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Figure 1: Electing a leader

1 Introduction

In a distributed environment, most applications often require a single entity to act temporar-
ily as a central controller to coordinate the execution of a particular task by the entities. In
some cases, the need for a single coordinator arises from the desire to simplify the design of
the solution protocol for a rather complex problem; in other cases, the presence of a single
coordinator is required by the nature of the problem itself.

The problem of choosing such a coordinator from a population of autonomous symmetric
entities is known as Leader Election (Elect). Formally, the task consists in moving the
system from an initial configuration where all entities are in the same state (usually called
available), into a final configuration where all entities are in the same state (traditionally
called follower), except one which is in a different state (traditionally called leader). There is
no restriction on the number of entities that can start the computation, nor on which entity
should become leader.

We can think of the Election problem as the problem of enforcing restriction Unique Initiator
in a system where actually no such a restriction exists: the multiple initiators would first
start the execution of an Election protocol; the sole leader will then be the unique initiator
for the subsequent computation.

Since election provides a mechanism for breaking the symmetry among the entities in a dis-
tributed environment, it is at the basis of most control and coordination processes (e.g., mu-
tual exclusion, synchronization, concurrency control, etc.) employed in distributed systems,
and it is closely related to other basic computations (e.g., minimum finding, spanning-tree
construction, traversal).

Impossibility Result

We will start considering this problem under the standard restrictions R: Bidirectional Links,
Connectivity, and Total Reliability. There is unfortunately a very strong impossibility result
about election.

Theorem 1.1 Problem Elect is deterministically unsolvable under R.

In other words, there is no deterministic protocol that will always correctly terminate within
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finite time if the only restrictions are those in R.

To see why this is the case, consider a simple system composed of two entities, x and y,
both initially available and with no different initial values; in other words, they are initially
identical. If a solution protocol P exists, it must work under any conditions of message
delays. Consider a synchronous schedule (i.e., an execution where communication delays
are unitary) and let the two entities start the execution of P simultaneously. Since they
are identical, they will execute the same rule, obtain the same result, compose and send (if
any) the same message; thus, they will still be identical. If one of them receives a message,
the other will receive the same message at the same time; the same computation will be
performed by both, and so on. Their state will always be the same; hence if one becomes
leader, so will the other. But this is against the requirement that there should be only one
leader; in other words, P is not a solution protocol.

Additional Restrictions

The consequence of Theorem 1.1 is that, to break symmetry, we need additional restrictions
and assumptions.

Some restrictions are not powerful enough. This is the case, for example, with the assumption
that there is already available a spanning tree (i.e., restriction Tree). In fact, the two-nodes
network in which we know election is impossible is a tree !

To determine which restrictions, added to R, will enable us to solve Elect we must consider
the nature of the problem. The entities have an inherent behavioral symmetry: they all
obey the same set of rules plus they have an initial state symmetry (by definition of election
problem). To elect a leader means to break these symmetries; in fact, election is also called
symmetry breaking. To be able to do so, from the start there must be something in the
system that the entities can use, something that makes (at least one of) them different.
Remember that any restriction limits the applicability of the protocol.

The most obvious restriction is Unique Initiator (UI): the unique initiator, knowing to be
unique, becomes the leader. This is however ”sweeping the problem under the carpet”,
saying that we can elect a leader if there is already a leader and it knows about it. The real
problem is to elect a leader when many (possibly, all) entities are initiators; thus, without
UI.

The restriction which is commonly used is a very powerful one, Initial Distinct Values (ID),
which we have already employed to circumvent a similar impossibility result for constructing
a spanning-tree with multiple initiators (in Section ??). Distinct initial values are sometimes
called identifiers or ids or global names and, as we will see, their presence will be sufficient to
elect a leader; let id(x) denote the distinct value of x. The use of this additional assumption
is so frequent that the set of restrictions IR = R ∪{ID} is called the standard set for election.

Solution Strategies

How can the difference in initial values be used to break the symmetry and elect a leader?
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According to the election problem specifications, it does not matter which entity becomes
leader. Using the fact the values are distinct, a possible strategy is to choose as a leader the
entity with the smallest value; in other words, an election strategy is

STRATEGY Elect Minimum
(1) Find the smallest value;
(2) Elect as a leader the entity with that value.

IMPORTANT. Finding the minimum value is an important problem of its own, which
we have already discussed for tree networks (Section ??). Notice that, in that occasion, we
found the minimum value without unique identifiers; it is the election problem that needs
them !

A useful variant of this strategy is the one restricting the choice of the leader to the set of
entities which initiate the protocol. That is,

STRATEGY Elect Minimum Initiator
(1) Find the smallest value among the initiators;
(2) Elect as a leader the entity with that value.

IMPORTANT. Notice that any solution implementing strategy Elect Minimum solves Min

as well as Elect; not so the ones implementing Elect Minimum Initiator.

Similarly, we can define the Elect Maximum and the Elect Maximum Initiator strategies.

Another strategy is to use the distinct values to construct a rooted spanning tree of the
network, and elect the root as the leader. In other words, an election strategy is

STRATEGY Elect Root
(1) Construct a rooted spanning-tree;
(2) Elect as the leader the root of the tree.

IMPORTANT. Constructing a (rooted) spanning-tree is an important problem of its own,
which we have already discussed among the basic problems (Section ??). Recall that SPT,
like Elect, is unsolvable under R.

In the rest of this chapter we will examine how to use these strategies to solve Elect under
election’s standard set of restrictions IR = R ∪{ID}. We will do so by first examining special
types of networks and then focusing on the development of topology-independent solutions.

2 Election in Trees

The tree is the connected graph with the ’sparsest’ topology: m = n− 1.

3



We have already seen how to optimally find the smallest value using the saturation technique:
protocol MinF-Tree in Section ??. Hence strategy Elect Minimum leads to an election
protocol where the number of messages in the worst case is

3n + k⋆ − 4 ≤ 4n− 4

Interestingly, also strategy Elect Minimum Initiator will have the same complexity (Exercise
9.1).

