Distributed Plattforms

e References:

* A.D. Fekete and K. Ramamritham. Consistency
models for replicated data. In B. Charron-Bost,
F. Pedone, and A. Schiper, editors, Replication,
volume 5959 of Lecture Notes in Computer
Science, pages 1-17. Springer, 2010.

e Any serious recent distributed systems book

Scalability

* The ability of a system, network, or process, to handle a growing amount of work in a
capable manner or its ability to be enlarged to accommodate that growth.

* We can measure growth in almost any terms. But there are three particularly interesting
things to look at:

e Size scalability: adding more nodes should make the system linearly faster; growing
the dataset should not increase latency

« (Geographic scalability: it should be possible to use multiple data centers to reduce
the time it takes to respond to user queries, while dealing with cross-data center
latency in some sensible manner.

« Administrative scalability: adding more nodes should not increase the administrative
costs of the system (e.g. the administrators-to-machines ratio).

* A scalable system is one that continues to meet the needs of its users as scale
increases. There are two particularly relevant aspects - performance and availability -
which can be measured in various ways.

Performance (and latency)

Characterization of the amount of useful work accomplished by a computer
system compared to the time and resources used.

Depending on the context, this may involve achieving one or more of the
following:

. Short response time/low latency for a given piece of work
. High throughput (rate of processing work)

. Low utilization of computing resource(s)

Latency: the state of being latent; delay, a period between the initiation of
something and the occurrence.

Latent: From Latin /atens, latentis, present participle of lateo ("lie hidden").
Existing or present but concealed or inactive.

Avalilability (and fault tolerance)

e the proportion of time a system is in a functioning condition. If a user cannot
access the system, it is said to be unavailable.

e |n formula, availability = uptime / (uptime + downtime)

e from a technical perspective, availability is mostly about being fault tolerant.

e Fault tolerance is the ability of a system to behave in a well-defined manner
once faults occur

Availability Nickname Downtime per year
90% one nine more than a month
99% two nines less than 4 days

99.9% three nines less than 9 hours
99.99% four nines less than 1 hour
99999% flve nines about 5 minutes

99.9999% SIX NiNes about 31 seconds

Examples

Examples

* One single server
 On average, one crash per week

« Mean Time Between Failures (MTBF) 10800 mins
* Two minutes to reboot

e Mean Time To Restart (MTTR) 2 mins

e Ona

e TwO

Examples

e One single server

M A = 10080/10802 = 0.9998 gk

e Mean Time To Restart (MTTR) 2 mins

Examples

One single server

M A = 10080/10802 = 0.9998 gk

Two
e Mean Time To Restart (MTTR) 2 mins

10 servers
MTBF, MTTR as before

All servers needed to perform operations

e Ona

e TwO

* 10 st
« MTB

Examples

e One single server

M A = 10080/10802 = 0.9998 gk

e Mean Time To Restart (MTTR) 2 mins

pf = 2/10802

A=L1-Dit=0 998
o All s&ast i e S s

Replication

* Increase availability
* Avoid single point of failure
* Time/Space replication
* Time replication
 When a replica fails, restart or replace it
 Lower maintenance, lower availability
* Space replication
* Run parallel copies, vote tfor output

* High-availability, high-cost

Problem

 Whenever a copy is modified, that copy becomes
different from the rest

* Modifications have to be carried out on all copies
to ensure consistency

e Conflicting operations:

e Read-—write conflict: concurrent read and write
operations

 Write—write conflict: two concurrent write
operations

Message from Amazon

“Whether or not
inconsistencies are
acceptable depends on
the client application. In
all cases the developer
must be aware that
consistency guarantees
are provided by the
storage systems and
must be taken into
account when
developing applications.”

-

ah‘f:' Q

N _
» ’» ' f;,‘ N
S Y R
Py N " v
k- ¥ ..

