UNIVERSITA DI PISA

Design Patterns for the Cloud

|;I| MCSN - N. Tonellotto - Distributed Enabling Platforms 60

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”



based on

Amazon Web Services

Architecting for the
Cloud: Best Practices

Jinesh Varia

Amazon Web Services - Architecting for The Cloud: Best Practices

aaaaaaaaaa

Architecting for the Cloud: Best Practices

amazon
webservices™

January 2010
Last updated - May 2010
Jinesh Varia
jvaria@amazon.com

http://media.amazonwebservices.com/AWS_Cloud_Best_ Practices.pdf

I‘II MCSN - N. Tonellotto - Distributed Enabling Platforms

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

61



http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf

Your Application

Amazon Web Services

Amazon Amazon Elastic
: RDS MapReduce JobFlows
Qa. wv)
> =
Q o -
o £ » @ Auto- = Elastic = Cloud
E a a o Scaling LB Watch A -
a - o 3 rrolazon
g o 2 e Objects and
- o v g Amazon EC2 Instances Buckets
= £ & c -
- = S S (On-Demand, Reserved, Spot)
o c g @© f
c § < <Et EBS Snapshots
£ £ Volumes
> <
& Amazon

Virtual Private Cloud

Amazon Global Physical Infrastructure

(Geographical Regions, Availability Zones, Edge Locations)

2 1/: 2
UNIVERSITA DI PISA

Amazon
Cloud
Front

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”



Amazon Web Services

UNIVERSITA DI PISA

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

amazon
webservices

Database

Cross-Service

DynamoDB

Predictable and Scalable NoSQL Data Store
ElastiCache

In-Memory Cache

RDS

Managed Relational Database

Redshift

Managed Petabyte-Scale Data Warehouse

Storage and Content Delivery

Scalable Storage in the Cloud

Networked Attached Block Device
CloudFront
Global Content Delivery Network

Jialicl

Archive Storage in the Cloud
¢ ir'—.f:.-j,’; _,‘,;_,‘ ﬁl.“,
Integrates On-Premises IT with Cloud Storage

,;;:_ Lt cXDOI

Ship Large Datasets

Support

Phone & email fast-response 24X7 Support
Marketplace

Bull and Sell Software and Apps

Management Console
Ul to manage AWS services

SDKs, IDE kits and CLIs

Develop , integrate and manage services

Compute & Networking
EC2

Virtual Servers in the Cloud

VPC

Virtual Secure Network

ELB

Load balancing Service

Auto Scaling

Automatically scale up and down

Elastic MapReduce

Managed Hadoop Framework

Direct Connect
Dedicated Network Connection to AWS

Route 53

Scalable Domain Name System

Deployment & Management

femplated AWS Resource Creation
Resource and Application Monitoring
Orchestration for Data-Driven Workflows
AWS Application Container

Secure AWS Access Control

DevOps Application Management Service

Hardware-based key storage for compliance

App Services

Managed Search Service

Easy-to-use Scalable Media Transcoding
Email Sending Service

Push Notification Service

Message Queue Service

Workflow Service for Coordinating App Components

AWS Global Physical Infrastructure

(Geographical Regions, Availability Zones, Edge Locations)




Scalable Architectures

A scalable architecture is critical to take advantage of a
scalable infrastructure

The cloud is designed to provide conceptually unlimited
scalability.

Characteristics of Truly Scalable Service

* Increasing resources results in a proportional increase in
performance

* A scalable service is capable of handling heterogeneity

A scalable service is operationally efficient

» A scalable service is resilient

A scalable service becomes more cost effective when it grows

 _

ISTITUTO DI SC
DELLINFORN




1. Design for Failure

» “Everything fails, all then time” - Werner Vogels, Amazon’s CTO

- Avoid single points of failure

» Assume everything fails, and design backwards

- Goal: Applications should continue to function even if the underlying physical
hardware fails or is removed or replicated

- The following strategies can help in event of failure:
1. Have a coherent backup and restore strategy for your data and automate it
2. Build process threads that resume on reboot
3. Allow the state of the system to re-sync by reloading messages from queues
4. Keep pre-configured and pre-optimized virtual images to support (2) and (3)

on launch/boot

5.Avoid in-memory sessions or stateful user context, move that to data stores.



