
Distributed Enabling Platforms

VirtualBox Install
• VirtualBox is a powerful x86 and AMD64/Intel64 virtualization

product.
• VirtualBox runs on Windows, Linux, Macintosh, and Solaris hosts.
• VirtualBox supports a large number of guest operating systems

including but not limited to:
- Windows (NT 4.0, 2000, XP, Server 2003, Vista, Windows 7),
- DOS/Windows 3.x,
- Linux (2.4 and 2.6),
- Solaris and OpenSolaris.

• Go to https://www.virtualbox.org/wiki/Downloads and get the
appropriate installer.

• Install it using standard procedures for your operating system.
• For help check https://www.virtualbox.org/manual/ch02.html.

 1

https://www.virtualbox.org/wiki/Virtualization
https://www.virtualbox.org/wiki/Guest_OSes
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/manual/ch02.html

Distributed Enabling Platforms

Vagrant Install

 2

• Vagrant provides easy to configure, reproducible, and portable work
environments.
!

• Go to http://downloads.vagrantup.com/ and get the appropriate installer
or package for your platform.

• Install it using standard procedures for your operating system.
!

• The installer will automatically add vagrant to your system path so that it
is available in terminals.

• If it is not found, please try logging out and logging back in to your system
(this is particularly necessary sometimes for Windows).
!

• Documentation at http://docs.vagrantup.com/v2/

http://downloads.vagrantup.com

Distributed Enabling Platforms

(Vagrant Uninstall)
• On Windows, uninstall using the add/remove programs

section of the control panel.
!

• On Mac OS X, remove the /Applications/Vagrant directory
and the /usr/bin/vagrant file.
!

• On Linux, remove the /opt/vagrant directory and the /usr/
bin/vagrant file.
!

• Remove the ~/.vagrant.d directory to delete the user data.

 3

Distributed Enabling Platforms

Setup
• Configure Vagrant using a Vagrantfile. The purpose of the
Vagrantfile is twofold:
- Mark the root directory of your project. A lot of the configuration of

Vagrant is relative to this root directory.
- Describe the kind of machine and resources you need to run your project,

as well as what software to install and how you want to access it.
• Initialize a directory for usage with Vagrant: vagrant init

- $ mkdir vagrant_lab
- $ cd vagrant_lab
- $ vagrant init

• This will place a Vagrantfile in your current directory. You can
take a look at the Vagrantfile if you want, it is filled with
comments and examples.

 4

Distributed Enabling Platforms

Boxes (I)
• Instead of building a virtual machine from scratch, Vagrant uses a base

image to quickly clone a virtual machine.
• These base images are known as boxes in Vagrant.
!

• Specifying the box to use for your Vagrant environment is always the first step
after creating a new Vagrantfile.
!

• Boxes are added to Vagrant with vagrant box add. This stores the box under a
specific name so that multiple Vagrant environments can re-use it.
!

- $ vagrant box add precise64 http://files.vagrantup.com/precise64.box
!

• This will download the box from an HTTP source and save it as "precise64"
in a directory that Vagrant manages (away from your project). You can also
add boxes from a local file path.

 5

http://files.vagrantup.com/precise32.box

Distributed Enabling Platforms

Boxes (II)
• Added boxes can be re-used by multiple projects.
• Each project uses a box as an initial image to clone from, and never modifies the

actual base image.
• This means that if you have two projects both using the precise64 box we just

added, adding files in one guest machine will have no effect on the other machine.
!

• Now that the box has been added to Vagrant, we need to configure our project to
use it as a base.

• Open the Vagrantfile and change the contents to the following:
!

Vagrant.configure("2") do |config|
 config.vm.box = "precise64"
end

!
• The "precise64" in this case must match the name you used to add the box

above. This is how Vagrant knows what box to use.

 6

Distributed Enabling Platforms

Up and SSH
• To boot the guest machine, run the following:
- $ vagrant up
!

• In less than a minute, this command will finish and you'll have a virtual machine
running Ubuntu.

• Vagrant runs the virtual machine without a UI.
!

• To prove that it is running, you can SSH into the machine:
- $ vagrant ssh

• Interact with the machine and do whatever you want.
!

• Be careful about rm -rf /, since Vagrant shares a directory at /vagrant with the
directory on the host containing your Vagrantfile, and this can delete all those files.
!

• When you're done fiddling around with the machine, run vagrant destroy back on
your host machine, and Vagrant will remove all traces of the virtual machine.

 7

Distributed Enabling Platforms

Syncing
• By default, Vagrant shares your project directory (remember,

that is the one with the Vagrantfile) to the /vagrant
directory in your guest machine:
!

$ vagrant up
$ vagrant ssh
vagrant@precise64:~$ ls /vagrant
Vagrantfile
vagrant@precise64:~$ touch /vagrant/foo
vagrant@precise64:~$ exit
$ ls
foo Vagrantfile

 8

Distributed Enabling Platforms

Networking
• We will use port forwarding (other options available).
• Port forwarding allows you to specify ports on the guest machine to share via

a port on the host machine.
!