Amazon vice-president and Chief
Scientific Officer

W. Vogels. Eventual consistent.
Comm. of the ACM, 52(1):40-44,
2009

Message from Amazon
F— ,

“Whether or not ,
Inconsistencies are > 8
acceptable depe
the client applicati
all cases
must be
consiste
are provided DY the ScientificOfficer
storage systems and
must be taken into |

W. Vogels. Eventual consistent.

account when Comm. of the ACM, 52(1):40-44,
developing applications.” 2009

Consistency

« Consistency model — A contract between a distributed data store and a set of

processes, which specifies what the results of read/write operations are in the
presence of concurrency

« Strong consistency models
e Strict consistency
e Linearizability
e Sequential consistency
 Weak consistency models
e Eventual consistency
» Client-centric consistency models
 Read-after-read (monotonic read)

« Read-after-write (read your writes)

« Causal consistency

Strict Consistency

Definition

* A read operation must return the result of the latest
write operation which occurred on the data item

Implementation:

* Only possible with a global, pertectly synchronized
clock

* Only possible if all writes instantaneously visible to
all

* |tis the model of uniprocessor systems!

Linearizabllity

Definition

An execution E is linearizable provided that there exists a
sequence (linearization) H such that:

 H contains exactly the same operations that occur in E, each
paired with the return value received in E

 His a legal history of the sequential data type that is
replicated

* the total order of operations in H is compatible with the real-
time partial order <

* 01 < 02 means that the duration of operation o4 (from
invocation till it returns) occurs entirely before the duration
of operation 0o

Are the following sequences possible linearizations?
wix, 5) r(x)—=>5 w(y,6) rly)— 0
w(x, 5) r(x)—=5 rly)—= 0 w(y 6)

|s the above execution linearizable?

Are the following sequences possible linearizations?
wix, 5) r(x)—=>5 w(y,6) rly)— 0
w(x, 5) r(x)—=5 rly)—= 0 w(y 6)

|s the above execution linearizable?

Are the following sequences possible linearizations?
wix, 5) r(x)—=>5 w(y,6) rly)— 0
w(x, 5) r(x)—=5 rly)—= 0 w(y 6)

|s the above execution linearizable?

Are the following sequences possible linearizations?
wix, 5) r(x)—=>5 w(y,6) rly)— 0
w(x, 5) r(x)—=5 rly)—= 0 w(y 6) YES

|s the above execution linearizable? YES

Are the following sequences possible linearizations?
wix, 5) rix)=>5 w(y,6) rly)—6
w(x, 5) r(x)—=5 rly)—= 6 w(y 6)

|s the above execution linearizable?

Are the following sequences possible linearizations?
wix, 5) rix)=>5 w(y,6) rly)—6 YES
w(x, 5) r(x)—=5 rly)—= 6 w(y 6)

|s the above execution linearizable? YES

Seqguential Consistency

Definition

An execution E Is sequential consistent provided that there
exists a sequence H such that

 H contains exactly the same operations that occur in E, each
paired with the return value received in E

 His a legal history of the sequential data type that is
replicated

* [he total order of operations in H is compatible with the
client partial order <

e 01 < 0o means that the o1 and 02 occur at the same client
and that o1 returns before 0- is invoked

Example

CPPC

|s the execution above sequentially consistent?

|s the execution above sequentially consistent? YES

Example

CPPC

|s the execution above sequentially consistent?

|s the execution above sequentially consistent? NO

|s the execution above sequentially consistent?

|s the execution above sequentially consistent? NO

Y ¥ DO

|s the execution above sequentially consistent?

|s the execution above sequentially consistent? YES

lssues

 |tis easy to provide strong consistency through appropriate hardware and/or
software mechanisms

e But these are typically found to incur considerable penalties, in latency,
availability after faults, etc.

e Strong consistency often implies that message should arrive in the same
order

e Can be implemented through a sequencer replica
o Latency: the sequencer replica becomes a bottleneck
« Availability: a new sequencer must be elected after a failure
 Weak consistency relaxes the precise details ot which reorderings are allowed

o Within the activity of a client

* By whether there are any constraints at all on the information provided to
different clients