Consider now applying strategy Elect Root. Since the network is a tree, the only work
required is to transform it into a rooted tree. It is not difficult to see how saturation can
be used to solve the problem. In fact, if Full Saturation is applied, then a saturated node
knows that itself and its parent are the only saturated nodes; furthermore, as a result of the
saturation stage, every non-saturated entity has identified as its parent the neighbour closest
to the saturated pair. In other words, saturation will root the tree not in a single node but
in a pair of neighbours: the saturated ones.

Thus, to make the tree rooted in a single node we just need to choose only one of the
two saturated nodes. In other words, the ”election” among all the nodes is reduced to an
”election” between the two saturated ones. This can be easily accomplished by having the
saturated nodes communicate their identities and having the node with smallest identity
become elected, while the other stays processing.

Thus, the Tree Election protocol will be Full Saturation with the new rules and the routine
Resolve shown in Fig. 2.

The number of message transmissions for the election algorithm Tree Election will be ex-
actly the same as the one experienced by full saturation with notification plus two ”Election”
messages; i.e., M[Tree Election]= 3n + k⋆ − 2 ≤ 4n − 2. In other words, it uses two more
messages than the solution obtained using the strategy Elect Minimum.

Granularity of Analysis: Bit Complexity

From the discussion above, it would appear that the strategy Elect Minimum is “better”
since it uses two fewer messages than strategy Elect Root. This assessment is indeed the only
correct conclusion obtainable using the number of messages as the cost measure. Sometimes,
this measure is too “coarse” and does not really allow us to see possibly important details;
to get a more accurate picture, we need to analyze the costs at a “finer” level of granularity.

Let us re-examine the two strategies in terms of the number of bits. To do so, we have to
distinguish between different types of messages since some contain counters and values, while
others only a message identifier.

IMPORTANT. Messages that do not carry values but only a constant number of bits are
called signals and in most practical systems they have significant less communication costs
that value messages.

In Elect Minimum, only the n messages in the saturation stage carry a value, while all the
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SATURATED
Receiving(Election, id∗)
begin

if id(x) < id∗ then
become LEADER;

else
become FOLLOWER;

endif
send(‘‘Termination’’) to N(x)− {parent};

end

PROCESSING
Receiving(‘‘Termination’’)
begin

become FOLLOWER;
send(‘‘Termination’’) to N(x)− {parent};

end

Procedure Resolve

begin
send(‘‘Election’’,id(x)) to parent;
become SATURATED;

end

Figure 2: New rules and routine Resolved used for Tree Election
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others are signals; hence, the total number of bits transmitted will be

B[Tree : Elect Min] = n (c + log id) + c (2n + k⋆ − 2) (1)

where id denotes the largest value sent in a message, and c = O(1) denotes the number of
bits required to distinguish among the different messages.

In Elect Root, only the ”Election” message carries a node identity; thus the total number of
bits transmitted is

B[Tree : Elect Root] = 2 (c + log id) + c (3n + k⋆ − 2) (2)

That is, in terms of number of bits, Elect Root is order of magnitude better than Elect
Minimum ! In terms of signals and value messages, with Elect Root strategy we have only 2
value messages, with the Elect Minimum strategy we have n value messages.

Remember: measuring the number of bits gives us always a “picture” of the efficiency at a
more refined level of granularity. Fortunately, it is not always necessary to go to such a level.

3 Election in Rings

We will now consider a network topology which plays a very important role in distributed
computing: the ring, sometimes called loop network.

A ring consists of a single cycle of length n. In a ring, each entity has exactly two neighbours,
(whose associated ports are) traditionally called left and right (see Figure 3).

x
x

x

x

x

0

2

1
n−1

n−2

Figure 3: A ring network.

IMPORTANT. Note that the labelling might however be globally inconsistent; i.e., ‘right’
might not have the same meaning for all entities. We will return to this point later.
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After trees, rings are the networks with the sparsest topology: m = n; however, unlike trees,
rings have a complete structural symmetry (i.e., all nodes look the same) as opposed to the
inherent asymmetry of trees (e.g., the existence of internal and leaf nodes).

We will denote the ring by R = (x0, x1, , . . . , xn−1). Let us consider the problem of electing
a leader in a ring R, under the standard set of restriction for election, IR= {Bidirectional
links, Connectivity, Total Reliability, Initial Distinct Values}, as well as the knowledge that
the network is a ring (Ring). Denote by id(x) the unique value associated to x.

Because of its structure, in a ring we will use almost exclusively the approach of minimum-
finding as a tool for leader election. In fact we will consider both the Elect Minimum and
the Elect Minimum Initiator approaches. Clearly the first solves both Min and Elect, while
the latter solves only Elect.

NOTES. First notice that every protocol that elects a leader in a ring can be made to find
the minimum value (if it has not already been determined) with an additional n message
and time (Exercise 9.2). Further notice that, in the worst case, the two approaches coincide:
all entities might be initiators.

Let us now examine how minimum-finding and election can be efficiently performed in a
ring.

Since, in a ring each entity has only two neighbours, for brevity we will use the notation
other to indicate N(x)−sender at an entity x.

3.1 All the Way

The first solution we will use is rather straightforward: When an entity starts, it will choose
one of its two neighbours and send to it an “Election” message containing its id; an entity
receiving somebody else’s id, will send its id (if it has not already done so), and forward
the received message along the ring (i.e., send it to its other neighbour) keeping track of the
smallest id seen so far (including its own).

This process can be visualized as follows: (see Figure 4): each entity originates a message
(containing its id), and this message travels “all the way” along the ring (forwarded by the
other entities). Hence the name All the way we will use for the resulting protocol.

Each entity will eventually see everybody’s else id (finite communication delays and total
reliability ensure that) including the minimum value; it should thus be able to determine
whether or not it is the (unique) minimum and thus the leader. When will this happen ? In
other words,

Question. When will an entity terminate its execution?

Entities only forward messages carrying values other that their own: once the message with
id(x) arrives at x, it is no longer forwarded. Thus, every value will travel “all the way”
along the ring only once. So, the communication activities will eventually terminate. But
how does an entity know that the communication activities have terminated ? that no more
messages will be arriving, and thus, the smallest value seen so far is really the minimum id ?
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Figure 4: All the Way: every id travels all along the ring.

