
MCSN - N. Tonellotto - Distributed Enabling Platforms

Basic HADOOP API (1.x or 0.20.x)
• Package org.apache.hadoop.mapreduce
• Class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>

- void setup(Mapper.Context context)
- void cleanup(Mapper.Context context)
- void map(KEYIN key, VALUEIN value, Mapper.Context context)
- output is generated by invoking context.collect(key, value);

• Class Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
- void setup(Reducer.Context context)
- void cleanup(Reducer.Context context)
- void reduce(KEYIN key, Iterable<VALUEIN> values, Reducer.Context context)
- output is generated by invoking context.collect(key, value);

• Class Partitioner<KEY, VALUE>
- abstract int getPartition(KEY key, VALUE value, int numPartitions)

16

http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.html#cleanup(org.apache.hadoop.mapreduce.Mapper.Context)
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.Context.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.html#cleanup(org.apache.hadoop.mapreduce.Mapper.Context)
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.Context.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.html#map(KEYIN,%20VALUEIN,%20org.apache.hadoop.mapreduce.Mapper.Context)
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.Context.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.html#cleanup(org.apache.hadoop.mapreduce.Mapper.Context)
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.Context.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.html#cleanup(org.apache.hadoop.mapreduce.Mapper.Context)
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.Context.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.html#map(KEYIN,%20VALUEIN,%20org.apache.hadoop.mapreduce.Mapper.Context)
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Mapper.Context.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Partitioner.html#getPartition(KEY,%20VALUE,%20int)
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Partitioner.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/mapreduce/Partitioner.html


MCSN - N. Tonellotto - Distributed Enabling Platforms

Basic HADOOP Data Types (1.x or 0.20.x)
• Package org.apache.hadoop.io

17

interface 
Writable

interface
WritableComparable<T>

Defines a de/serialization protocol
Any key or value type in the Hadoop Map-
Reduce framework implements this 
interfaceWritableComparables can be 
compared to each other, typically via 
Comparators
Any type which is to be used as a key 
in the Hadoop Map-Reduce framework 
should implement this interface

IntWritable
LongWritable

Text
Concrete classes for common data types

http://java.sun.com/javase/6/docs/api/java/lang/Comparable.html?is-external=true


MCSN - N. Tonellotto - Distributed Enabling Platforms

Basic HADOOP main (1.x or 0.20.x)
public static void main(String[] args) throws Exception
{

Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");
job.setJarByClass(WordCount.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

job.setMapperClass(NewMapper.class);
job.setReducerClass(NewReducer.class);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);
}

18



MCSN - N. Tonellotto - Distributed Enabling Platforms

HADOOP tricks (1.x or 0.20.x)

19

• Limit as much as possible the memory footprint
• Avoid storing reducer values in local lists if possible
• Use static final objects
• Reuse Writable objects

• A single reducer is a powerful friend
• Object fields are shared among reduce() invocations.



MCSN - N. Tonellotto - Distributed Enabling Platforms

Hadoop Dataflow (I)

20

InputSplit InputSplit InputSplit 

Input File Input File 

InputSplit InputSplit 

RecordReader RecordReader RecordReader RecordReader RecordReader 

Mapper 

Intermediates 

Mapper 

Intermediates 

Mapper 

Intermediates 

Mapper 

Intermediates 

Mapper 

Intermediates 

In
pu

tF
or

m
at

 



MCSN - N. Tonellotto - Distributed Enabling Platforms

HADOOP Data Reading (1.x or 0.20.x)
•Data sets are specified by InputFormats

- Defines input data (e.g., a directory)
- Identifies partitions of the data that form an InputSplit, each of which will be 
assigned to a mapper

- Provide the RecordReader implementation to extract (k, v) records from the 
input source

•Base class implementation is FileInputFormat
- Will read all files out of a specified directory and send them to the mappers
- TextInputFormat – Treats each ‘\n’-terminated line of a file as a value
- KeyValueTextInputFormat – Maps ‘\n’- terminated text lines of “k SEP v”
- SequenceFileInputFormat – Binary file of (k, v) pairs with some add’l 
metadata