Eventual Consistency

 Consider a system where
e Updates are rare

e concurrent updates are absent, or can be easily resolved In
an automatic way

e Example: Domain Name System
 Eventual Consistency

* |f no updates take place tor a long time, all replicas will
gradually become consistent (i.e., the same)

* The consistency policy of epidemic protocols

* This is not a safety property, is a liveness one

lssues

Consider a replicated database that you access through your
notebook. The notebook acts as a front-end to the database

The database is eventually consistent

You move from |ocation A to location B

Unless you use the same server, you may detect inconsistencies:
* your updates at A may not have yet been propagated to B

* you may be reading newer entries than the ones available at A
* your updates at B may eventually conflict with those at A

The only thing you really care is that the entries you updated and/
or read at A, are in B the way you left them in A. In that case, the
database will appear to be consistent to you

Client-centric Consistency

* |n some cases, we can avoid system-wide
consistency, by concentrating on what specific clients
want, instead of what should be provided by servers

* Models:
* Read-after-read / Monotonic reads
* Write-after-write / Monotonic writes
* Read-after-write / Read-your-writes

 Write-after-read / Write-follows-reads

Read-after-read / Monotonic reads

If a process reads the value of a data item x, any

successive read operation on x by that process will
always return that same value or a more recent value

Example: Reading incoming mail on a web-server. Each
time you connect to a different e-mail server, that server
fetches (at least) all the updates from the server you

previously visited.

Read-after-write / Read-your-writes

The effect of a write operation by a process on data item
X, Will always be seen by a successive read operation
on x by the same process

Example: Editing of a web page. Updating your web
page and guaranteeing that your web browser shows
the newest version instead of its cached copy.

Write-after-write / Monotonic writes

A write operation by a process on a data item xIs
completed before any successive operation on x by the
same Process

Example: Concurrent software development systems.
Each time you connect to a CVS server, that server
updates (at least) over all the changes you previously
did.

Write-after-read / Write-follows-reads

A write operation by a process on data item x following a
previous read operation on x by the same process Is
guaranteed to take place on the same or a more recent
value of x that was read

Writes affect only up-to-date data items
Example:

Example: Comments to posts on Facebook. Each time you
write a comment to a post, the server must fetch (at least) all
previous updates to that post you previously read.

Session Consistency

A practical version of read-your-writes, where
processes access a data storage in the context of a
Session

As long as the session exists, the system guarantees
read-your-writes

If the session terminates because of a failure, a new
session must be created

Guarantees are limited to sessions

Amazon Web Services

PRODUCTS & SERVICES

Amazon S3
Product Details
Storage Classes
Pricing

Getting Started
FAQs
Resources

Amazon S3 SLA

RELATED LINKS

AWS Management Console
Documentation
Release Notes

Discussion Forum

Manage Your Resources

l Sign In to the Console

authoritative data store, and rely on it for business-critical operations.

Q: How is Amazon S3 data organized?

Amazon S3 is a simple key-based object store. When you store data, you assign a unique object key that can later be used to retrieve the
data. Keys can be any string, and can be constructed to mimic hierarchical attributes.

Q: How do | interface with Amazon S37

Amazon S3 provides a simple, standards-based REST web services interface that is designed to work with any Internet-development
toolkit. The operations are intentionally made simple to make it easy to add new distribution protocols and functional layers.

Q: How reliable is Amazon S3?7

Amazon S3 gives any developer access to the same highly scalable, reliable, fast, inexpensive data storage infrastructure that Amazon
uses to run its own global network of web sites. S3 Standard is designed for 99.99% availability and Standard - |A is designed for 99.9%
availability. Both are backed by the Amazon S3 Service Level Agreement.

Q: What data consistency model does Amazon S3 employ?

Amazon S3 buckets in all Regions provide read-after-write consistency for PUTS of new objects and eventual consistency for overwrite
PUTS and DELETES.

Q: What happens if traffic from my application suddenly spikes?