• Edit the Vagrantfile:
!

Vagrant.configure("2") do |config|
 config.vm.box = "precise64"
 config.vm.network :forwarded_port, host: 8080, guest: 8080
end

!
• Run a vagrant reload or vagrant up (depending on if the machine is

already running) so that these changes can take effect.

 9

Distributed Enabling Platforms

Teardown
• Suspending the virtual machine:

‣vagrant suspend will save the current running state of the machine and stop it.
‣When you run vagrant up, the virtual machine will be resumed from where you left off.
‣Usually taking only 5 to 10 seconds to stop and start your work.
‣The virtual machine requires disk space to store all the state of the virtual machine RAM on

disk.
• Halting the virtual machine

‣vagrant halt will gracefully shut down the guest operating system and power down the
guest machine.
‣When you run vagrant up when you're ready to boot it again.
‣The contents of disk are preserved.
‣ It'll take some extra time to start from a cold boot.

• Destroying the virtual machine
‣vagrant destroy will remove all traces of the guest machine from your system.
‣ It'll stop the guest machine, power it down, and remove all of the guest hard disks.
‣The disk space and RAM consumed by the guest machine is reclaimed and your host

machine is left clean.

 10

Distributed Enabling Platforms

Java SE 7
• Work on the host (physical machine)

- Go to http://www.oracle.com/technetwork/java/javase/downloads/index.html
- Click on Java Platform (JDK) 7u45
- Read & accept License Agreement, download jdk-7u45-linux-x64.tar.gz
- Move the tar.gz file in the vagrant project folder (vagrant_lab)
!

• Work on the guest (inside vagrant)
!

$ sudo mkdir -p /usr/lib/jvm
!
$ sudo tar zxvf /vagrant/jdk-7u45-linux-x64.tar.gz -C /usr/lib/jvm/
!
$ sudo update-alternatives --install "/usr/bin/java" "java" "/usr/lib/jvm/jdk1.7.0_45/bin/java" 1
$ sudo update-alternatives --install "/usr/bin/javac" "javac" "/usr/lib/jvm/jdk1.7.0_45/bin/javac" 1
$ sudo update-alternatives --install "/usr/bin/javaws" "javaws" "/usr/lib/jvm/jdk1.7.0_45/bin/javaws" 1
!
$ java -version
java version "1.7.0_45"
Java(TM) SE Runtime Environment (build 1.7.0_45-b43)
Java HotSpot(TM) 64-Bit Server VM (build 24.0-b56, mixed mode)
!
$

 11

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Distributed Enabling Platforms

Tomcat 6 (I)
• Work on the guest (inside vagrant)

- Download
$ wget http://mirrors.ibiblio.org/apache/tomcat/tomcat-6/v6.0.37/bin/apache-tomcat-6.0.37.tar.gz
!

- Install
$ sudo mkdir -p /usr/local
$ sudo tar zxvf apache-tomcat-6.0.37.tar.gz -C /usr/local/
!

- Link
$ sudo ln -s /usr/local/apache-tomcat-6.0.37/ /usr/local/tomcat
!

- Auto-start
$ sudo nano /etc/init.d/tomcat

 12

Distributed Enabling Platforms

Tomcat 6 (II)

Startup script for the Tomcat server

chkconfig: - 83 53
description: Starts and stops the Tomcat daemon.
processname: tomcat
pidfile: /var/run/tomcat.pid
See how we were called.
case $1 in
 start)
 export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_40/
 export CLASSPATH=/usr/local/tomcat/lib/servlet-api.jar
 export CLASSPATH=/usr/local/tomcat/lib/jsp-api.jar
 export JRE_HOME=/usr/lib/jvm/jdk1.7.0_40/
 echo "Tomcat is started"
 sh /usr/local/tomcat/bin/startup.sh
 ;;
 stop)
 export JRE_HOME=/usr/lib/jvm/jdk1.7.0_40/
 sh /usr/local/tomcat/bin/shutdown.sh
 echo "Tomcat is stopped"
 ;;
 restart)
 export JRE_HOME=/usr/lib/jvm/jdk1.7.0_40/
 sh /usr/local/tomcat/bin/shutdown.sh
 echo "Tomcat is stopped"
 sh /usr/local/tomcat/bin/startup.sh
 echo "Tomcat is started"
 ;;
 *)
 echo "Usage: /etc/init.d/tomcat start|stop|restart"
 ;;
esac
exit 0

 13

Distributed Enabling Platforms

Tomcat 6 (III)
- Set Permissions

$ sudo chmod 755 /etc/init.d/tomcat
$ sudo update-rc.d tomcat defaults
!

- Start
$ sudo /etc/init.d/tomcat start
!

- Check (on host) at http://localhost:8080
!
!