- SequenceFileAsTextInputFormat – Same, but maps (k.toString(), v.toString())

21



Computing average income (I)
• FiscalTable 1: (FiscalCode, {Personal Information})

• ABCDEF123: (Alice Rossi; Pisa, Toscana)
• ABCDEF124: (Bebo Verdi; Firenze, Toscana)
• ABCDEF125: (Carlo Bianchi; Genova, Liguria)

• FiscalTable 2: (FiscalCode, {year, income})
• ABCDEF123: (2007, € 70,000), (2006, € 65,000), (2005, € 60,000),...
• ABCDEF124: (2007, € 72,000), (2006, € 70,000), (2005, € 60,000),...
• ABCDEF125: (2007, € 80,000), (2006, € 85,000), (2005, € 75,000),...

• Task: Compute average income in each city in 2007

• Note: Both inputs sorted by FiscalCode

22
taken from: http://research.google.com/

MCSN - N. Tonellotto - Distributed Enabling Platforms

http://now.sprint.com/nownetwork/


Computing average income (II)

23

Mapper 1a
Input: (FiscalCode, Personal Information)

Output: (FiscalCode, City) 

Mapper 1b
Input: (FiscalCode, Annual Income)
Output: (FiscalCode, 2007 Income) 

Reducer 1
Input: (FiscalCode, City, 2007 Income)

Output: (FiscalCode, [City, 2007 Income]) 

Mapper 2
Input: (FiscalCode, [City, 2007 Income])

Output: (City, 2007 Income) 

Reducer 2
Input: (City, 2007 Income, ...)

Output: (City, AVG(2007 Income, ...)) 

taken from: http://research.google.com/

MCSN - N. Tonellotto - Distributed Enabling Platforms

http://now.sprint.com/nownetwork/


Overlaying satellite images (I)
• Stitch Imagery Data for Google Maps (simplified)

• Imagery data from different content providers
• Different formats
• Different coverages
• Different timestamps
• Different resolutions
• Different exposures/tones

• Large amount to data to be processed 
• Goal: produce data to serve a "satellite" view to users 

24
taken from: http://research.google.com/

MCSN - N. Tonellotto - Distributed Enabling Platforms

http://now.sprint.com/nownetwork/


Overlaying satellite images (II)
1. Split the whole territory into "tiles" with fixed location IDs
2. Split each source image according to the tiles it covers

3. For a given tile, stitch contributions from different sources, 
based on its freshness and resolution, or other preference

4. Serve the merged imagery data for each tile, so they can be 
loaded into and served from a image server farm.

25
taken from: http://research.google.com/

MCSN - N. Tonellotto - Distributed Enabling Platforms

http://now.sprint.com/nownetwork/


Overlaying satellite images (III)
map(String key, Image value): 
‣ // key: image file name
‣ // value: image data
‣ Tile whole_image; 
‣ switch (file_type(key)): 

- JPEG: Convert_JPEG(value, whole_image);
- GIF: Convert_GIF(value, whole_image); 
- ...

‣ // split whole_image according to the grid into tiles
‣ List<Tile> tile_images = Split_Image(whole_image);

‣ for (Tile t: tile_images):
• emit(t.getLocationId(), t); 

26
taken from: http://research.google.com/

MCSN - N. Tonellotto - Distributed Enabling Platforms

http://now.sprint.com/nownetwork/


Overlaying satellite images (IV)
reduce(int key, List<Tile> values):
‣ // key: locationId, 
‣ // values: tiles from different sources
‣ // sort values according to resolution and timestamp;
‣Collection.sort(values, ...)
‣ Tile mergedTile; 
‣ for (Tile v: values):
• // overlay pixels in v to mergedTile based on coverage;
• mergedTile.overlay(v);
‣ // Normalize mergedTile to be the serve tile size;
‣mergedTile.normalize();
‣ emit(key, mergedTile));