Amazon S3 was designed from the ground up to handle traffic for any Internet application. Pay-as-you-go pricing and unlimited capacity
ensures that your incremental costs don't change and that your service is not interrupted. Amazon S3's massive scale enables us to
spread load evenly, so that no individual application is affected by traffic spikes.

Q: What is the BitTorrent™ protocol, and how do | use it with Amazon S37?

BitTorrent is an open source Internet distribution protocol. Amazon S3's bandwidth rates are inexpensive, but BitTorrent allows
developers to further save on bandwidth costs for a popular piece of data by letting users download from Amazon and other users
simultaneously. Any publicly available data in Amazon S3 can be downloaded via the BitTorrent protocol, in addition to the default
client/server delivery mechanism. Simply add the ?torrent parameter at the end of your GET request in the REST API.

Amazon Web Services

PRODUCTS & SERVICES

Amazon S3
Product Details
Storage Classes
Pricing

Getting Started
FAQs
Resources

Amazon S3 SLA

RELATED LINKS

AWS Management Console
Documentation
Release Notes

Discussion Forum

Manage Your Resources

l Sign In to the Console

authoritative data store, and rely on it for business-critical operations.

Q: How is Amazon S3 data organized?

Amazon S3 is a simple key-based object store. When you store data, you assign a unique object key that can later be used to retrieve the
data. Keys can be any string, and can be constructed to mimic hierarchical attributes.

Q: How do | interface with Amazon S37

Amazon S3 provides a simple, standards-based REST web services interface that is designed to work with any Internet-development
toolkit. The operations are intentionally made simple to make it easy to add new distribution protocols and functional layers.

Q: How reliable is Amazon S37?

Amazon S3 gives any developer access to the same highly scalable, reliable, fast, inexpensive data storage infrastructure that Amazon
uses to run its own global network of web sites. S3 Standard is designed for 99.99% availability and Standard - |A is designed for 99.9%
availability. Both are backed by the Amazon S3 Service Level Agreement.

Q: What data consistency model does Amazon S3 employ?

Amazon S3 buckets in all Regions provide read-after-write consistency for PUTS of new objects and eventual consistency for overwrite
PUTS and DELETES.

Q: What happens if traffic from my application suddenly spikes?

Amazon S3 was designed from the ground up to handle traffic for any Internet application. Pay-as-you-go pricing and unlimited capacity
ensures that your incremental costs don't change and that your service is not interrupted. Amazon S3's massive scale enables us to
spread load evenly, so that no individual application is affected by traffic spikes.

Q: What is the BitTorrent™ protocol, and how do | use it with Amazon S37?

BitTorrent is an open source Internet distribution protocol. Amazon S3's bandwidth rates are inexpensive, but BitTorrent allows
developers to further save on bandwidth costs for a popular piece of data by letting users download from Amazon and other users
simultaneously. Any publicly available data in Amazon S3 can be downloaded via the BitTorrent protocol, in addition to the default
client/server delivery mechanism. Simply add the ?torrent parameter at the end of your GET request in the REST API.

Amazon Web Services

PRODUCTS & SERVICES

Amazon S3
Product Details
Storage Classes
Pricing

Getting Started
FAQs
Resources

Amazon S3 SLA

RELATED LINKS

AWS Management Console
Documentation
Release Notes

Discussion Forum

Manage Your Resources

l Sign In to the Console

authoritative data store, and rely on it for business-critical operations.

Q: How is Amazon S3 data organized?

Amazon S3 is a simple key-based object store. When you store data, you assign a unique object key that can later be used to retrieve the
data. Keys can be any string, and can be constructed to mimic hierarchical attributes.

Q: How do | interface with Amazon S37

Amazon S3 provides a simple, standards-based REST web services interface that is designed to work with any Internet-development
toolkit. The operations are intentionally made simple to make it easy to add new distribution protocols and functional layers.

Q: How reliable is Amazon S37?

