is that the follower is guaranteed to have an up-
to-date copy of the data that is consistent with the leader.  

• If the leader suddenly fails, we can be sure that the data is still available on the follower.  

• The disadvantage is that if the synchronous follower doesn’t respond (because it has 
crashed, or there is a network fault, or for any other reason), the write cannot be processed.  

• The leader must block all writes and wait until the synchronous replica is available 
again. 



Primary Failure
• When the primary replica fails, a failover procedure is required (can be 

manual or automatic) 

1. Determining that the leader has failed.  

2. Choosing a new leader.  

3. Reconfiguring the system to use the new leader.  

• Issues: 
• If asynchronous replication is used, the new leader may not have 

received all writes from the old leader before it failed.  
• Discarding writes is especially dangerous if other storage systems 

outside of the database need to be coordinated with the database 
contents.  

• It could happen that two nodes both believe that they are the leader 



Replication Log
• The primary replica stores all changes locally, in a 

replication log 

• Applying the replication allows us to perform the correct 
update on any object (given the correct log sequence 
number) 

• This is used so set up new backup replicas, given a 
snapshot of the objects, the corresponding log 
sequence number, and the primary's replication log. 

• The same holds for catch-up recovery of failing backup 
replicas.



Implementing Replication Log
• Statement Log: the primary logs every write request 

(statement) that it executes, and sends that statement log 
to its followers. 

• Potential issues: non-deterministic values (rand()), 
concurrency issues, side effects on other components 

• Write-Ahead Log: similarly to LSM trees, the primary 
append every write requests in the log, and sends the 
whole sequence of write requests 

• Potential issues: the log describes the data on a very 
low level: a WAL contains details of which bytes were 
changed in which disk block. What if we update 
something?



Simple Protocol
• System model: 

• point-to-point communication 
• no communication failures → no network partitions 
• upper bound on message delivery time → synchronous 

communications 
• FIFO channels 
• at most one server crashes 

• Two servers: 
• The primary p1 
• The backup p2 

• Variables: 
• At server pi, primary = true if pi acts as the current primary 
• At clients, primary is equal to the identifier of the current primary



Simple Protocol



Simple Protocol



Simple Protocol



Active Replication

• a.k.a. multi-leader replication 

• Clients communicate with several/all 
servers 

• Every server handles any operation 
and sends the response 

• WRITES must be applied in the same 
order (total order broadcast) 

• One way to implement totally‐ordered 
multicast is to use logical clocks



• When does it make sense to use active replication? 

• multi-datacenter operations (increased performance 
and fault tolerance w.r.t. passive replication) 

• Clients with offline operations 

• Each client device is a 'datacenter' 

• Collaborative editing 

• Each copy is a 'datacenter'

Use Cases



Request Phases
• Request: The front end attaches a unique identifier to the request and 

multicasts it to the group of replica managers, using a totally ordered, reliable 
multicast primitive. 

• Coordination: The group communication system delivers the request to 
every correct replica manager in the same (total) order.   

• Execution: Every replica manager executes the request. Since they are state 
machines and since requests are delivered in the same total order, correct 
replica managers all process the request identically. The response contains 
the client’s unique request identifier.  

• Agreement: No agreement phase is needed, because of the multicast 
delivery semantics.   

• Response: Each replica manager sends its response to the front end. The 
number of replies that the front end collects depends upon the failure 
assumptions and the multicast algorithm. 



Quorum Protocols
• Proposed by Gifford in 1979 

• Quorum-based protocols guarantee that 
each operation is carried out in such a way 
that a majority vote (a quorum) is established. 

• Write quorum W: the number of replicas that 
need to acknowledge the receipt of the 
update to complete the update 

• Read quorum R: the number of replicas that 
are contacted when a data object is 
accessed through a read operation



• Formally, a quorum system S = {S1, …, SN} is a 
collection of quorum sets Si ⊆U such that two 
quorum sets have at least an element in common 

• For replication, we consider two quorum sets, a read 
quorum R and a write quorum W 

• Rules: 
1. Any read quorum must overlap with any write 

quorum 
2. Any two write quorums must overlap 

• U is the set of replicas, i.e., |U| = N

Quorum Systems



Quorum Examples



• Read rule: |R| + |W| > N ⇒ read and write quorums overlap 

• Write rule: 2 |W| > N ⇒ two write quorums overlap 

• The quorum sizes determine the costs for read and write operations 
• Minimum quorum sizes for are 

• Write quorums requires majority 
• Read quorum requires at least half of the nodes 

• ROWA (R,W,N) = (N = N, R = 1, W = N) 
• Amazon’s Dynamo (N = 3, R = 2, W = 2) 
• Linkedin's Voldemort (N = 2 or 3, R = 1, W = 1 default) 
• Apache's Cassandra (N = 3, R = 1, W = 1 default)

Quorum Examples

min |W | =

�
N
2

�
+ 1 min |R | =

�
N
2

�



The biggest problem with active replication is that write 
conflicts can occur, which means that conflict resolution is 
required.