27
taken from: http://research.google.com/

MCSN - N. Tonellotto - Distributed Enabling Platforms

http://now.sprint.com/nownetwork/


MCSN - N. Tonellotto - Distributed Enabling Platforms

Partitioners
• Balance the key assignments to reducers

• By default, intermediate keys are hashed to reducers
• Partitioner specifies the node to which an intermediate key-

value pair must be copied
• Divides up key space for parallel reduce operations
• Partitioner only considers the key and ignores the value

28

Intermediate space

Reducer 1
Reducer 2

Intermediate space

Reducer 1
Reducer 2



MCSN - N. Tonellotto - Distributed Enabling Platforms

Combiners
• Local aggregation before the shuffle

• All the key-value pairs from mappers need to be copied across the 
network

• The amount of intermediate data may be larger than the input collection 
itself

• Perform local aggregation on the output of each mapper (same machine)
• Typically, a combiner is a (local) copy of the reducer

29



MCSN - N. Tonellotto - Distributed Enabling Platforms

Programming Model (complete)

30

INPUT 

I1 

map 

I2 

map 

I3 

map 

I4 

map 

I5 

map 

Aggregate values by key 

OUTPUT 

O1 O2 O3 

reduce reduce reduce 

partition 

combine 

partition 

combine 

partition 

combine 

partition 

combine 

partition 

combine 



MCSN - N. Tonellotto - Distributed Enabling Platforms

Runtime
•Handles scheduling

- Assigns workers to map and reduce tasks

•Handles “data distribution”
- Moves processes to data

•Handles synchronization
- Gathers, sorts, and shuffles intermediate data

•Handles errors and faults
- Detects worker failures and restarts

•Everything happens on top of a distributed FS

31



MCSN - N. Tonellotto - Distributed Enabling Platforms

Terminology
•Job
•Task
•Slot
•JobTracker

- Accepts Map/Reduce jobs submitted by users
- Assigns Map and Reduce tasks to Task Trackers
- Monitors task and Task Tracker status, re-executes tasks upon failure

•TaskTracker
- Run Map and Reduce tasks upon instruction from the Job Tracker
- Manage storage and transmission of intermediate output

•Splits
- Data locality optimization

32



MCSN - N. Tonellotto - Distributed Enabling Platforms

Runtime

33

jobtracker

job 0submit

job 1

job 2

map 
task 1

map 
task i

reduce 
task 1

reduce 
task j

map 
slots

reduce 
slots

tasktracker 1

map 
slots

reduce 
slots

tasktracker N

submit

submit

initalize

assign

user 1

user 2



MCSN - N. Tonellotto - Distributed Enabling Platforms

Diagram

34

k1,v k2,v k2,vk2,v

Partitioner

Map Task 1

k1,v k3,v k3,v k4,v k5,v

Partitioner

Map Task 2

k4,vk3,v k5,v

Partitioner

Map Task 3

k1: v, v k3: v, v, v

Sort & Group

Reduce Task 2

k4: v, v k5: v, vk2: v, v, v

Sort & Group

Reduce Task 1



MCSN - N. Tonellotto - Distributed Enabling Platforms

Scheduling
• One master, many workers

- Input data split into M map tasks (typically 64 MB in size)
- Reduce phase partitioned into R reduce tasks (hash(k) mod R)
- Tasks are assigned to workers dynamically
- Often: M=200,000; R=4000; workers=2000

• Master assigns each map task to a free worker 
- Considers locality of data to worker when assigning a task
- Worker reads task input (often from local disk)
- Worker produces R local files containing intermediate k/v pairs

• Master assigns each reduce task to a free worker
- Worker reads intermediate k/v pairs from map workers
- Worker sorts & applies user’s reduce operation to produce the output

35



MCSN - N. Tonellotto - Distributed Enabling Platforms

Parallelism
•Map functions run in parallel, create intermediate 
values from each input data set
- The programmer must specify a proper input split (chunk) 

between mappers to enable parallelism

•Reduce functions also run in parallel, each will 
work on different output keys
- Number of reducers is a key parameter which determines map‐

reduce performance

36



MCSN - N. Tonellotto - Distributed Enabling Platforms

Speculative Execution
•Problem: Stragglers (i.e., slow workers) significantly 
lengthen the completion time
- Other jobs may be consuming resources on machine
- Bad disks with soft (i.e., correctable) errors transfer data very slowly
- Other weird things: processor caches disabled at machine init

•Solution: Close to completion, spawn backup copies 
of the remaining in-progress tasks.
- Whichever one finishes first, “wins”

•Additional cost: a few percent more resource usage
•Example: A sort program without backup = 44% longer.