Amazon S3 gives any developer access to the same highly scalable, reliable, fast, inexpensive data storage infrastructure that Amazon
uses to run its own global network of web sites. S3 Standard is designed for 99.99% availability and Standard - |A is designed for 99.9%
availability. Both are backed by the Amazon S3 Service Level Agreement.

Q: What data consistency model does Amazon S3 employ?

Amazon S3 buckets in all Regions provide read-after-write consistency for PUTS of new objects and eventual consistency for overwrite
PUTS and DELETES.

Q: What happens if traffic from my application suddenly spikes?

Amazon S3 was designed from the ground up to handle traffic for any Internet application. Pay-as-you-go pricing and unlimited capacity
ensures that your incremental costs don't change and that your service is not interrupted. Amazon S3's massive scale enables us to
spread load evenly, so that no individual application is affected by traffic spikes.

Q: What is the BitTorrent™ protocol, and how do | use it with Amazon S37?

BitTorrent is an open source Internet distribution protocol. Amazon S3's bandwidth rates are inexpensive, but BitTorrent allows
developers to further save on bandwidth costs for a popular piece of data by letting users download from Amazon and other users
simultaneously. Any publicly available data in Amazon S3 can be downloaded via the BitTorrent protocol, in addition to the default
client/server delivery mechanism. Simply add the ?torrent parameter at the end of your GET request in the REST API.

Library Version 12.1.6.1

Read your writes consistency
Prev Chapter 12. Berkeley DB Replication Next

Read your writes consistency

Getting a token
Token handling
Using a token to check or wait for a transaction

Some applications require the ability to read replicated data at a client site, and determine whether
it is consistent with data that has been written previously at the master site.

For example, a web application may be backed by multiple database environments, linked to form
a replication group, in order to share the workload. Web requests that update data must be served
by the replication master, but any site in the group may serve a read-only request. Consider a work
flow of a series of web requests from one specific user at a web browser: the first request
generates a database update, but the second request merely reads data. If the read-only request is
served by a replication client database environment, it may be important to make sure that the
updated data has been replicated to the client before performing the read (or to wait until it has
been replicated) in order to show this user a consistent view of the data.

Berkeley DB supports this requirement through the use of transaction "tokens". A token is a form of
identification for a transaction within the scope of the replication group. The application may
request a copy of the transaction's token at the master site during the execution of the transaction.
Later, the application running on a client site can use a copy of the token to determine whether the
transaction has been applied at that site.

It is the application's responsibility to keep track of the token during the interim. In the web
example, the token might be sent to the browser as a "cookie", or stored on the application server
in the user's session context.

The operations described here are supported both for Replication Manager applications and for
applications that use the replication Base API.

Library Version 12.1.6.1

Read your writes consistency
Prev Chapter 12. Berkeley DB Replication Next

Read your writes consistency

Getting a token
Token handling
Using a token to check or wait for a transaction

Some applications require the ability to read replicated data at a client site, and determine whether
it is consistent with data that has been written previously at the master site.

For example, a web application may be backed by multiple database environments, linked to form
a replication group, in order to share the workload. Web requests that update data must be served
by the replication master, but any site in the group may serve a read-only request. Consider a work
flow of a series of web requests from one specific user at a web browser: the first request
generates a database update, but the second request merely reads data. If the read-only request is
served by a replication client database environment, it may be important to make sure that the
updated data has been replicated to the client before performing the read (or to wait until it has
been replicated) in order to show this user a consistent view of the data.

Berkeley DB supports this requirement through the use of transaction "tokens". A token is a form of
identification for a transaction within the scope of the replication group. The application may
request a copy of the transaction's token at the master site during the execution of the transaction.
Later, the application running on a client site can use a copy of the token to determine whether the
transaction has been applied at that site.

It is the application's responsibility to keep track of the token during the interim. In the web
example, the token might be sent to the browser as a "cookie", or stored on the application server
in the user's session context.

The operations described here are supported both for Replication Manager applications and for
applications that use the replication Base API.