 14

Distributed Enabling Platforms

ANT
• Apache Ant (http://ant.apache.org) is a tool to automatically

compile Java programs and related tasks:
- JAR creation
- JUnit test execution
- Javadoc creation
- Application deployment

• Similar to Make but:
- is pure Java
- does not depend on shell
- targets specifically Java code

• sudo apt-get -u install ant

 15

Distributed Enabling Platforms

ANT - Core concepts
• Ant is configured with an XML file with default name build.xml
• The configuration file describes a project
• A project can include one or more targets
• Each target includes a sequence of tasks
!

• From command line, the user specifies the configuration file and the
target to run
- if no configuration file is specified, using build.xml in current directory
- if no target is specified, using the default target as specified in configuration
!

• Ant manages every dependencies among targets.

 16

Distributed Enabling Platforms

ANT Projects
• The root element of a build.xml file is <project> with its attributes
• The basedir attribute specifies the root of relative paths
• The default attribute specifies the name of the default target
• The name attribute specifies the name of the project

 17

<?xml version="1.0" encoding="UTF-8"?>	
<project basedir="." default="clean" name="Foo">	
 		
 	 <target name="clean">	
 	</target>	
!
 	 <target name="compile">	
 	</target>	
	 	
</project>

Distributed Enabling Platforms

ANT Targets
• A target is defined with the element <target>
• The attribute name specifies the target’s name
• The attribute depends lists the dependent targets

- Dependent target are executed automatically before current target
- Avoid cyclic dependencies

• In a target we specify the tasks composing the target
!
!
!
!
!
!
!

• ant build will execute target compile, then target build.

 18

<?xml version="1.0" encoding="UTF-8"?>	
<project basedir="." default="clean" name="Foo">	
!
 	 <target name="compile">	
 	 </target>	
!
 	 <target name="build" depends=“compile">	
 	 </target>	
	 	
</project>

Distributed Enabling Platforms

ANT Tasks
• Each task is represented by an XML element

- Attributes specify the task parameters
- Some tasks require additional nested elements

 19

Distributed Enabling Platforms

Task javac
• The task javac compiles all java files in a given dir (including subdirs)

- A java file is compiled only if more recent than the corresponding class file

- Main attributes:

‣srcdir: source directory for java files

‣destdir: target directory for class files

‣classpath: to be used during compilation

- Example:

<target name="compile" depends="init" description="Compile sources">	

 <javac srcdir="src" debug="on" optimize="on" destdir="build"/>	

</target>

 20

Distributed Enabling Platforms

Task java
• The task java executes a java class

- Main attributes:

‣classname: name of the class containing the main

‣classpath: to be used during execution

‣ fork: if true, will spawn a new JVM for execution

‣ jvmarg: command line arguments to java command

‣arg: command line arguments to java class

- Example:
<target name="run" depends="compile">		
	 <java classname="MainClass" fork="yes">	
	 	 <jvmarg line="-Xmx4G"/>	
	 	 <jvmarg line="-server"/>	
	 	 <arg line=“args 3 12345”/>	
	 </java>	
</target>

 21

Distributed Enabling Platforms

ANT Properties
• It is possible to define variables, called properties, using the

<properties> task
- Can be nested or not

• Main attributes:
- name
- value

• The value of a property is referenced with the notation ${name}
• Example
!
‣<property name="base.dir" value="." />	
‣<property name="jar.dir" value="${base.dir}/jars" />	
‣<property name="src.dir" value="${base.dir}/src" />	
‣<property name="classes.dir" value="${base.dir}/classes" />

 22

Distributed Enabling Platforms

Other ANT tasks
• <mkdir dir=“name”/>

- Create a directory

• <echo message=“text”/>

- Display a message

• <delete dir=“classes”/>

- Delete a directory (recursively)

• <delete file=“foo.txt”/>

- Delete a file

 23

Distributed Enabling Platforms

Specifying classpaths and filesets

 24

<project name=“my-project" default="compile" basedir=".">	
!
	 <property name="jars" value=“${basedir}/jars"/>	
	 <property name="build" value=“${basedir}/classes"/>	
	 <property name="src" value="${basedir}/src"/>	
!
	 <path id="compile.classpath">	
	 	 <fileset dir=“${jars}"/>	
	 </path>	
	 	
	 <target name="init">	
	 	 <mkdir dir=“${build}"/>	
	 </target>	
	 	
	 <target name="compile" depends="init" description="Compile sources">	
	 	 <javac srcdir="${src}" debug="on" optimize="on" destdir=“${build}" 	
	 	 classpathref="compile.classpath"/>	
	 </target>	
	 	
	 <target name="jar" depends="compile" description="Creates jar">	
	 	 <jar jarfile=“my-project.jar">	
	 	 	 <fileset dir="${build}"/>	
	 	 </jar>	 	
	 </target>	
!
	 <target name="clean">	
	 	 <delete dir="${build}"/>	
	 </target>	
</project>

Distributed Enabling Platforms

MAVEN
• Command line tool
• Manages dependencies like a package management system
• Performs builds, either stand-alone or via Ant integration
• Runs JUnit tests and generates reports
• http://maven.apache.org
• sudo apt-get -u install maven
• (sudo apt-get -u install curl)

 25

http://maven.apache.org