37



MCSN - N. Tonellotto - Distributed Enabling Platforms

Fault Tolerance (I)
Failures in Literature

• LANL data (DSN 2006)
• Data collected over 9 years
• Covered 4,750 machines and 24,101 CPUs
• Distribution of failures

• Hardware ~ 60%, Software ~ 20%, Network/Environment/Humans ~ 5%, Aliens ~ 
25%*

• Depending on a system, failures occurred between once a day to once a month 
• Most of the systems in the survey were the cream of the crop at their time

• PlanetLab (SIGMETRICS 2008 HotMetrics Workshop)
• Average frequency of failures per node in a 3-months period
• Hard failures: 2.1 
• Soft failures: 41 
• Approximately failure every 4 days

38

taken from: http://research.google.com/

http://now.sprint.com/nownetwork/


MCSN - N. Tonellotto - Distributed Enabling Platforms

Fault Tolerance (II)
Failures in Google Data Centers

• DRAM errors analysis (SIGMETRICS 2009)
• Data collected over 2.5 years
• 25,000 to 70,000 errors per billion device hours per Mbit

• Order of magnitude more than under lab conditions
• 8% of DIMMs affected by errors 
• Hard errors are dominant cause of failure

• Disk drive failure analysis (FAST 2007)
• Annualized Failure Rates vary from 1.7% for one year old drives to over 8.6% in 

three year old ones
• Utilization affects failure rates only in very old and very old disk drive populations
• Temperature change can cause increase in failure rates but mostly for old drives

39

taken from: http://research.google.com/

http://now.sprint.com/nownetwork/


MCSN - N. Tonellotto - Distributed Enabling Platforms

MapReduce Fault Tolerance
• Master keeps track of progress of each task and worker nodes

- If a node fails, it re‐executes the completed as well as in‐progress 
map tasks on other nodes that are alive

- It also executes in‐progress reduce tasks.
• If particular input key/value pairs keep crashing

- Master blacklists them and skips them from re‐execution
• Tolerate small failures, allow the job to run in best‐effort basis

- For large datasets containing potentially millions of records, we 
don’t want to stop computation for a few records not processing 
correctly

- User can set the failure tolerance level

40



MCSN - N. Tonellotto - Distributed Enabling Platforms

Performance
• Maximizing Map input transfer rate

- Input Locality
- Minimal deserialization overhead

• Small intermediate output
- M x R transfers over the network
- Minimize/compress transfers
- Avoid shuffling/sorting if possible (e.g. map-only computations)
- Use combiners and/or partitioners!!!
- Compress everything (automatic)

• Opportunity to Load Balance
• Changing algorithm to suit architecture yields best implementation

41



The right tool for the right job

42
taken from: http://research.google.com/

MPI MapReduce DBMS/SQL

What it is
A general parallel programming 

model
A programming paradigm and its 

associated execution system
A system to store, manipulate 

and serve data

Programming Model Message passing between nodes
Restricted to map and reduce 

operations
Declarative on data query

Stored procedures

Data Organization No assumptions Shared files Organized data structures

Data to be manipulated Any key-value pairs Tables with rich attributes

Execution Model Nodes are independent
Map/Shuffle/Reduce

Checkpointing/Backup
Physical data locality

Transaction
Query optimization
Materialized view

Usability Steep learning curve
difficult to debug

Simple concept
Could be hard to optimize

Declarative interface
Could be hard to debug at 

runtime

Key Selling Point Flexible to accommodate 
various applications

Process large amount of data 
with commodity hardware

Interactive querying
Maintain a consistent view 

across client

MCSN - N. Tonellotto - Distributed Enabling Platforms

http://now.sprint.com/nownetwork/