Consider a “reasonable” but unfortunately incorrect answer:

An entity knows that it has seen all values once it receives its value back.

The reasoning is that the message with its own id has to travel longer along the ring to reach
x that those originated by the other entities; thus, these other messages will be received first.
In other words, reception of its own message can be used to detect termination.

This reasoning is incorrect because it uses the (hidden) additional assumption that the
system has FIFO communication channels; that is, the messages are delivered in the order
they arrive. This restriction, called Message Ordering, is not part of election’s standard set,
few systems actually have it built-in, and the costs of offering it can be formidable.

So, whatever the answer, it must not assume FIFO channels. With this proviso, a “reason-
able” but unfortunately still incorrect answer is the following:

An entity counts how many different values it receives; when the counter is equal to n, it
knows it can terminate.

The problem is that this answer assumes that the entity knows n; but a priori knowledge of
the ring size is not part of the standard restrictions for election. So it cannot be used.

It is indeed strange that termination should be difficult for such a simple protocol in such a
clear setting. Fortunately, the last answer, although incorrect, provides us with the way out.
In fact, although n is not known a priori, it can be computed. This is easily accomplished
by having a counter in the Election message, initialized to 1 and incremented by each entity
forwarding it; when an entity receives its id back, the value of the counter will be n.

Summarizing, we will use a counter at each entity, to keep track of how many different ids
are received; and a counter in each message, so each entity can determine n. The protocol

8



PROTOCOL All the Way .

• States: S = {ASLEEP, AWAKE, FOLLOWER, LEADER};
SINIT = {ASLEEP};
STERM = {FOLLOWER, LEADER}.

• Restrictions: RI ∪Ring.

ASLEEP
Spontaneously
begin

INITIALIZE;
become AWAKE;

end

Receiving(‘‘Election’’, value, counter)
begin

INITIALIZE;
send(‘‘Election’’, value, counter+1) to other;
min:= Min{ min, value};
count:= count+1;
become AWAKE;

end

AWAKE
Receiving(‘‘Election’’, value, counter)
begin

if value 6= id(x) then
send(‘‘Election’’, value, counter+1) to other;
min:= MIN{min,value};
count:= count+1;
if known then CHECK endif;

else
ringsize:= size*;
known:= true;
CHECK;

endif
end

Figure 5: Protocol AlltheWay

is shown in Figures 5 and 6.

The message originated by each entity will travel along the ring exactly once. Thus, there
will be exactly n2 messages in total, each carrying a counter and a value, for a total of
n2 log(id + n) bits. The time costs will be at most 2n (Exercise 9.3). Summarizing,

M[AlltheWay] = n2 (3)

T[AlltheWay] ≤ 2n− 1 (4)

The solution protocol we have just designed is very expensive in terms of communication
costs (in a network with 100 nodes it would cause 10, 000 message transmissions !).

The protocol can be obviously modified so to follow strategy Elect Minimum Initiator, finding

9



Procedure INITIALIZE
begin

count:= 0;
size:= 1;
known:= false;
send(‘‘Election’’, id(x), size) to right;
min:= id(x);

end

Procedure CHECK
begin

if count = ringsize then
if min = id(x) then

become LEADER;
else

become FOLLOWER;
endif

endif
end

Figure 6: Procedures of Protocol All theWay

the smallest value only among the initiators. In this case, those entities who do not initiate
will not originate a message but just forward the others’. In this way, we would have fewer
messages whenever there are fewer initiators.

In the modification we must be careful. In fact, in protocol All the Way, we were using an
entity’s own message to determine n so to be able to determine local termination. Now some
entities will not have this information. This means that termination is again a problem.
Fortunately, this problem has a simple solution requiring only n additional messages and
time (Exercise 9.4). Summarizing, the costs of the modified protocol, All the Way: Minit,
are as follows:

M[AlltheWay : Minit] = nk⋆ + n (5)

T[AlltheWay : Minit] ≤ 3n− 1 (6)

The modified protocol All the Way: Minit will in general use fewer message than the original
one. In fact if only a constant number of entities initiate, it will uses only O(n) messages,
which is excellent. On the other hand, if every entity is an initiator, this protocol uses n
messages more than the original one.

IMPORTANT. Notice that All the Way (in its original or modified version) can be used
also in unidirectional rings with the same costs. In other words, it does not require the
Bidirectional Links restriction. We will return to this point later.
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3.2 As Far As It Can

To design an improved protocol, let us determine the drawback of the one we already have,
All the Way. In this protocol, each message travels all along the ring.

Consider the situation (shown in Figure 7) of a message containing a large id, say 22 arriving
at an entity x with a smaller id, say 4. In the existing protocol, x will forward this message,
even though x knows that 22 is not the smallest value.

4

13
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22

2 17

2

2

2

5

5

13

4

2

22

13 5 24

4

4

2

4

5

13

17

Figure 7: Message with a larger id do not need to be forwarded.

But our overall strategy is to determine the smallest id among all entities; if an entity
determines that an id is not the minimum, there is no need whatsoever for the message
containing such an id to continue travelling along the ring.

We will thus modify the original protocol All the Way so that an entity will only forward
Election messages carrying an id smaller than the smallest seen so far by that entity. In
other words, an entity will become an insurmountable obstacle for all messages with a larger
id, “terminating” them.

Let us examine what happens with this simple modification. Each entity will originate a
message (containing its id) which travels along the ring “as far as it can”: until it returns to
its originator or arrives at a node with a smaller id. Hence the name AsFar (As It Can) we
will use for the resulting protocol.

Question. When will an entity terminate its execution?

The message with the smallest id will always be forwarded by the other entities; thus, it will
travel all along the ring returning to its originator. The message containing another id will
instead be unable to return to its originator as it will find an entity with a smaller id (and
thus be terminated) along the way. In other words, only the message with the smallest id
will return to its originator. This fact provides us with a termination detection mechanism.
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If an entity receives a message with its own id, it knows that its id is the minimum, i.e. it
is the leader; the other entities have all seen that message pass by (they forwarded it) but
they still don’t know that there will be no smaller ids coming by. Thus, to ensure their
termination, the newly elected leader must notify them.