2. Design Loosely Cqupled Systems

* The cloud reinforces the SOA design principle that the more
loosely coupled the components of the system, the bigger
and better it scales.

» Build components that do not have tight dependencies on
each other.

- Build asynchronous systems and scaling horizontally become
very important in the context of the cloud.

» Build systems to scale out by adding more instances of same

component




2. AWS‘ Tagtics

1.Use Amazon SQS as buffers between components

2.Design every component such that it expose a service interface and is
responsible for its own scalability in all appropriate dimensions and
Interacts with other components asynchronously

3.Bundle the logical construct of a component into an Amazon Machine
Image so that it can be deployed more often

4.Make your applications as stateless as possible. Store session state
outside of component (in Amazon SimpleDB. if appropriate)

Call a Calla
Method in Method in
B from A C fromB

Tight coupling (procedural programming)

T Loose coupling (independent phases using queues)

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”




3. Implement Elasticity

- Elasticity can be implemented in three ways:

1. Proactive Cyclic Scaling: Periodic scaling that occurs at fixed interval
(daily, weekly, monthly, quarterly)

2. Proactive Event-based Scaling: Scaling just when you are expecting a
big surge of traffic requests due to a scheduled business event (new
product launch, marketing campaigns)

3. Auto-scaling based on demand. By using a monitoring service, your
system can send triggers to take appropriate actions so that it scales up or
down based on metrics (utilization of the servers or network i/o, for
instance)

- To implement “Elasticity”, one has to first automate the deployment
process and streamline the configuration and build process. This will
ensure that the system can scale without any human intervention.

o

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”



3. Design vyour AMI

 The cloud allows you to automate your deployment process.

- Take the time to create an automated deployment process early
on during the migration process and not wait till the end.

- Creating an automated and repeatable deployment process will
help reduce errors and facilitate an efficient and scalable update
process.

» To automate the deployment process:
- Create a library of “recipes” — small frequently-used scripts (for
installation and configuration)

- Manage the configuration and deployment process using agents
bundled inside an AMI

o

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”



3. AMI Design Approaches

Easier to
WVeb Server setup

UNIVERSITA DI PISA

App Server :
1. Inventory of static AMis

MVC

| Your code_
| Lbraries
| Packages
0B
 Frameviork
oS
™

Your code

“HEET 2 Golden AMIs with fetch on boot
Packages

Framework

Easier to
maintain

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”



UNIVERSITA DI PISA

Web Server

App Server

MVC

Your code

Libraries

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

Web Server

App Server

MVC

Your code

Libraries

Packages

4 Framework

S

i

A

K¢

b

A
' '

)

\

. £
(4
a <N
4 d
- o
o N

- "‘

T

) J
4
’) Ny
Y +
1

- 1
p. \
f “

y (]
[ v
‘ D

3 R

- A

b
; @) '
3 B
- X
b p .3
A s e Lo o - € 3

AT S MBI it gD

Web Server

Y g i it D AT AT i )

Web Server »

p y &8
P oD AT o I

a Web Server

Your code

-
Libraries

® o T A APP Server
-

Packages
OO A
DB

= &\
\

-
Your code

Framework
) _d a

OS

B Rt 4 Packages

DB £
\ A
' Framework \

Libraries
-

Amazon EC2

MCSN - N. Tonellotto - Distributed Enabling Platforms

/1



3. Golden AMis with fetch on boot

UNIVERSITA DI PISA

Web Server

App Server

MVC

| Your code
| Lbraries
| Packages
0B
 Frameviork
oS
™

Your code

Fetch on AMI
boot time

Libraries

Amazon S3

Packages

d e L aads 2 e e aaTr
App Server Web Server
———— — App Server

Framework 2 App Server ) 3
i

, Framework

Framework

3 Web Server ‘ g ina e o '
f ——f” W o r Web Server F
'
! 3

Framework

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”



Web Server

Recipe Database

APP Server » it greweswsmamsnany | ocal SVN Repository

i App Server ) . .
£ b | Fetch on AMI Download recipe on
; 3 boot time agent request

k
D

MVC

Your code

TS e

ramework

Libraries

Framework

Amazon EC2

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”



4. Think Parallel

- Serial and Sequential is now history

 The cloud is designed to handle massively parallel operations
when it comes to accessing (retrieving and storing) data:
leverage request parallelization

- Multi-threading your requests by using multiple concurrent
threads

* The processes of a cloud application should be made thread-
safe through a share-nothing philosophy

* Distribute the incoming requests across multiple
asynchronous web servers using load balancer

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”



5. Leverage Storage Options

- In the cloud, you are paying for bandwidth in and out of the cloud

- Transfer and the cost can-add up very quickly.

