
Distributed Platforms

• References:

• A. D. Fekete and K. Ramamritham. Consistency
models for replicated data. In B. Charron-Bost,
F. Pedone, and A. Schiper, editors, Replication,
volume 5959 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2010.

• Any serious recent distributed systems book 😄

Scalability
• The ability of a system, network, or process, to handle a growing amount of work in a

capable manner or its ability to be enlarged to accommodate that growth.

• We can measure growth in almost any terms. But there are three particularly interesting
things to look at:

• Size scalability: adding more nodes should make the system linearly faster; growing
the dataset should not increase latency

• Geographic scalability: it should be possible to use multiple data centers to reduce
the time it takes to respond to user queries, while dealing with cross-data center
latency in some sensible manner.

• Administrative scalability: adding more nodes should not increase the administrative
costs of the system (e.g. the administrators-to-machines ratio).

• A scalable system is one that continues to meet the needs of its users as scale
increases. There are two particularly relevant aspects - performance and availability -
which can be measured in various ways.

Performance (and latency)
• Characterization of the amount of useful work accomplished by a computer

system compared to the time and resources used.

• Depending on the context, this may involve achieving one or more of the
following:

• Short response time/low latency for a given piece of work

• High throughput (rate of processing work)

• Low utilization of computing resource(s)

• Latency: the state of being latent; delay, a period between the initiation of
something and the occurrence.

• Latent: From Latin latens, latentis, present participle of lateo ("lie hidden").
Existing or present but concealed or inactive.

Availability (and fault tolerance)
• the proportion of time a system is in a functioning condition. If a user cannot

access the system, it is said to be unavailable.

• In formula, availability = uptime / (uptime + downtime)

• from a technical perspective, availability is mostly about being fault tolerant.

• Fault tolerance is the ability of a system to behave in a well-defined manner
once faults occur

Availability Nickname Downtime per year
90% one nine more than a month
99% two nines less than 4 days

99.9% three nines less than 9 hours
99.99% four nines less than 1 hour
99999% five nines about 5 minutes

99.9999% six nines about 31 seconds

Examples

Examples
• One single server
• On average, one crash per week

• Mean Time Between Failures (MTBF) 10800 mins
• Two minutes to reboot

• Mean Time To Restart (MTTR) 2 mins

Examples
• One single server
• On average, one crash per week

• Mean Time Between Failures (MTBF) 10800 mins
• Two minutes to reboot

• Mean Time To Restart (MTTR) 2 mins

A = 10080/10802 = 0.9998

Examples
• One single server
• On average, one crash per week

• Mean Time Between Failures (MTBF) 10800 mins
• Two minutes to reboot

• Mean Time To Restart (MTTR) 2 mins

• 10 servers
• MTBF, MTTR as before
• All servers needed to perform operations

A = 10080/10802 = 0.9998

Examples
• One single server
• On average, one crash per week

• Mean Time Between Failures (MTBF) 10800 mins
• Two minutes to reboot

• Mean Time To Restart (MTTR) 2 mins

• 10 servers
• MTBF, MTTR as before
• All servers needed to perform operations

A = 10080/10802 = 0.9998

pf = 2/10802
A = (1-pf)10= 0.998

Replication
• Increase availability

• Avoid single point of failure
• Time/Space replication

• Time replication
• When a replica fails, restart or replace it
• Lower maintenance, lower availability

• Space replication
• Run parallel copies, vote for output
• High-availability, high-cost

Problem
• Whenever a copy is modified, that copy becomes

different from the rest
• Modifications have to be carried out on all copies

to ensure consistency
• Conflicting operations:

• Read–write conflict: concurrent read and write
operations

• Write–write conflict: two concurrent write
operations

Message from Amazon
“Whether or not
inconsistencies are
acceptable depends on
the client application. In
all cases the developer
must be aware that
consistency guarantees
are provided by the
storage systems and
must be taken into
account when
developing applications.”

Amazon vice-president and Chief
Scientific Officer

W. Vogels. Eventual consistent.
Comm. of the ACM, 52(1):40–44,
2009

Message from Amazon
“Whether or not
inconsistencies are
acceptable depends on
the client application. In
all cases the developer
must be aware that
consistency guarantees
are provided by the
storage systems and
must be taken into
account when
developing applications.”

