L ogical Time

References:

 A.D. Kshemkalyani, M. Singhal. Distributed computing: principles,
algorithms, and systems. Cambridge University Press, 2011. Chapter 3.

 Any serious recent distributed systems book

Causality and physical time

Causality is fundamental to the design and analysis of parallel and
distributed computing and OS.

* Distributed algorithms design
* Knowledge about the progress
e (Concurrency measure

Usually causality is tracked using physical time.

In distributed systems, it is not possible to have a global physical time,
only an approximation.

 Network Time Protocol (NTP) can maintain time accurate to a few tens of
millisecond on the Internet

 Not adequate to capture the causality relationship in distributed systems

|dea

We cannot sync multiple clocks perfectly.

 Thus, if we want to order events happened at different processes, we
cannot rely on physical clocks.

Then came logical time.

* First proposed by Leslie Lamport in the 70's
 Based on causality of events

* Defined relative time, not absolute time

Critical observation: time (ordering) only matters if two or more processes
interact, i.e., send/receive messages.

® internal event O send event receive event

Events

P)-—@—6 = ® ® ® '
D v
P —6 e O ® ®

M \4 /m6
m
P,—G o o °

| %

N

m3 \
P4 e ‘e’ ewe

® inrernal event O send event ‘ receive event

Happens-Before Relation

The execution of a distributed application results in a set of distributed
events produced by the processes.

Let H denote the set of events executed in a distributed computation.

Define a binary relation on the set H, denoted as —, that expresses causal
dependencies between events in the distributed execution.

— is called Happens-Before relation.

Properties:

 Onthe same process: a = b if realtime(a) < realtime(b)
* [f p1sends mto p2: send(m) — receive(m)

 Transitivity:ifa = bandb — cthena — ¢

System of Logical Clocks

e Informally:
« FEvery process has a logical clock that is advanced according to some rules.
 Every eventis assigned a logical timestamp.

 The — relation between two events can be inferred from their timestamps.

 Timestamps obey a monotonicity property: if a — b, then timestamp(a) <
timestamp(b).

« Formally, a system of logical clocks is composed by:
 atime domain T, whose elements form a partially ordered set over a relation <.

« alogical clock C, that is a function mapping an event e in H to an element in the time
domain T, denoted as C(e) and called timestamp of e.

* alogical clock C must satisfy the clock consistency condition:

for two events e;and e, i = ;= C(e;) < C(g)

« The system of clocks (T,C) is said to be strongly consistent if the following condition is
satisfied:

for two events e;and e;, ei = ej & C(ej) < C(g))

Implementation

* |Implementation of logical clocks require:
e data structures |local to every process to represent logical time

 a set of rules to update the data structures to ensure the consistency
condition

 The data structures of a process p; must allow it to:
* measure its own progress, with a (logical) local clock Ic;

* represent its own view of the logical global time to assign consistent
timestamps to its local events, with a (logical) global clock gc;

o typically Iciis a part of g¢i
 The rules must:

 R1: decide how the logical local clock is updated by a process when it
executes an event (send, receive, internal)

 R2: decide how a process updates its logical global clock to update its view
of the global time and global progress.

Scalar Clocks

Proposed by Lamport in 1978.
Time domain T is the set of non-negative integers.

For each process pj, the logical local clock and the logical global clock are
squashed into one integer variable C..

R1: before executing an event (send, receive, internal), process p; executes the
following:

Ci:Ci+d(d>O)
* In general every time R1 is executed, d can have a different value.
« Typically dis kept at 1 to keep the rate of increase of Ci's to its lowest values.

R2: Each message piggybacks the clock value of it sender at sending time. When a
process pi receives a message with timestamp Cmgg, it executes the following
actions:

1. Ci — maX(Ci, Cmsg)
2. Execute R

3. Deliver the message to p;

Find the error. ..

Basic Properties

* The consistency property is satisfied.

» |f C(ei) = C(gj) then e; and g; are concurrent events.

* TJo totally order events, we need a tie-breaking mechanism for
concurrent events. This is typically done by augmenting the scalar

timestamp with a process identifier, e.g., (1,i).
* Process identitiers are linearly ordered and used to break ties.

 [f d=1 we have that, if event e has a timestamp h, then h-1

represents the minimum logical duration, counted in units of

events, required before producing event e.

* The strong consistency property is NOT satisfied.

Example

3 < 4 but the former did not happen before the latter

9
9
11
®
10

b
Pj, o
6

5 7

The lack of strong consistency is due to the
squashing of logical local and global clocks into one

Vector Clocks (1)

Proposed by Fidge, Mattern and Schmuck in 1988-1991.

Time domain T is a set of n-dimension non-negative

integer vectors.
Each process pi maintains a vector vti[1..n].
vti[i] is the logical local clock of p:.

Vvii[|] represents process pi's latest knowledge of process

pj local time. If vii[j] = x then process pi knows that local

time at process p; had progressed till x.

Vector Clocks (1)

Initially vt = [0, O, O, ..., O]

R1: before executing an event (send, receive, internal), process pi executes
the following:

vii[i] = vti[i] + d (d > 0)

R2: Each message m is piggybacked with the vector clock vt of the sender
process at sending time. When a process pi receives a message with (m,vt),
it executes the following actions:

1. Update its logical global time as follows:
1 <k < n: vii[k] = max(vti[k], vi[k])
2. Execute R1

3. Deliver the message m to pi

Example

LOMT

SN .4/

noo @

ANOO

—0o0 @

O @
@ o<
TolephSy
A< a\[ephSy
M
Ao @
AMM @
anaL@
aNO ANMO
ANO
NOO
oo~ @
o0 @
Q\ ™M
Q. Q.

Comparing Vector Clocks

e Vi1 =VIo

o iff VT4[i] = VTo[i], foralli=1,...,n

e VI1<VIy,

o iff VT4[i] < VTo[i], foralli=1,...,n

e Vi< VT2,

* iff VI1<VT2& A j(1<j<n&VT4[j] < VT2]j])

¢ VT1 || VT2

o iff ~(VT1<VT2) & —(VT2 < V1)

Basic Properties

The consistency property is satisfied.

The strong consistency property is satisfied (using always at least n
elements).

It two events x and y have timestamps vh and vk respectively, then we have
the following isomorphism:

X =y & vh < VK
X ||y e vh || vk

It d = 1 then we have the event counting property of scalar clocks for
logical local clocks.

Since vector clocks are strongly consistent they can track causal
dependencies exactly.

