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Coordination



Consensus & Agreement
• It is generally important that the processes within a 

distributed system have some sort of agreement 

• Coordination among multiple parties involves 
agreement among those parties  

• Agreement ⟺ Consensus ⟺ Consistency 

• Agreement is difficult in a dynamic asynchronous 
system in which processes may fail or join/leave 



Impossibility Theorems
• Two fundamental theorems, FLP and CAP, influences the system 

design choices 

• FLP theorem: asynchronicity vs synchronicity 

Consensus is impossible to implement in such a way that it 
both a) is always correct and b) always terminates if even one 
machine might fail in an asynchronous system with crash fault 
failures

• CAP theorem: what happens when network partitions are included 
in the failure model 

You can’t implement consistent storage and respond to all 
requests if you might drop messages between processes.



• Impossibility of Distributed Consensus with One 
Faulty Process, by Fischer, Lynch and Paterson 
(1985) 

• Consensus Problem: we have a set of processes, 
each one with a private input; the processes 
communicate; the processes must agree on on 
some process’s input.

FLP



Consensus is important
• With consensus we can implement anything we can imagine: 

• leader decision 

• mutual exclusion 

• transaction commitment 

• much more… 

• In some models consensus is possible, in some other models, it is 
not 

• The goal is to learn whether, for a given model, consensus is 
possible or not… and prove it!



(Wrong) Consensus Protocol
• Model: 

• n > 1 processes 

• shared memory (may be accessed simultaneously by multiple processes) 

• processors can atomically read and write (not both) a shared memory location 

• Protocol: 

• There is a specific memory location C 

• Initially C is in a special state ⏊ 

• Processor 1 writes its value v1 into C, then decides on v1 

• Processors j ≠ 1 read C until they read something else than ⏊ and then decide on that 

• Problems with this protocol?



Consensus Properties
1. Agreement: Every correct process must agree on the 

same value. 

2. Integrity: Every correct process decides at most one 
value, and if it decides some value, then it must have 
been proposed by some process. 

3. Termination: All correct processes eventually reach a 
decision. 

4. Validity: If all correct processes propose the same 
value V, then all correct processes decide V.



FLP System Model
• Asynchronous communication model, i.e., no upper bound on the 

amount of time processors may take to receive, process and 
respond to an incoming message 

• Communication links between processors are assumed to be 
reliable. It is well known that given arbitrarily unreliable links no 
solution for consensus could be found even in a synchronous 
model. 

• Processors are allowed to fail according to the crash fault model – 
this simply means that processors that fail do so by ceasing to 
work correctly. There are more general failure models, such as 
byzantine failures where processors fail by deviating arbitrarily 
from the algorithm they are executing. 



Notation (I)
• There are N > 1 processors which communicate by sending messages. 

• A message is a pair (p,m) where p is the processor the message is 
intended for, and m is the contents of the message. 

• Messages are stored in an abstract data structure called the message 
buffer which is a multiset – simply a set where more than one of any 
element is allowed – which supports two operations, send and receive. 

• send(p,m) simply places the message (p,m) in the message buffer. 

• receive(p) either returns a (random) message for processor p (and 
removes it from the message buffer) or the special value ∅, which does 
nothing.



Notation (II)
• Configuration: the internal state of all of the processors – the current step in the algorithm that they are 

executing and the contents of their memory – together with the contents of the message buffer. 

• Step: the system moves from one configuration to the next by a step which consists of a processor p 
performing receive(p) and moving to another configuration, i.e.: 

• based on p local state and m, send an arbitrary but finite number of messages 

• based on p local state and m, change p local state to some new state 

• Event: each step is therefore uniquely defined by the message that is received (possibly ∅) and the process p 
that received it. That pair is called an event (equivalent to a message) 

• Configurations move from one to another through events. 

• An event e can be applied to a configuration C if either m is ∅ or (p,m) is in the message buffer 

• C’ = e(C) means that if we apply event e to configuration C we move to configuration C’ 

• Execution: a possibly infinite sequence of events from a specific initial configuration.  