3.2.1 Message Cost

This protocol will definitely have fewer messages than the previous one. The exact number
depends on several factors. Consider the cost caused by the Election message originated by
x. This message will travel along the ring until it finds a smaller id (or complete the tour).
Thus, the cost of its travel depends on how the ids are allocated on the ring. Also notice that
what matters is whether an id is smaller or not than another, and not their actual value. In
other words, what is important is the rank of the ids and how those are situated on the ring.
Denote by #i the id whose rank is i.

Worst Case

Let us first consider the worst possible case. Id #1 will always travel all along the ring
costing n messages. Id #2 will be stopped only by #1, so its cost in the worst case is n− 1,
achievable if #2 is located immediately after #1 in the direction it travels. In general, id
#(i + 1) will be stopped by any of those with smaller rank, and, thus, it will cost at most
n− i messages; this will happen if all those entities are next to each other, and #(i + 1) is
located immediately after them in the direction it will travel. In fact all the worst cases for
each of the ids are simultaneously achieved when the ids are arranged in a (circular) order
according to their rank and all messages are sent in the “increasing” direction (see Figure
9).

In this case, including also the n messages required for the final notification, the total cost
will be

M[AsFar] = n +
n

∑

i=1

i =
n (n + 3)

2
(7)

That is, we will cut the number of the messages at least in half. From a theoretical point
of view, the improvement is not significant; from a practical point of view, this is already
a reasonable achievement. But we have so far analyze only the worst case. In general, the
improvement will be much more significant. To see precisely how we need to perform a more
detailed analysis of the protocol’s performance.

IMPORTANT. Notice that AsFar can be used in unidirectional. In other words, it does
not require the Bidirectional Links restriction. We will return to this point later.

The worst case gives us an indication of how “bad” things could get when the conditions
are really bad. But how likely are such conditions to occur ? What costs can we generally
expect ? To find out, we need to study the average case and determine the mean and the
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PROTOCOL AsFar.

• States: S = {ASLEEP, AWAKE, FOLLOWER, LEADER};
SINIT = {ASLEEP};
STERM = {FOLLOWER, LEADER}.

• Restrictions: RI ∪Ring.

ASLEEP
Spontaneously
begin

INITIALIZE;
become AWAKE;

end

Receiving(‘‘Election’’, value)
begin

INITIALIZE;
if value < min then

send(‘‘Election’’, value) to other;
min:= value;

endif
become AWAKE;

end

AWAKE
Receiving(‘‘Election’’, value)
begin

if value < min then
send(‘‘Election’’, value) to other;
min:= value;

else
if value min then NOTIFY endif;

endif
end

Receiving(Notify)
send(Notify) to other;
become FOLLOWER;

end

where the procedures Initialize and Notify are as follows:

Procedure INITIALIZE
begin

send(‘‘Election’’, id(x)) to right;
min:= id(x);

end

Procedure NOTIFY
begin

send(Notify) to right;
become LEADER;

end

Figure 8: Protocol AsFar
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Figure 9: Worst case setting for protocol AsFar

variance of the cost of the protocol.

Average Case: Oriented Ring

We will first consider the case when the ring is oriented; that is, “right” means the same to
all entities. In this case, all messages will travel in only one direction, say clockwise.

IMPORTANT. Because of the unique nature of the ring network, this case coincides with
the execution of the protocol in a unidirectional ring. Thus, the results we will obtain will
hold for those rings.

To determine the average case behavior, we consider all possible arrangements of the ranks
1, . . . , n in the ring as equally likely. Given a set of size a, we denote by C(a, b) the number
of subsets of size b that can be formed from it.

Consider the id #i with rank i; it will travel clockwise exactly k steps if and only if the ids
of its k− 1 clockwise neighbours are larger than it (and thus will forward it), while the id of
its k-th clockwise neighbour is smaller (and thus will terminate it).

There are i − 1 ids smaller than #i from which to choose those k − 1 smaller clockwise
neighbours, and there are n− i ids larger than #i from which to choose the k-th clockwise
neighbour. In other words, the number of situations where #i will travel clockwise exactly
k steps is C(i − 1, k − 1)C(n − i, 1), out of the total number of C(n − 1, k − 1)C(n − k, 1)
possible situations.

Thus, the probability P (i, k) that #i it will travel clockwise exactly k steps is

P (i, k) =
C(i− 1, k − 1)C(n− i, 1)

C(n− 1, k − 1)C(n− k, 1)
(8)
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The smallest id, #1, will travel the full length n of the ring. The id #i, i > 1, will travel
less; the expected distance will be

Ei =

n−1
∑

k=1

k P (i, k) (9)

Therefore, the overall expected number of message transmissions is

E = n +

n−1
∑

i=1

n−1
∑

k=1

k P (i, k) = n +

n−1
∑

k=1

n

k + 1
= nHn (10)

where Hn = 1 + 1
2

+ 1
3

+ ... + 1
n

is the n-th Harmonic number.

To obtain a close formula, we use the fact that the function f(x) = 1
x

is continuous, linear and

decreasing; thus
∫ ∞
1

1
x

dx = limn→∞
∫ n

1
1
x

dx = limn→∞ ln x

∣

∣

∣

∣

1
n

= limn→∞(ln n− ln 1 + c) =

ln n + c. Hence, Hn = ln n + O(1) ≈ .69 log n + O(1); thus

Theorem 3.1
In oriented and in unidirectional rings, protocol AsFar will cost nHn ≈ .69n log n + O(n)
messages on the average.

This is indeed great news: on the average, the message cost is order of magnitude less than
in the worst case. For n = 1, 024, this means that on the average we have 7, 066 messages
instead of 525, 824, a considerable difference !

If we use the strategy of electing the minimum initiator instead, we obtain the same bound
but as a function of the number k∗ of initiators:

Theorem 3.2
In oriented and in unidirectional rings, protocol AsFar-Minit will cost nHk⋆

≈ .69n log k⋆

messages on the average.

