
Passive Replication

Primary Server

Backup Servers

Clients
• Clients communicate with primary server

• WRITES are atomically forwarded from
primary server to backup servers

• READS are replied by the primary server

• Also known as Primary Copy (or Backup)
Replication

• Specifications:

• At most one replica can be the
primary server at any time.

• Each client maintains a variable L
(leader) that specifies the replica to
which it will send requests. Requests
are queued at the primary server.

• Backup servers ignore client
requests.

Passive Replication Protocol

Passive Replication Protocol

Implementing Primary Backup
• Clients communicate with primary server

• The primary server updates the backup
servers

• Backup servers detect the failure of the
primary using a heartbeat mechanism

• Clients learn from the service when the
primary server fails and the service “fails
over” to a backup

Simple Protocol
• System model:

• point-to-point communication

• no communication failures → no network partitions

• upper bound on message delivery time → synchronous communications

• FIFO channels

• at most one server crashes

• Two servers:

• The primary p1

• The backup p2

• Variables:

• At server pi, primary = true if pi acts as the current primary

• At clients, primary is equal to the identifier of the current primary

Simple Protocol

Simple Protocol

Simple Protocol

Active Replication
• Clients communicate with several/all servers

• Every server handles any operation and
sends the response

• WRITES must be applied in the same order
(total order broadcast)

• One way to implement totally‐ordered
multicast is to use logical clocks

• Another solution is to use a centralized
sequencer

• Each write is forwarded to the
sequencer

• The sequencer assigns a unique
sequence number to the WRITE and
forwards the WRITE to all replicas

• Each replica carries out the WRITES in
the order of their sequence number

Quorum Protocols
• Proposed by Gifford in 1979

• Quorum-based protocols guarantee that
each operation is carried out in such a way
that a majority vote (a quorum) is established.

• Write quorum W: the number of replicas that
need to acknowledge the receipt of the
update to complete the update

• Read quorum R: the number of replicas that
are contacted when a data object is
accessed through a read operation

• Formally, a quorum system S = {S1, …, SN} is a
collection of quorum sets Si ⊆U such that two
quorum sets have at least an element in common

• For replication, we consider two quorum sets, a read
quorum R and a write quorum W

• Rules:
1. Any read quorum must overlap with any write

quorum
2. Any two write quorums must overlap

• U is the set of replicas, i.e., |U| = N

Quorum Systems

Quorum Examples

• Read rule: |R| + |W| > N ⇒ read and write quorums overlap

• Write rule: 2 |W| > N ⇒ two write quorums overlap

• The quorum sizes determine the costs for read and write operations
• Minimum quorum sizes for are

• Write quorums requires majority
• Read quorum requires at least half of the nodes

• ROWA (R,W,N) = (N = N, R = 1, W = N)
• Amazon’s Dynamo (N = 3, R = 2, W = 2)
• Linkedin's Voldemort (N = 2 or 3, R = 1, W = 1 default)
• Apache's Cassandra (N = 3, R = 1, W = 1 default)

Quorum Examples

min |W | =

�
N
2

�
+ 1 min |R | =

�
N
2

�

Client-centric Consistency Models
• Each WRITE operation is assigned a unique identifier

• Done by the server where the operation is requested

• For each client c, we keep track of:

• Read set WSR : contains write operations relevant to
the read operations performed by c

• Write set WSW : contains write operations relevant to
the write operations performed by c

• For each server, we keep track of:

• Write set WS : contains the write operations executed
so far

Read-Your-Write Implementation
• To perform a READ:

• A client

• sends READ and its WSW to a server S.

• The server S:

• Checks if the WSW ⊆WS, i.e., all the WRITES seen from
the client have been applied by the server

• If not, asks the other servers the missing WRITES

• Applies the missing WRITES locally and update its WS

• Return the requested value to the client

Read-Your-Write Implementation

• To perform a WRITE:

• A client

• sends WRITE and adds it to its WSW

• The server S:

• Perform the WRITE

• adds it to its WS

Monotonic-Read Implementation
• To perform a READ:

• A client

• sends READ and its WSR to a server S.

• The server S:

• Checks if the WSR ⊆WS, i.e., all the WRITES seen from the client
have been applied by the server

• If not, asks the other servers the missing WRITES

• Applies the missing WRITES locally and update its WS

• Return the requested value and WS to the client

• The client

• adds WS to its WSR

Monotonic-Read Implementation

• To perform a WRITE:

• A client

• sends WRITE

• The server S:

• Perform the WRITE

• adds it to its WS

Writes-Follow-Reads & Monotonic-Writes
• Two additional constraints on the server:

• When a server S accepts a new WRITE
W2 at time t, it ensures that
WriteOrder(W1,W2) is true for any WRITE
W1 already in DB(S,t).

• Anti-entropy is performed such that if
WRITE W2 is propagated from server S1 to
server S2 at time t then any W1 in DB(S1,t)
such that WriteOrder(W1,W2) is also
propagated to S2.

References
• Ghosh, Distributed Systems - An

Algorithmic Approach (2nd ed), chapter 16

• D. Terry et al., Session Guarantees for
Weakly Consistent Replicated Data, https://
www.cis.upenn.edu/~bcpierce/courses/dd/
papers/SessionGuaranteesPDIS.ps

• D. Terry, Replicated Data Consistency
Explained Through Baseball, http://
research.microsoft.com/pubs/157411/
ConsistencyAndBaseballReport.pdf

https://www.cis.upenn.edu/~bcpierce/courses/dd/papers/SessionGuaranteesPDIS.ps
http://research.microsoft.com/pubs/157411/ConsistencyAndBaseballReport.pdf