• Since the receive operation is non-deterministic, there are many different possible executions for a given 
initial configuration.



Notation (III)
• Schedule & Run: a particular execution σ, defined by a possibly infinite sequence of events 

from a starting configuration, is called a schedule and the sequence of steps taken to realize 
the schedule is a run. 

• Non-faulty processes take infinitely many steps in a run (presumably eventually just 
receiving ∅ once the algorithm has finished its work) – otherwise a process is considered 
faulty.  

• σ can be applied to configuration C if the events in σ can be applied to C in order 

• C’ = σ(C) means that if we apply schedule σ to configuration C we move to configuration C’ 

• An admissible run is one where at most one process is faulty (capturing the failure requirements 
of the system model) and every message is eventually delivered (this means that every 
processor eventually gets chosen to receive infinitely many times). 

• We say that a run is a deciding run provided that some process eventually decides according 
to the properties of consensus, and that a consensus protocol is totally correct if every 
admissible run is a deciding run.



Proof Sketch
• FLP Theorem [1985]. No totally correct consensus 

algorithm exists (for the given system model). 

• The idea behind it is to show that there is some 
admissible run – i.e., one with only one processor 
failure and eventual delivery of every message – that 
is not a deciding run – i.e., in which no processor 
eventually decides and the result is a protocol which 
runs for ever (because no processor decides).  

• Two processors and binary consensus values



Proof Sketch

?
initial 

undecided 
configuration

?

undecided 
configuration

messages 
delivered

messages 
delivered

Lemma 2: This always exists

Lemma 3: We can always get here



Lemma 2
• We want to show that there is some initial 

configuration in which the decision is not 
predetermined by the values of the processors, but 
it is a result of the messages exchanges and the 
occurrence of any failure 

• We proceed by contradiction, using two processors 
and boolean decisions. 

• Assume all initial configurations have 
predetermined executions



Two nodes system
Configuration

P1:0 P2:0

Decision

V:0

Configuration

P1:0 P2:1

Decision

V:1

Configuration

P1:1 P2:1

Decision

V:1

Configuration

P1:1 P2:0

Decision

V:0

I decide 0 I decide 1

whatever happens 
(any sequence of messages delivered)



Two nodes system
C1

P1:0 P2:0

Decision

V:1

C0

P1:0 P2:1

Decision

V:0

I decide 1 I decide 0

X X
• P2 initially fails, no messages 

sent or received 
• P1 can’t know P2 initial value 

• There is a run from C0 
deciding 0 even if P2 fails 

• The same run can also be 
made by C1 

• They must decide on the 
same value, but they do not!



Valency
• A given configuration C is a bivalent if the decision 

if not predetermined, i.e. outcome can be 0 or 1. 

• A given configuration C is univalent if it is not 
bivalent, e.g. 0-valent and 1-valent configurations. 

• Undecided configuration is equivalent to bivalent 

• Predetermined configuration is equivalent to 
univalent



Commutativity Lemma

• Let σ1 and σ2 be two schedules such that the set of 
processes executing steps in σ1 are disjoint from 
the set that execute steps in σ2. Then for any 
configuration C that σ1 and σ2 can both be applied, 
we have σ1(σ2(C)) = σ2(σ1(C)). 

• Proof by induction on k = max(|σ1|,|σ2|)



Induction Base
• We want to prove that e1(e2(C)) = e2(e1(C)) 

• Suppose e1 = (p1, m1) and e2 = (p2, m2). Since e1 can 
be applied to C, it means either m1 is ∅ or (p1, m1) is 
in the message system. The same is for e2. Because 
p1 ≠ p2, e1 can be applied to e2(C) and e2 can be 
applied to e1(C).  

• Let C1 = e1(e2(C)) and C2 = e2(e1(C)). Then the state of 
the message system is the same in C1 as in C2. The 
states of all processes are the same in C1 and C2 as 
well. Thus C1 = C2.