Average Case: Unoriented Ring

Let consider now what will happen on the average in the general case, when the ring is
unoriented. As before, we consider all possible arrangements of the ranks 1, . . . , n of the
values in the ring as equally likely. The fact that the ring is not oriented means that when
two entities send a message to their “right” neighbours, they might send it in different
directions.

Let us assume that at each entity the probability that “right” coincides with the clockwise
direction is 1

2
. Alternatively, assume that an entity, as its first step in the protocol, flips a

fair coin (i.e., probability 1
2
) to decide the direction it will use to send its value. We shall

call the resulting probabilistic protocol ProbAsFar.
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Theorem 3.3

In unoriented rings, Protocol ProbAsFar will cost

√
(2)

2
nHn ≈ .49n log n messages on the

average.

A similar bound holds if we use the strategy of electing the minimum initiator:

Theorem 3.4

In unoriented rings, protocol ProbAsFar-Minit will cost

√
(2)

2
nHk⋆

≈ .49n log k⋆ messages on
the average.

What is very interesting about the bound expressed by Theorem 3.3 is that it is better (i.e.,
smaller) than the one expressed by Theorem 3.1. The difference between the two bounds
is restricted to the constant and is rather limited. In numerical terms, the difference is not
outstanding: 5, 018 instead of 7, 066 messages on the average when n = 1, 024.

In practical terms, from the algorithm design point of view, it indicates that we should try
to have the entities send their initial message in different directions (as in the probabilistic
protocol) and not all in the same one (like in the oriented case). To simulate the initial
“random” direction, different means can be used. For example, each entity x can choose (its
own) “right” if id(x) is even, (its own) “left” otherwise.

This result has also a theoretical relevance that will become apparent later, when we will
discuss lower bounds, and will have a closer look to the nature of the difference between
oriented and unoriented rings.

3.2.2 Time Costs

The time costs are the same as the ones of All the Way plus an additional n− 1 for the no-
tification. This can however be halved by exploiting the fact that the links are bidirectional,
and broadcasting the notification; this will require an extra message but halve the time.

3.2.3 Summary

The main drawback of protocol AsFar is that there still exists the possibility that a very
large number of messages (O(n2)) will be exchanged. As we have seen, on the average, the
use of the protocol will cost only O(n logn) messages. There is however no guarantee that
this will happen the next time the protocol will be used. To give such a guarantee, a protocol
must have a O(n log n) worst case complexity.

3.3 Controlled Distance

We will now design a protocol which has a guaranteed O(n log n) message performance.

To achieve this goal, we must first of all determine what causes the previous protocol to use
O(n2) messages, and then find ways around it.
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The first thing to observe is that in AsFar (as well as in All the Way), an entity makes only
one attempt to become leader and does so by originating a message containing its id. Next
observe that, once this message has been created and sent, the entity has no longer control
over it: in All the Way the message will travel all along the ring; in AsFar it will be stopped
if it finds a smaller id.

Consider now the situation that causes the worst case for protocol AsFar; this is when the
ids are arranged in increasing order along the ring, and all entities identify “right” with the
clockwise direction (see Figure 9). The entity x with id 2 will originate a message which will
causes n − 2 transmissions. When x receives the message containing id 1, x finds out that
its own value is not the smallest, and thus its message is destined to be wasted. However, x
has no means to stop it, since has no longer control over that message.

Let us take these observations into account to design a more efficient protocol. The key
design goal will be to make an entity retain some control over the message it originates. We
will use several ideas to achieve this:

(1) limited distance:
the entity will impose a limit on the distance its message will travel; in this way, the message
with id 2 will not travel “as far as it can” (i.e., at distance n − 2) but only up to some
pre-defined length.

(2) return (or feedback) messages:
if, during this limited travel, the message is not terminated by an entity with smaller id, it
will return back to its originator to get authorization for further travel; in this way, if the
entity with id 2 has seen id 1, it will abort any further travel of its own message.

Summarizing, an entity x will originate a message with its own id, and this message will
travel until it is terminated or it reaches a certain distance dis; if it is not terminated, the
message returns to the entity. When it arrives, x knows that, on this side of the ring there
are no smaller ids within the travelled distance dis.

The entity must now decide if to allow its message to travel a further distance; it will do so
only if it knows for sure that there are no smaller ids within distance dis on the other side
of the ring as well. This can be achieved as follows:

(3) check both sides:
the entity will send a message in both directions; only if they both return, they will be
allowed to travel to a further distance.

As a consequence, instead of a single global attempt at leadership, an entity will go through
several attempts, which we shall call Electoral Stages: an entity enters the next stage only if
it passes the current one (i.e., both messages return). See Figure 11. If an entity is defeated
in an electoral stage (i.e., at least one of its messages does not return), it still will have to
continue its participation in the algorithm forwarding the messages of those entities that are
still undefeated.

Although the protocol is almost all outlined, some fundamental issues are still unresolved.
In particular, the fact that we now have several stages can have strange consequences in the
execution.
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Figure 10: Controlled Distances: A message (in bold) travels no more than dis(i); if it is not
discarded, a feedback is sent back to the originator. A candidate that receives a feedback from both
sides starts the next stage.

IMPORTANT. Because of variations in communication delays, it is possible that, at the
same time instant, entities in different parts of the ring are in different electoral stages.
Furthermore, since we are only using the standard restrictions for elections, messages can
be delivered out of order; thus, it might be possible that messages from a higher stage will
arrive at an entity before the ones from the current one.

We said that an entity is defeated if it does not receive one of its messages back. Consider
now an entity x; it has sent its two messages and it is now waiting to know the outcome.
Let us say that one of its messages has returned but the other not yet. It is possible that
the message is very slow coming (e.g., experiencing long transmission delays) or that it is
not coming at all (i.e., it found a smaller id on the way). How can x know ? How long will x
have to wait before taking a decision ? (a decision must be taken within finite time). More
specifically, what will x do if, in the meanwhile, it receives a message from a higher stage ?
The answer to all these questions is fortunately simple:

(4) the smallest wins:
If, at any time, a candidate entity receives a message with a smaller id, it will become
defeated, regardless of the stage number.