Write Conflicts



• Avoid them by 'normally' using a single leader, and change leader for exceptional 
conditions only. 

• Converge towards a consistent state 

• Give each write a unique ID, pick the write with the highest ID as the winner, and 
throw away the other writes. If a timestamp is used, this technique is known as last 
write wins (LWW). Although this technique is popular, it is dangerously prone to data 
loss [30]. 

• Give each replica a unique ID, and let writes that originated at a higher-numbered 
replica always take precedence over writes that originated at a lower-numbered 
replica. This also implies data loss.  

• Record the conflict in an explicit data structure that preserves all information, and 
write application code which resolves the conflict at some later time (perhaps by 
prompting the user).  

• Use custom logic 

• Use automatic logic (e.g., conflict-free replicated data types, CRDTs)

Handling Write Conflicts



Unfortunately, if an application reads from asynchronous 
followers, it may see outdated information if the follower 
has fallen behind. This leads to apparent inconsistencies 
in the database: if you run the same query on the leader 
and a follower at the same time, you may get different 
results, because not all writes have been reflected in the 
follower. This inconsistency is just a temporary state — if 
you stop writing to the database and wait a while, the 
followers will eventually catch up and become consistent 
with the leader. For that reason, this effect is known as 
eventual consistency.

Replication Lag



if the user views the data shortly after making a write, the 
new data may have not yet reached the replica. 

Read Your Writes Consistency



Client-centric Consistency Models
• Each WRITE operation is assigned a unique identifier 

• Done by the server where the operation is requested 

• For each client c, we keep track of: 

• Read set WSR : contains write operations relevant to 
the read operations performed by c 

• Write set WSW : contains write operations relevant to 
the write operations performed by c 

• For each server, we keep track of: 

• Write set WS : contains the write operations executed 
so far



Read-Your-Writes Implementation
• To perform a READ: 

• A client  

• sends READ and its WSW to a server S.  

• The server S: 

• Checks if the WSW ⊆WS, i.e., all the WRITES seen from 
the client have been applied by the server 

• If not, asks the other servers the missing WRITES 

• Applies the missing WRITES locally and update its WS 

• Return the requested value to the client



Read-Your-Write Implementation

• To perform a WRITE: 

• A client  

• sends WRITE and adds it to its WSW 

• The server S: 

• Perform the WRITE 

• adds it to its WS



if a user makes several reads from different replicas, it’s 
possible for a user to see things moving backwards in time.

Monotonic Reads Consistency



Monotonic-Read Implementation
• To perform a READ: 

• A client  

• sends READ and its WSR to a server S.  

• The server S: 

• Checks if the WSR ⊆WS, i.e., all the WRITES seen from the client 
have been applied by the server 

• If not, asks the other servers the missing WRITES 

• Applies the missing WRITES locally and update its WS 

• Return the requested value and WS to the client 

• The client 

• adds WS to its WSR



Monotonic-Read Implementation

• To perform a WRITE: 

• A client  

• sends WRITE 

• The server S: 

• Perform the WRITE 

• adds it to its WS



Writes-Follow-Reads & Monotonic-Writes
• Two additional constraints on the server: 

• When a server S accepts a new WRITE 
W2 at time t, it ensures that 
WriteOrder(W1,W2) is true for any WRITE  
W1 already in DB(S,t).  

• Anti-entropy is performed such that if 
WRITE W2 is propagated from server S1 to 
server S2 at time t then any W1 in DB(S1,t) 
such that WriteOrder(W1,W2) is also 
propagated to S2.



Additional References

• D. Terry et al., Session Guarantees for 
Weakly Consistent Replicated Data, 
https://www.cis.upenn.edu/~bcpierce/
courses/dd/papers/
SessionGuaranteesPDIS.ps 

• D. Terry, Replicated Data Consistency 
Explained Through Baseball, http://
research.microsoft.com/pubs/157411/
ConsistencyAndBaseballReport.pdf 
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