Induction Step
• Case 1: |σ1| = k+1, |σ2| ≤ k 

Suppose the first event in σ1 is e and σ1 = (σ,e). Then 
σ1(σ2(C)) = σ(e(σ2(C))) = σ(σ2(e(C))) =  σ2(σ(e(C))) = σ2(σ1(C)) 

• Case 2: |σ1| ≤ k, |σ2| = k+1 

Same as Case 1. 

• Case 3: |σ1| = k+1, |σ2| = k+1 

Suppose the first event in σ2 is e and σ2 = (σ,e). Then 
σ1(σ2(C)) = σ1(σ(e(C))) = σ(σ1(e(C))) =  σ(e(σ1(C))) = σ2(σ1(C)) 
(we used Case 1 here)



Delayed message Lemma 

• Let C be a configuration, and e = (p,m) is an event 
that can be applied to C. Let W be the set of 
configurations that is reachable from C without 
applying e, then e can be applied to any state in W.  

• Proof: trivial.



Lemma 3
• We want to show that we can keep the system in a bivalent state 

• Formally, let C be a bivalent configuration, and e=(p,m) any 
event that can be applied to C. Let W be the set of 
configurations that is reachable from C without applying e, and 
V = e(W) to be the set of configurations reached by applying e 
to the configurations in W. Then V contains a bivalent 
configuration.  

• We need 4 intermediate claims. 

• We proceed by contradiction, assuming V contains univalent 
configurations only (in claims too) and reaching a contradiction.



Lemma 3
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Claim 1
• There is a 0-valent configuration F such that F = σ(C), i.e. F is reachable from 

C, and σ contains the event e. 

Proof: C is bivalent, so we must have a 0-valent configuration C0 reachable 
from C where C0 = σ1(C) 

- Case 1: σ1 contains e. Hence F = C0  and σ = σ1. 

- Case 2: σ1 does not contain e. We let F = e(C0) and σ = (σ1,e). Since C0 is 
0-valent, F must be 0-valent as well.

?
C0 = F

0

e

σ = σ1

C

?
C0

0
σ1

C
0
F



Claim 2

• There must be a 0-valent configuration C0 in V. 

Proof: Consider the F as defined in Claim 1, and 
the prefix σ’ of σ whose last event is e. Let C0 = 
σ’(C) ∈V. Because V does not contain bivalent 
states and because the 0-valent state F is 
reachable from C0, C0 must be 0-valent.



Claim 3

• There must  a 1-valent configuration C1 in V. 

Proof: as per Claims 1 & 2



Claim 4

• There must be F0 and F1 in W, such that e(F0) is 0-
valent, e(F1) is 1-valent, and F0 and F1 are 
neighbors, i.e., either F1 = d(F0) or F0 = d(F1).  

• Proof: by simple induction, assuming w.l.o.g. e(C) 
is 0-valent



Claim 4
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?
C

11

0

0

0

W
1

1

0

0
0

V

e

e
e

e

e

0
e



Claim 4

F0

C

1F1

0

0

0

W
1

1

0

0
0

V

e

e
e

e

e

0
e



Lemma 3 Proof
• Consider F0 and F1 in W, such that e(F0) = C0 is 0-valent, e(F1) = C1 is 1-valent, and w.l.o.g. assume F1 = d(F0) 

(by Claim 4) 

• e and d must occur on the same process p because otherwise C1 = e(F1) = e(d(F0)) = d(C0) will have a 
decision of 0 (by Commutativity Lemma) 

• Consider all possible executions starting from configuration F0. By termination requirement (and also to 
tolerate one process failure), there must be an execution where  

i) some process decides, and 

ii) process p does not execute any steps.  

Let the configuration immediately after some process decides be T where T = σ(F0) and σ does not contain 
any step by process p. 

• We have e(T) = e(σ(F0)) =σ(e(F0)) =σ(C0) which is 0-valent (by Commutativity Lemma) 

• We also have e(d(T)) = e(d(σ(F0))) = σ(e(d(F0))) = σ(e(F1)) =σ(C1) which is 1-valent (by Commutativity Lemma)  

• But some process has already decided in T. Regardless of whether the decision is 0 or 1, agreement can be 
violated. Contradiction.   