- Keep dynamic data closer to the compute element

« Keep static data closer to the end-user

- If a large quantity of data that needs to be processed resides
outside of the cloud, use Sneakernet :-)

- |If the data is static and not going to change often (for example,
Images, video, audio, PDFs, JS, CSS files), it is advisable to take
advantage of a content delivery service so that the static data is
cached at an edge location closer to the end-user (requester)

thereby lowering the access latency.

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”



2L

%@ﬁ :

*PISA® UNIVERSITA DI PISA

Amazon S3 + Amazon EC2 Amazon EBS Amazon Amazon RDS
CF Ephemeral SimpleDB
Store

Ideal for Storing Large Storing non-  Off-instance Querying light- Storing and
write-once, persistent persistent weight attribute  querying
read-many transient storage for any data structured
types of updates kind of data, Relational and
objects, Static referential
Content Data
Distribution

Ideal examples Maedia files, Config Data,  Clusters, boot Querying, Complex
audio, video, scratch files, data, Log or Mapping, transactional
images, TempDB data of tagging, click- systems,
Backups, commercial stream logs, inventory
archives, RDBMS like metadata, management
versioning Oracle, DB2 shared-state and order

management, fulfillment
indexing systems

Not Querying, Storing Relational (joins)

recommended Searching Database logs query

for or backups,

customer data
Not Database, File Sensitive data Content OLTP, DW cube Simple
recommended Systems Distribution rollups lookups

examples

I‘II MCSN - N. Tonellotto - Distributed Enabling Platforms 76

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”



6. Security

* In the cloud, security should be implemented in every layer of
the cloud application architecture

* Physical security is typically handled by your service provider

* Network and application-level security IS your responsibility

» Protect your data Iin transit

* Protect your data at rest

» Protect your AWS credentials

- Manage multiple Users and their permissions with 1AM



- Every Amazon EC2 instance is
protected by one or more
security groups

- Named sets of rules that specify

which ingress (i.e., incoming) i
ADJ I

network traffic should be

delivered to your instance.

* You can specify TCP and UDP
ports, ICMP types and codes, and
source addresses.

 Security groups give you basic
firewall-like protection for

running instances.

Permit App

o eV b o . -

— e s e o -

6. AWS Tactics

Amazon EC2
Security Group
Firewall




Web Application Hosting Example

@'

UNIVERSITA DI PISA

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

Traditional Architecture

Exterior Firewall
Hardware or Software Solution to
open standard ports (80, 443)

Web Load Balancer
Hardware or Software solution to
distribute traffic over web servers

Web Tier
Fleet of machines handling HTTP
requests

Backend Firewall limits access to
application tied from web tier

App Load Balancer
Hardware or Software solution to
spread traffic over app servers

App Server Tier

Fleet of machines handling
Application specific workloads
Caching server machines can be
implemented at this layer

Data Tier

Database Server machines with
master and local running separately,
Network storage for static objects

— — — — — — — — — — — — — — — — — — — — — — — —

www.example.com

 \
{ J

N/

— — — — — —

Load Balancer

Web Servers

i Load Balancer
|
|
|

| App Servers

Backups on Tapes

! Periodic backups stored
— — e — — on Tapes usually managed
by 3" party at their site

"

Tapes

taken from: http://media.amazonwebservices.com/AWS Web_ Hosting Best Practices.pdf


http://media.amazonwebservices.com/AWS_Web_Hosting_Best_Practices.pdf

Web Application Hosting Example

UNIVERSITA DI PISA

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

Route 53

Provides DNS services to simplify
domain management and zone APEX
support (http://example.com)

Elastic Load Balancer
ELB to spread traffic to Web Server
Autoscaling groups

Exterior Firewall moved to every
Web Server instance via Security
Groups

Auto Scaling Web Tier

Group of EC2 instances handling
HTTP requests.