Notice that this creates a new situation: a message returns to its originator and finds it
defeated; in this case, the message will be terminated.

The final issue we need to address is termination. The limit to the travel distance for a
message in a given stage will depend on the stage itself; let disi denote the limit in stage i.
Clearly, these distances must be monotonically increasing; i.e., disi > disi−1. The messages
from an entity whose id is not the minimum will sooner or later encounter a smaller id in
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their travel, and not return to their originator.
Consider now the entity s with the smallest id. In each stage, both its messages will travel
the full allocated distance (since no entity can terminate them) and return, making s enter
the next stage. This process will continue until disi ≥ n; at this time, each message will
complete a full tour of the ring reaching s from the other side ! When this happens, s will
know that it has the smallest value and, thus, it is the leader. It will then start a notification
process so all the other entities can enter a terminal state.

A synthetic description of the protocol will thus be:

• In each electoral stage there are some candidates;

• each candidate sends a message in both directions carrying its own id (as well as the
stage number);

• a message travels until it encounters a smaller id or it reaches a certain distance (whose
value depends on the stage);

• if a message does not encounter a smaller id, it will return back to its originator;

• a candidate which receives both its own messages back survives this stage and starts
the next one.

with three meta rules:

• If a candidate receives its message from the opposite side it sent it, it becomes the
leader and notifies all other entities of termination.

• If a candidate receives a message with a smaller id, it becomes defeated, regardless of
the stage number.

• a defeated entity forwards the messages originating from other entities; if the message
is notification of termination, it will terminate.

The fully specified protocol Control is shown in Figures 11 and 12, where dis is a monoton-
ically increasing function.

3.3.1 Correctness.

The correctness of the algorithm follows from the dynamics of the rules: the messages
containing the smallest id will always travel all the allocated distance, and every entity
still candidate they encounter will be transformed in defeated; the distance is monotonically
increasing in the number of stages; hence, eventually, the distance will be at least n. When
this happens, the messages with the smallest value will travel all along the ring; as a result,
their originator becomes leader and all the others are already defeated.
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PROTOCOL Control.

• States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
SINIT = {ASLEEP};
STERM = {FOLLOWER, LEADER}.

• Restrictions: RI ∪Ring.

ASLEEP
Spontaneously
begin

INITIALIZE;
become CANDIDATE;

end

Receiving(‘‘Forth’’, id*, stage*, limit*)
begin

if id* < id(x) then
PROCESS-MESSAGE;
become DEFEATED

else
INITIALIZE;
become CANDIDATE;

endif
end

CANDIDATE
Receiving(‘‘Forth’’, id*, stage*, limit*)
begin

if id* < id(x) then
PROCESS-MESSAGE;
become DEFEATED

else
if id* = id(x) then NOTIFY endif;

endif
end

Receiving(‘‘Back’’, id*)
begin

if id* = id(x) then CHECK endif;
end

Receiving(Notify)
begin

send(Notify) to other;
become FOLLOWER;

end

DEFEATED
Receiving(⋆)
begin

send(⋆) to other;
if ⋆ = Notify then become FOLLOWER endif;

end

Figure 11: Protocol Control
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Procedure INITIALIZE
begin

stage:= 1;
limit:= dis(stage);
count:= 0;
send(‘‘Forth’’, id(x), stage, limit) to N(x);

end

Procedure PROCESS-MESSAGE
begin

limit*:=limit*-1;
if limit* =0 then

send(‘‘Back’’,id*, stage*) to sender;
else

send(‘‘Forth’’, id*, stage*, limit*) to other;
endif

end

Procedure CHECK
begin

count:=count+1;
if count = 1 then

count:= 0
stage:= stage+1
limit:= dis(stage);
send(‘‘Forth’’, id(x), stage, limit) to N(x);

endif
end

Procedure NOTIFY
begin

send(Notify) to right;
become LEADER;

end

Figure 12: Procedures used by protocol Control
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3.3.2 Costs.

The costs of the algorithm depend totally on the choice of the function dis used to determine
the maximum distance a “Forth” message can travel in a stage.

Messages.
If we examine the execution of the protocol at some global time t, because communication
delays are unpredictable, we can find not only that entities in different parts of the ring are
in different states (which is expected), but also that entities in the candidate state are in
different stages. Moreover, because there is no message ordering, messages from high stages
(the “future”) might overtake messages and arrive at an entity still in a lower stage (the
“past”).

Still, we can visualize the execution as proceeding in logical stages; it is just that different
entities might be executing the same stage at different times.

Focus on stage i > 1, and consider the entities that will start this stage; these ni entities are
those who survived stage i− 1.

To survive stage i− 1, the id of x must be smaller than the ids of its neighbours at distance
up to dis(i) on each side of the ring. Thus, within any group of dis(i) + 1 consecutive
entities, at most one can survive stage i− 1 and start stage i. In other words,

ni ≤ ⌊
n

dis(i− 1) + 1
⌋ (11)

An entity starting stage i will send “Forth” messages in both directions; each message will
travel at most dis(i), for a total of 2ni dis(i) message transmissions.

Let us examine now the “Back” messages. Each entity that survives this stage will receive
such a message from both sides; since ni+1 entities survive this stage, this gives an additional
2ni+1dis(i) messages. Each entity which started but did not survive stage i will receive either
no or at most one “Back” message, causing a cost of at most dis(i); since there are ni−ni+1

such entities, they will cost no more than an additional (ni − ni+1)dis(i) messages in total.
So, in total, the transmissions for “Back” messages are at most 2ni+1dis(i)+(ni−ni+1)dis(i).