Amazon vice-president and Chief
Scientific Officer

W. Vogels. Eventual consistent.
Comm. of the ACM, 52(1):40–44,
2009

Se non lo sapevi, sallo!!!!

Consistency
• Consistency model – A contract between a distributed data store and a set of

processes, which specifies what the results of read/write operations are in the
presence of concurrency

• Strong consistency models
• Strict consistency
• Linearizability
• Sequential consistency

• Weak consistency models
• Eventual consistency
• Client-centric consistency models

• Read-after-read (monotonic read)
• Read-after-write (read your writes)

• Causal consistency

Strict Consistency
Definition

• A read operation must return the result of the latest
write operation which occurred on the data item

Implementation:
• Only possible with a global, perfectly synchronized

clock
• Only possible if all writes instantaneously visible to

all
• It is the model of uniprocessor systems!

Linearizability
Definition
An execution E is linearizable provided that there exists a
sequence (linearization) H such that:

• H contains exactly the same operations that occur in E, each
paired with the return value received in E

• H is a legal history of the sequential data type that is
replicated

• the total order of operations in H is compatible with the real-
time partial order <
• o1 < o2 means that the duration of operation o1 (from

invocation till it returns) occurs entirely before the duration
of operation o2

Example
w(x, 5)C1

C2

r(y) → 0

r(x) → 5 w(y, 6)

P1

P2

Example
w(x, 5)C1

C2

r(y) → 0

r(x) → 5 w(y, 6)

P1

P2

Are the following sequences possible linearizations?
w(x, 5) r(x) → 5 w(y, 6) r(y) → 0
w(x, 5) r(x) →5 r(y) → 0 w(y, 6)

Is the above execution linearizable?

Example
w(x, 5)C1

C2

r(y) → 0

r(x) → 5 w(y, 6)

P1

P2

Are the following sequences possible linearizations?
w(x, 5) r(x) → 5 w(y, 6) r(y) → 0
w(x, 5) r(x) →5 r(y) → 0 w(y, 6)

Is the above execution linearizable?

NO
NO
NO

Example
w(x, 5)C1

C2

r(y) → 0

r(x) → 5 w(y, 6)

P1

P2

Example
w(x, 5)C1

C2

r(y) → 0

r(x) → 5 w(y, 6)

P1

P2

Are the following sequences possible linearizations?
w(x, 5) r(x) → 5 w(y, 6) r(y) → 0
w(x, 5) r(x) →5 r(y) → 0 w(y, 6)

Is the above execution linearizable?

Example
w(x, 5)C1

C2

r(y) → 0

r(x) → 5 w(y, 6)

P1

P2

Are the following sequences possible linearizations?
w(x, 5) r(x) → 5 w(y, 6) r(y) → 0
w(x, 5) r(x) →5 r(y) → 0 w(y, 6)

Is the above execution linearizable?

NO
YES
YES

Example
w(x, 5)C1

C2

r(y) → 6

r(x) → 5 w(y, 6)

P1

P2

Example
w(x, 5)C1

C2

r(y) → 6

r(x) → 5 w(y, 6)

P1

P2

Are the following sequences possible linearizations?
w(x, 5) r(x) → 5 w(y, 6) r(y) → 6
w(x, 5) r(x) →5 r(y) → 6 w(y, 6)

Is the above execution linearizable?

Example
w(x, 5)C1

C2

r(y) → 6

r(x) → 5 w(y, 6)

P1

P2

Are the following sequences possible linearizations?
w(x, 5) r(x) → 5 w(y, 6) r(y) → 6
w(x, 5) r(x) →5 r(y) → 6 w(y, 6)

Is the above execution linearizable?

YES
NO
YES

Sequential Consistency
Definition
An execution E is sequential consistent provided that there
exists a sequence H such that
• H contains exactly the same operations that occur in E, each

paired with the return value received in E
• H is a legal history of the sequential data type that is

replicated
• The total order of operations in H is compatible with the

client partial order <
• o1 < o2 means that the o1 and o2 occur at the same client

and that o1 returns before o2 is invoked

Example
w(x, 5)C1

C2

r(x) → 5

P1

P2

w(y, 6)

r(y) → 0

Example
w(x, 5)C1

C2

r(x) → 5

P1

P2

w(y, 6)

Is the execution above sequentially consistent?

r(y) → 0

Example
w(x, 5)C1

C2

r(x) → 5

P1

P2

w(y, 6)

