Passive Replication

Clients communicate with primary server

Clients
WRITES are atomically forwarded from |
primary server to backup servers [~/ Q/
nd i /
READS are replied by the primary server .

Also known as Primary Copy (or Backup)
Replication

Specifications:

At most one replica can be the Primary Server

primary server at any time.
* Each client maintains a variable L

(leader) that specifies the replica to /\]

which it will send requests. Requests
are queued at the primary server.

* Backup servers ignore client

Backup Servers
requests.
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Implementing Primary Backup

* Clients communicate with primary server

* The primary server updates the backup

SErVers

* Backup servers detect the failure of the
primary using a heartbeat mechanismnr

e Clients learn from the service when the

primary server

‘alls and the service “falls

over’ to a back

Up



Simple Protocol

e System model:
* point-to-point communication
* N0 communication failures = no network partitions

* upper bound on message delivery time — synchronous communications

FIFO channels
e at most one server crashes
* Two servers:
* The primary p,
* The backup p,
* Variables:
* At server p, primary = true if p, acts as the current primary

* At clients, primary is equal to the identifier of the current primary



Simple Protocol

Protocol executed by the primary p;

upon initialization do
| primary < true

upon receive (REQ,r) from c do
state <— update(state,r)

send (STATE, state) to po
send (REP, reply(r)) to c

% Update local state
% Send update to backup
% Reply to client

repeat every 7 seconds

L send (HB) to po 7% Heartbeat message

upon recovery after a failure do
| { start behaving like a backup }




Simple Protocol

Protocol executed by the backup po

upon initialization do
| primary < false

upon receive (STATE, s) do
L state < S % Update local state

upon not receiving a heartbeat for 7 + 0 seconds do

primary < true % Becomes new primary
send (NEWP) to c % Inform the client of new primary
{ start behaving like a primary }




Simple Protocol

Protocol executed by client c

upon initialization do
L primary <— pi % Initial primary

upon receive (NEWP) from ps do
L Primary < po % Backup

upon operation(r) do

while not received a reply do

send (REQ, ) to primary

wait receive (REP, v) or receive (NEWP)

return v




Active Replication

Clients communicate with several/all servers

Every server handles any operation and

sends the response [ /4

-
WRITES must be applied in the same order N
(total order broadcast)
One way to implement totally-ordered X

multicast Is to use logical clocks

Another solution is to use a centralized /\]

sequencer ;EE

» FEach write is forwarded to the
sequencer

 The seguencer assigns a unique

sequence number to the WRITE and Qg

forwards the WRITE to all replicas /’
\' JR§!i‘ii*‘/ /

 FEach replica carries out the WRITES in
the order of their sequence number



Quorum Protocols
* Proposed by Gifford in 1979

* Quorum-based protocols guarantee that
each operation Is carried out in such a way
that a majority vote (a quorum) is established.

* Write quorum W: the number of replicas that
need to acknowledge the receipt of the
update to complete the update

 Read quorum R:. the number of replicas that
are contacted when a data object Is
accessed through a read operation



Quorum Systems

Formally, a quorum system S = {S+, ..., Sn}is a
collection of quorum sets S; cU such that two

guorum sets have at least an element in common

For replication, we consider two quorum sets, a read
quorum R and a write quorum W

Rules:

1. Any read quorum must overlap with any write
guorum

2. Any two write guorums must overlap
U is the set of replicas, i.e., |U| =N



Quorum Examples
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Quorum Examples

Read rule: |R| + |W| > N = read and write quorums overlap

Write rule: 2 |W| > N = two write quorums overlap

The guorum sizes determine the costs for read and write operations
Minimum quorum sizes for are

min |W| = > + 1 min |R| =

e \Write quorums requires majority

« Read quorum requires at least half of the nodes
ROWA (RWN)=(N=N,R=1 W=N)

Amazon’s Dynamo (N =3, R =2, W = 2)

Linkedin's Voldemort (N =2 or 3, R =1, W = 1 default)
Apache's Cassandra (N =3, R =1, W = 1 default)

<
N| 2




Client-centric Consistency Models

 FEach WRITE operation is assigned a unique identifier
* Done by the server where the operation is requested
e For each client ¢, we keep track of:

 Read set WSR : contains write operations relevant to
the read operations performed by ¢

o Write set WSy : contains write operations relevant to
the write operations performed by C

* For each server, we keep track of:

* Write set WS : contains the write operations executed
SO far



Read-Your-Write Implementation

* To perform a READ:
* A client
 sends READ and its WSy, to a server S.

e The server S:

 Checks if the WSy cWS, i.e., all the WRITES seen from
the client have been applied by the server

* |[f not, asks the other servers the missing WRITES
e Applies the missing WRITES locally and update its WS

* Return the requested value to the client



Read-Your-Write Implementation

* To perform a WRITE:
* A client
* sends WRITE and adds it to its WSw
* The server S
* Perform the WRITE
e adds itto its WS



Monotonic-Read Implementation

e To perform a READ:
* A client
e sends READ and its WSk to a server S.

* The server S:

* Checks if the WS cWS, i.e., all the WRITES seen from the client
have been applied by the server

* |[f not, asks the other servers the missing WRITES
* Applies the missing WRITES locally and update its WS
e Return the requested value and WS to the client

* The client

* adds WS to its Wog



Monotonic-Read Implementation

* To perform a WRITE:
* A client
* sends WRITE
* The server S
* Perform the WRITE
e adds itto its WS



Writes-Follow-Reads & Monotonic-Writes

e [wo additional constraints on the server:

 When a server S accepts a new WRITE
Wo at time t, it ensures that
WriteOrder(W+,W>) is true for any WRITE
W+ already in DB(S,1).

e Anti-entropy Is performed such that it
WRITE W2 is propagated from server S1to
server Sp at time t then any W1 in DB(S4,1)
such that WriteOrder(W+,W5>) Is also
poropagated to So.
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