Passive Replication

Clients communicate with primary server

Clients
WRITES are atomically forwarded from |
primary server to backup servers [~/ Q/
nd i /
READS are replied by the primary server .

Also known as Primary Copy (or Backup)
Replication

Specifications:

At most one replica can be the Primary Server

primary server at any time.
* Each client maintains a variable L

(leader) that specifies the replica to /\]

which it will send requests. Requests
are queued at the primary server.

* Backup servers ignore client

Backup Servers
requests.

Passive Replication Protocol

Client Client

Primary server
A for item X A Backup

W1 W5 \ R1 R2 /
= =T =)
> «
.

W2 W3
N - p,
W1. Write request R1. Read request
W2. Forward request to primary R2. Response to read

Wa3. Tell backups to update
W4. Acknowledge update
W5. Acknowledge write completed

server

Data store

Passive Replication Protocol

Client
Request Notification
Primary \
\
\ \
\ \
Heartbeat Update N
\ '
Backup < ? Election
| > | > «—>]

T T O

Implementing Primary Backup

* Clients communicate with primary server

* The primary server updates the backup

SErVers

* Backup servers detect the failure of the
primary using a heartbeat mechanismnr

e Clients learn from the service when the

primary server

‘alls and the service “falls

over’ to a back

Up

Simple Protocol

e System model:
* point-to-point communication
* N0 communication failures = no network partitions

* upper bound on message delivery time — synchronous communications

FIFO channels
e at most one server crashes
* Two servers:
* The primary p,
* The backup p,
* Variables:
* At server p, primary = true if p, acts as the current primary

* At clients, primary is equal to the identifier of the current primary

Simple Protocol

Protocol executed by the primary p;

upon initialization do
| primary < true

upon receive (REQ,r) from c do
state <— update(state,r)

send (STATE, state) to po
send (REP, reply(r)) to c

% Update local state
% Send update to backup
% Reply to client

repeat every 7 seconds

L send (HB) to po 7% Heartbeat message

upon recovery after a failure do
| { start behaving like a backup }

Simple Protocol

Protocol executed by the backup po

upon initialization do
| primary < false

upon receive (STATE, s) do
L state < S % Update local state

upon not receiving a heartbeat for 7 + 0 seconds do

primary < true % Becomes new primary
send (NEWP) to c % Inform the client of new primary
{ start behaving like a primary }

Simple Protocol

Protocol executed by client c

upon initialization do
L primary <— pi % Initial primary

upon receive (NEWP) from ps do
L Primary < po % Backup

upon operation(r) do

while not received a reply do

send (REQ,) to primary

wait receive (REP, v) or receive (NEWP)

return v

Active Replication

Clients communicate with several/all servers

Every server handles any operation and

sends the response [/4

-
WRITES must be applied in the same order N
(total order broadcast)
One way to implement totally-ordered X

multicast Is to use logical clocks

Another solution is to use a centralized /\]

sequencer ;EE

» FEach write is forwarded to the
sequencer

 The seguencer assigns a unique

sequence number to the WRITE and Qg

forwards the WRITE to all replicas /’
\' JR§!i‘ii*‘/ /

 FEach replica carries out the WRITES in
the order of their sequence number

Quorum Protocols
* Proposed by Gifford in 1979

* Quorum-based protocols guarantee that
each operation Is carried out in such a way
that a majority vote (a quorum) is established.

* Write quorum W: the number of replicas that
need to acknowledge the receipt of the
update to complete the update

 Read quorum R:. the number of replicas that
are contacted when a data object Is
accessed through a read operation

Quorum Systems

Formally, a quorum system S = {S+, ..., Sn}is a
collection of quorum sets S; cU such that two

guorum sets have at least an element in common

For replication, we consider two quorum sets, a read
quorum R and a write quorum W

Rules:

1. Any read quorum must overlap with any write
guorum

2. Any two write guorums must overlap
U is the set of replicas, i.e., |U| =N

Quorum Examples

- - - - . - - . -

=

Read quorum

NH=7,

=10

Ny

NH=3,

Write quorum

(b)

Quorum Examples

Read rule: |R| + |W| > N = read and write quorums overlap

Write rule: 2 |W| > N = two write quorums overlap

The guorum sizes determine the costs for read and write operations
Minimum quorum sizes for are

min |W| = > + 1 min |R| =

e \Write quorums requires majority

« Read quorum requires at least half of the nodes
ROWA (RWN)=(N=N,R=1 W=N)

Amazon’s Dynamo (N =3, R =2, W = 2)

Linkedin's Voldemort (N =2 or 3, R =1, W = 1 default)
Apache's Cassandra (N =3, R =1, W = 1 default)

<
N| 2

Client-centric Consistency Models

 FEach WRITE operation is assigned a unique identifier
* Done by the server where the operation is requested
e For each client ¢, we keep track of:

 Read set WSR : contains write operations relevant to
the read operations performed by ¢

o Write set WSy : contains write operations relevant to
the write operations performed by C

* For each server, we keep track of:

* Write set WS : contains the write operations executed
SO far

Read-Your-Write Implementation

* To perform a READ:
* A client
 sends READ and its WSy, to a server S.

e The server S:

 Checks if the WSy cWS, i.e., all the WRITES seen from
the client have been applied by the server

* |[f not, asks the other servers the missing WRITES
e Applies the missing WRITES locally and update its WS

* Return the requested value to the client

Read-Your-Write Implementation

* To perform a WRITE:
* A client
* sends WRITE and adds it to its WSw
* The server S
* Perform the WRITE
e adds itto its WS

Monotonic-Read Implementation

e To perform a READ:
* A client
e sends READ and its WSk to a server S.

* The server S:

* Checks if the WS cWS, i.e., all the WRITES seen from the client
have been applied by the server

* |[f not, asks the other servers the missing WRITES
* Applies the missing WRITES locally and update its WS
e Return the requested value and WS to the client

* The client

* adds WS to its Wog

Monotonic-Read Implementation

* To perform a WRITE:
* A client
* sends WRITE
* The server S
* Perform the WRITE
e adds itto its WS

Writes-Follow-Reads & Monotonic-Writes

e [wo additional constraints on the server:

 When a server S accepts a new WRITE
Wo at time t, it ensures that
WriteOrder(W+,W>) is true for any WRITE
W+ already in DB(S,1).

e Anti-entropy Is performed such that it
WRITE W2 is propagated from server S1to
server Sp at time t then any W1 in DB(S4,1)
such that WriteOrder(W+,W5>) Is also
poropagated to So.

References

e Ghosh, Distributed Systems - An
Algorithmic Approach (2nd ed), chapter 16

e D. Terry et al., Session Guarantees for
Weakly Consistent Replicated Data, https://
WWW.Cis.upenn.edu/~bcpierce/courses/dd/
papers/SessionGuaranteesPDIS.ps

e D. Terry, Replicated Data Consistency
Explained Through Baseball, http://
research.microsoft.com/pubs/157411/
ConsistencyAndBaseballReport.pdf

https://www.cis.upenn.edu/~bcpierce/courses/dd/papers/SessionGuaranteesPDIS.ps
http://research.microsoft.com/pubs/157411/ConsistencyAndBaseballReport.pdf