Is the execution above sequentially consistent? YES

r(y) → 0

Example
w(x, 0)C1

C2

r(x) → 5

P1

P2

w(y, 6)

r(y) → 0

Example
w(x, 0)C1

C2

r(x) → 5

P1

P2

w(y, 6)

Is the execution above sequentially consistent?

r(y) → 0

Example
w(x, 0)C1

C2

r(x) → 5

P1

P2

w(y, 6)

Is the execution above sequentially consistent? NO

r(y) → 0

Example
w(x, 5)C1

C2

r(x) → 0

P1

P2

w(y, 6)

r(y) → 0

Example
w(x, 5)C1

C2

r(x) → 0

P1

P2

w(y, 6)

Is the execution above sequentially consistent?

r(y) → 0

Example
w(x, 5)C1

C2

r(x) → 0

P1

P2

w(y, 6)

Is the execution above sequentially consistent? NO

r(y) → 0

Example
w(x, 5)C1

C2

r(x) → 5

P1

P2

w(y, 6)

r(y) → 0

Example
w(x, 5)C1

C2

r(x) → 5

P1

P2

w(y, 6)

Is the execution above sequentially consistent?

r(y) → 0

Example
w(x, 5)C1

C2

r(x) → 5

P1

P2

w(y, 6)

Is the execution above sequentially consistent? YES

r(y) → 0

Issues
• It is easy to provide strong consistency through appropriate hardware and/or

software mechanisms
• But these are typically found to incur considerable penalties, in latency,

availability after faults, etc.
• Strong consistency often implies that message should arrive in the same

order
• Can be implemented through a sequencer replica

• Latency: the sequencer replica becomes a bottleneck
• Availability: a new sequencer must be elected after a failure

• Weak consistency relaxes the precise details of which reorderings are allowed
• Within the activity of a client
• By whether there are any constraints at all on the information provided to

different clients

Eventual Consistency
• Consider a system where

• updates are rare
• concurrent updates are absent, or can be easily resolved in

an automatic way
• Example: Domain Name System

• Eventual Consistency
• If no updates take place for a long time, all replicas will

gradually become consistent (i.e., the same)
• The consistency policy of epidemic protocols
• This is not a safety property, is a liveness one 

Issues
• Consider a replicated database that you access through your

notebook. The notebook acts as a front-end to the database
• The database is eventually consistent
• You move from location A to location B
• Unless you use the same server, you may detect inconsistencies:

• your updates at A may not have yet been propagated to B
• you may be reading newer entries than the ones available at A
• your updates at B may eventually conflict with those at A

• The only thing you really care is that the entries you updated and/
or read at A, are in B the way you left them in A. In that case, the
database will appear to be consistent to you

Client-centric Consistency

• In some cases, we can avoid system-wide
consistency, by concentrating on what specific clients
want, instead of what should be provided by servers

• Models:
• Read-after-read / Monotonic reads
• Write-after-write / Monotonic writes
• Read-after-write / Read-your-writes
• Write-after-read / Write-follows-reads

Read-after-read / Monotonic reads

If a process reads the value of a data item x, any
successive read operation on x by that process will

always return that same value or a more recent value

Example: Reading incoming mail on a web-server. Each
time you connect to a different e-mail server, that server
fetches (at least) all the updates from the server you
previously visited.

Read-after-write / Read-your-writes

The effect of a write operation by a process on data item
x, will always be seen by a successive read operation

on x by the same process

Example: Editing of a web page. Updating your web
page and guaranteeing that your web browser shows
the newest version instead of its cached copy.

Write-after-write / Monotonic writes

A write operation by a process on a data item x is
completed before any successive operation on x by the

same process

Example: Concurrent software development systems.
Each time you connect to a CVS server, that server
updates (at least) over all the changes you previously
did.

Write-after-read / Write-follows-reads

A write operation by a process on data item x following a
previous read operation on x by the same process is

guaranteed to take place on the same or a more recent
value of x that was read

Writes affect only up-to-date data items

Example:

Example: Comments to posts on Facebook. Each time you
write a comment to a post, the server must fetch (at least) all
previous updates to that post you previously read.

Session Consistency

• A practical version of read-your-writes, where
processes access a data storage in the context of a
session

• As long as the session exists, the system guarantees
read-your-writes

• If the session terminates because of a failure, a new
session must be created

• Guarantees are limited to sessions