Summarizing, the total number of messages sent in stage i > 1 will be no more than

2 ni dis(i) + 2 ni+1 dis(i) + (ni − ni+1) dis(i) = (3 ni + ni+1) dis(i) ≤
(3 ⌊ n

dis(i−1)+1
⌋+ ⌊ n

dis(i)+1
⌋) dis(i) < n (3 dis(i)

dis(i−1)
+ 1)

The first stage is a bit different, as every entity starts; the n2 entities which survive this
stage will have caused the messages carrying their id to travel to distance dis(1) and back
on both sides, for a total of 4n2 dis(1) messages. The n− n2 that will not survive will cause
at most three messages each (two “Forth” and one “Back”) to travel at distance dis(1), for
a total of 3(n1 − n2)dis(1) messages. Hence the first stage will cost no more than

(3n + n2) dis(1) ≤ (3n + n
dis(1)+1

) dis(1) < n (3 dis(1) + 1)
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To determine the total number of messages we then need to know the total number k of
stages. We know that a leader is elected as soon as the message with the smallest value
makes a complete tour of the ring; that is, as soon as dis(i) is greater or equal to n. In
other words, k is the smallest integer such that dis(k) ≥ n; such an integer is called the
pseudo-inverse of n and denoted by dis−1(n).

So, the total number of messages used by protocol Control will be at most

M[Control] ≤ n

dis−1(n)
∑

i=1

(3
dis(i)

dis(i− 1)
+ 1) + n (12)

where dis(0) = 1 and the last n messages are those for the final notification.

To really finalize the design, we must choose the function dis. Different choices will results
in different performances.

Consider, for example, the choice dis(i) = 2i−1; then dis(i)
dis(i−1)

= 2 (i.e., we double the distance

every time) and dis−1(n) = ⌈log n⌉+ 1, which in Expression 12 yields

M[Control] ≤ 7 n log n + O(n)

which is what we were aiming for: a O(n logn) worst case !

The constant can be however further improved by carefully selecting dis. Determining which
function is best is rather difficult. Let us restrict the choice to among the functions where,
like the one above, the ratio between consecutive values is constant; i.e., dis(i)

dis(i−1)
= c. For

these functions, dis−1(n) = ⌈logc(n)⌉+ 1; thus, Expression 12 becomes

3c+1
log c

n log n + O(n)

Thus, with all of them, protocol Control has a guaranteed O(n log n) performance !

The “best” among those functions will be the one where 3c+1
log c

is minimized; since distances
must be integer quantities, also c must be an integer. Thus the best such choice is c = 3 for
which we obtain

M[Control] ≤ 6.309 n log n + O(n) (13)

Time.

The ideal time complexity of procedure Control is easy to determine; the time required by
stage i is the time needed by the message containing the smallest id to reach its assigned
distance and come back to its originator; hence exactly 2dis(i) time units. An additional n
time units are needed for the final notification, as well as for the initial wake-up of the entity
with the smallest id. This means that the total time costs will be at most

T[Control] ≤ 2n +

dis−1(n)
∑

i=1

2 dis(i) (14)
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Again, the choice of dis will influence the complexity. Using any function of the form
dis(i) = ci−1, where c is a positive integer will yield O(n) time. The determination of the
best choice from the time costs point of view is left as an exercise. (Exercise)

3.3.3 ⋆ Electing Minimum Initiator

Let us use the strategy of electing a leader only among the initiators. Denote as usual by k⋆

the number of initiator. Let us analyze the worst case.

In the analysis of protocol Control, we have seen that those that survive stage i contribute
4 dis(i) messages each to the cost, while those that do not survive contribute at most 3dis(i)
messages each. This is still true in the modified version Control-Minit; what changes, is the
values of the number ni of entities that will start that stage. Initially, n1 = k⋆. In the worst
case, the k⋆ initiators are placed far enough from each other in the ring that each completes
the stage without interfering with the others; if the distances between them are large enough,
each can continue to go to higher stages without coming into contact with the others, thus
causing 4 dis(i) messages.

For how many stages can this occur ? This can occur as long as dis(i) < n
k⋆+1

. That is, in

the worst case, ni = k⋆ in each of the first l = dis−1( n
k⋆+1
− 1) stages, and the cost will be

4 k⋆dis(i) messages. In the following stages instead, the initiators will start interfering with
each other, and the number of survivors will follow the pattern of the general algorithm:
ni ≤ ⌊ n1

dis(i−1)+1
⌋.

Thus, the total number M[Control-Minit] of messages in the worst case will be at most

M[Control −Minit] ≤ 4 k⋆

l
∑

i=1

dis(i) + n

dis−1(n)
∑

i=l+1

(3
dis(i)

dis(i− 1)
+ 1) + n (15)

3.4 Electoral Stages

In the previous protocol we have introduced and used the idea of limiting the distances to
control the complexity of the original “as far as it can” approach. This idea requires that an
entity makes several successive attempts (at increasing distances) to become a leader.

The idea of not making a single attempt to become a leader (as it was done in All the Way
and in AsFar), but instead of proceeding in stages is a very powerful algorithmic tool of its
own. It allows us to view the election as a sequence of electoral stages : at the beginning of
each stage, the ”candidates” run for election; at the end of the stage, some ”candidates” will
be defeated, the others will start the next stage. Recall that “stage” is a logical notion, and
it does not requires the system to be synchronized; in fact, parts of the system may run very
fast while other parts may be slow in their operation, so different entities might execute a
stage at totally different times.

We will now see how the proper use of this tool allows us to achieve even better results, and
without controlling the distances and without return (or feedback) messages.
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To simplify the presentation and the discussion, we will temporarily assume that there is
Message Ordering (i.e., the links are FIFO); we will remove the restriction immediately after.

As before, we will have each candidate send a message carrying its own id in both directions.
Without setting an a priori fixed limit on the distance these messages can travel, we still
would like to avoid them to travel unnecessarily far (costing too many transmissions). The
strategy to achieve this is simple and effective:

a message will travel until it reaches another candidate

that is in the same (or higher) stage. The consequence of this simple strategy is that, in
each stage,

a candidate will receive a message from each side

thus, it will know the ids of the neighbouring candidate on each side. We will use this fact
to decide whether a candidate x enters the next stage: x will survive this stage only if the
two received ids are not smaller than its own id(x) (recall we are electing the entity with
smallest id); otherwise, it becomes defeated. As before, we will have defeated entities continue
to participate by forwarding received messages.