Backend Firewall moved to every
back-end instance

App Server Load Balancer
Software LB (e.g. HAProxy) on EC2
instances to spread traffic over app
server cluster

Auto-scaling App Tier

Group of EC2 instances running the
actual app. Instances belong to Auto
Scaling group

ElastiCache
Provides caching services for app,
removing load from database tier

DB Tier

MySQL RDS DB creates a highly
available architecture with multi-AZ
deployments. Read-only replicas can
also be used to scale read intensive
applications

Amazon WS Architecture

www.example.com media.example.com
Edge Caching 'A‘
Hi
Route 53 Hosted Zone gh Voltfme “‘
Content is edge AVa¥)
cached using \Y/
CloudFront T cloudrront
4 N
Dynamic
Elastic Load Balancer
Static
o —— / -cam, ot e ———
i Auto Scaling Group: Web Tier ) | Auto Scaling Group: Web Tier ) -
i | I |
. | . | "
| . | . $3 Bucket
'\ EC2 Instance: Web Server I \ EC2 Instance: Web Server '
....... — e ety — .
Backups
Amazon S3
used for
Losd Bal 4 el storing Static
Q4 alancer Load Balancer Object and
Backups
| | Auto Scaling Group: App Tier )
| | ;
. . |
| | :
" " EC2 Instance: App Server '
\ \
o o g
ElastiCache RDS Master Standby
9 Region )

taken from: http://media.amazonwebservices.com/AWS Web_ Hosting Best Practices.pdf



http://media.amazonwebservices.com/AWS_Web_Hosting_Best_Practices.pdf

Top 10 Obstacles for Cloud Computing

- Availability of a service:
- Organizations worry about whether Cloud services will have
adequate availabllity
- Very (very) high availability can be achieved by adopting multiple

Cloud Computing providers
- Even if the Cloud provider has multiple data centers in different

geographic regions, it may have common software infrastructure
and accounting systems, or the company may even go out of
business

- Data lock-in:
- Software stacks have improved interoperability among platforms,

but
the APIs for Cloud Computing itself are still essentially

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”



Top 10 Obstacles for Cloud Computing

- Data confidentiality and auditability:

- My sensitive corporate data will never be in the cloud

- Current Cloud offerings are essentially public (rather than private) networks,
exposing the system to more attacks

- There are also requirements for auditability and privacy laws (many Nations have
laws requiring SaaS providers to keep customer data and copyrighted material
within national boundaries)

- There are no fundamental obstacles to making a Cloud Computing environment as
secure as the vast majority of in-house IT environments, well-understood
technologies (e,g., encrypted storage, VPN, firewalls,...)

- Data Transfer Bottlenecks:

- Applications continue to become more data-intensive, significant costs
in the Cloud

- Avoid Internet transfers by shipping disks

- Data Storage for free, CPU cycles sustain the business

- WAN and LAN bandwidth are still bottlenecks

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”



Top 10 Obstacles for Cloud Computing

- Performance unpredictability:
- Multiple Virtual Machines can share CPUs and main memory surprisingly
well in Cloud Computing, but I/O sharing is more problematic
- Improve architectures and operating systems to efficiently virtualize
interrupts and I/0O channels
- Flash memory adoption will decrease 1/O interference

» Scalable storage:
- Short-term usage, no up-front cost, and infinite capacity on-demand is
more difficult to achieve with persistent storage with respect to
computation

- Bugs in large-scale distributed systems:
- Removing errors in very large scale distributed systems is very
challenging
- A common occurrence is that bugs cannot be reproduced in smaller

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”



Top 10 Obstacles for Cloud Computing

- Scaling quickly:
- Pay-as-you-go certainly applies to storage and to network bandwidth, both of which
count bytes used

- Computation is slightly different, depending on the virtualization level:

> Google AppEngine automatically scales in response to load increases and decreases, and users
are charged by the cycles used

> Amazon EC2 charges by the hour for the number of instances you occupy, even if your machine
IS idle
- Automatically scale quickly up and down in response to load is important in order to
save money, but without violating service level agreements

- Reputation fate sharing:
- Reputations do not virtualize well. One customer’s bad behavior can affect the
reputation of the cloud as a whole
- For instance, blacklisting of Amazon EC2 IP addresses by spam-prevention
services may limit which applications can be effectively hosted
- Legal issues
- Software licensing:

- Current software licenses commonly restrict the computers on which the software
can run

343
UNIVERSITA DI PISA

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”