Consequences of FLP
• There is no way to solve the consensus problem under a very 

minimal system model in a way that cannot be delayed forever 

• Complete correctness if not possible in asynchronous models 

• In practice, we may live with very low probability of disagreement 
(give up safety) 

• In practice, we may live with very low probability of blocking (give 
up liveness) 

• Two-phase commit or even three-phase commit can block forever 

• This result is particularly relevant to people designing algorithms



• Presented as Brewer’s Conjecture in 2000 

• Formalized and proved in Brewer’s Conjecture and the Feasibility of 
Consistent, Available, Partition-Tolerant Web Services, by Lynch and 
Gilbert (2002) 

• Consistency, availability and partition-tolerance cannot be achieved all at 
the same time in a distributed system. 

• Simply, in an asynchronous network that performs as expected, where 
messages may be lost (partition-tolerance), it is impossible to implement a 
service providing correct data (consistency) and eventually responding to 
every request (availability) under every pattern of message loss. 

• Slides from http://cs-wwwarchiv.cs.unibas.ch/lehre/hs10/cs341/_Downloads/
Workshop/Talks/2010-HS-DIS-I_Giangreco-CAP_Theorem-Talk.pdf

CAP

http://cs-wwwarchiv.cs.unibas.ch/lehre/hs10/cs341/_Downloads/Workshop/Talks/2010-HS-DIS-I_Giangreco-CAP_Theorem-Talk.pdf


• All the nodes in the system see the same state of the data 

• Formally, we speak of atomic or linearizable consistency 

• There exists a sequential order on all operations which is consistent 
with the order of invocations and responses, such that each operation 
looks as if it were completed at a single instant.

Consistency

V1 V1 V1



• Every request received by a non-failing node 
should be processed and must result in a response

Availability



• If some nodes crash and/or some communications 
fail, system still performs as expected

Partition Tolerance

≣ ≣



It is impossible in the asynchronous network model to 
implement a read/write data object that guarantees the following 
properties: 

• Availability 

• Atomic consistency 

in all fair executions (including those in which messages are lost).

CAP Theorem 1

Asynchronous, i. e. there is no clock, nodes make decisions 
based only on the messages received and local computation.



It is impossible in the partially synchronous network model to 
implement a read/write data object that guarantees the following 
properties: 

• Availability 

• Atomic consistency 

in all fair executions (including those in which messages are lost).

CAP Theorem 2

Partially synchronous, i. e. every node has a clock, and all clocks 
increase at the same rate. However, they are not synchronized.



Proof 1 Sketch

V0 V0 V0

• Let v0 be the initial value 
of an atomic object. 

• A single write of a value 
not equal to v0 occurs. 
Assume that no other 
client requests occur. 

• We know that this write 
completes, by the 
availability requirement. 

• A single read occurs, 
and no other client 
requests occur, ending 
with the termination of 
the read operation. 

• The read operation 
returns v1.

No partition
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Proof 1 Sketch

V0 V0
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Proof 1 Sketch
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Proof 1 Sketch
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Proof 1 Sketch
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Proof 1 Sketch
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Proof 1 Sketch
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Consequences of CAP



Consequences of CAP
• When partitions are rare (e.g., parallel systems), 

CAP should allow perfect C and A most of the time 

• In distributed systems it is not possible to avoid 
network partitions. 

• There is not a need to choose between either C or 
A, instead, it is more an act of balancing between 
the two properties.



Practical Consequences of CAP
• Many system designs used in early distributed relational database systems 

did not take into account partition tolerance (e.g. they were CA designs). 

• There is a tension between strong consistency and high availability during 
network partitions. A distributed system consisting of independent nodes 
connected by an unpredictable network cannot behave in a way that is 
indistinguishable from a non-distributed system. 

• There is a tension between strong consistency and performance in normal 
operation. Strong consistency requires that nodes communicate and agree 
on every operation. This results in high latency during normal operation. 

• If we do not want to give up availability during a network partition, then we 
need to explore whether consistency models other than strong consistency 
are workable for our purposes.