Correctness and termination are easy to verify. Observe that the initiator with smallest
identity will never become defeated; on the other hand, at each stage, its message will
transform into defeated the neighbouring candidate on each side (regardless of their distance).
Hence, the number of candidates decreases at each stage. This means that, eventually, the
only candidate left is the one with the minimum id. When this happens, its messages will
travel all along the ring (forwarded by the defeated entities), and reach it. Thus, a candidate
receiving its own messages back knows that all other entities are defeated; it will then become
leader and notify all other entities of termination.

Summarizing (see also Fig. 13):

• A candidate x sends a message in both directions carrying its identity; these messages
will travel until they encounter another candidate node.

• By symmetry, entity x will receive two messages, one from the ”left” and one from
the ”right” (independently of any sense of direction); it will then become defeated if at
least one of them carries an identity smaller that its own; if the received identities are
both larger than its own, it starts the next stage; finally, if the received identities are
its own, it becomes leader and notify all entities of termination.

• A defeated node will forward any received election message, and each non-initiator will
automatically become defeated upon receiving an election message.

The protocol is shown in Figure 14, where close and open denote the operation of clos-
ing a port (with the effect of enqueueing incoming messages), and opening a closed port
(dequeueing the messages), respectively, and where procedure Initialize is shown in Fig. 15.
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x = Min{x, y} ⇒ x leader

x < Min{y, z} ⇒ x candidate next stage

x > Min{y, z} ⇒ x defeated

zyxx
xx �-��
��

� -��
��

Figure 13: A candidate x in an electoral stage.

3.4.1 Messages

It is not so obvious that this strategy is more efficient than the previous.

Let us first determine the number of message exchanged during a stage. Consider the segment
of the ring between two neighbouring candidate in stage i, x and y = r(i, x); in this stage x
will send a message to y and y will send one to x. No other messages will be transmitted
during this stage in that segment. In other words, on each link, only two messages will be
transmitted (one in each direction) in this stage. Therefore, in total, 2n message exchanges
will be performed during each stage.

Let us determine now the number of stages. Consider a node x that is candidate at the
beginning of stage i and is not defeated during this stage; let y = r(i, x) and z = l(i, x) be
the first entity to the right and to the left of x, respectively, that are also candidate in stage
i (Figure 16).

It is not difficult to see that, if x survives stage i, both r(i, x) and l(i, x) will be defeated.
Therefore, at least half of the candidates are defeated at each stage; In other words, at most
half of them survive:

ni ≤ ni−1

2

Since n1 = n , the total number of stages σStages is at most σStages ≤ ⌈log n⌉+ 1.

Combining the two observations we obtain

M[Stages] ≤ 2 n log n + O(n) (16)

That is, protocol Stages outperforms protocol Control.

Observe that this bound is achievable in practice (Exercise 9.9). Further note that, if we use
the minimum initiator approach the bound will become

M[Stages] ≤ 2 n log k∗ + O(n) (17)
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PROTOCOL Stages.

• States: S = {ASLEEP, CANDIDATE, WAITING, DEFEATED, FOLLOWER, LEADER};
SINIT = {ASLEEP}; STERM = {FOLLOWER, LEADER}.

• Restrictions: RI ∪Ring.

ASLEEP
Spontaneously
begin

INITIALIZE;
become CANDIDATE;

end

Receiving(‘‘Election’’, id*, stage*)
begin

INITIALIZE;
min:= Min(id*,min);
close(sender);
become WAITING;

end

CANDIDATE
Receiving(‘‘Election’’, id*, stage*)
begin

if id* 6= id(x) then
min:= Min(id*,min);
close(sender);
become WAITING;

else
send(Notify) to N(x);
become LEADER;

end

WAITING
Receiving(‘‘Election’’, id*, stage*)

open(other);
stage:= stage+1;
min:= Min(id*,min);
if min= id(x) then

send(‘‘Election’’, id(x), stage) to N(x);
become CANDIDATE;

else
become DEFEATED;

endif
end

DEFEATED
Receiving(⋆)
begin

send(⋆) to other;
if ⋆ = Notify then become FOLLOWER endif;

end

Figure 14: Protocol Stages
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Procedure INITIALIZE
begin

stage:= 1;
count:= 0;
min:= id(x);
send(‘‘Election’’, id(x), stage) to N(x);

end

Figure 15: Procedure Initialize used by protocol Stages
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Figure 16: If x survives this stage, its neighbouring candidates will not.

3.4.2 Removing Message Ordering

The correctness and termination of Stages are easy to follow also because we have assumed in
our protocol that there is Message Ordering. This assumption ensured that the two messages
received by a candidate in stage i are originated by candidates also in stage i. If we remove
the Message Ordering restriction, it is possible that messages arrive out of order, and that a
message sent in stage j > i arrives before a message sent in stage i.

Simple Approach
The simplest way to approach this problem is by enforcing the “effects” of message ordering,
without really having it.
1. First of all, each message will also carry the stage number of the entity originating it.
2. When a candidate node x in stage i receives a message M∗ with stage j > i it will not
process it but locally enqueue it, until it has received from that side (and processed) all the
messages from stages i, i + 1, . . . , j − 1, which have been “jumped over” by M∗; it will then
process M∗.
The only modification to protocol Stages as described in Fig. 14, is the addition of the local
enqueueing of messages (Exercise 9.6); since this is only local processing, the message and
time costs are unchanged.

Stages*
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An alternative approach is to keep track of a message “jumping over” others but without
enqueuing it locally. We shall describe it in some details and call Stages* the corresponding
protocol.

1. First of all, we will give a stage number to all nodes: for a candidate entity, it is the
current stage; for a defeated entity, it is the stage in which it was defeated. We will then
have a defeated node forward only messages from higher stages.

2. A candidate node x in stage i receiving an Election message M∗ with stage j > i will use
the id included in the message, id∗, and make a decision about the outcome of the stage i
as if they both were in the same stage.
- If x is defeated in this round, then it will forward the message M∗.
- If x survives, it means that id(x) is smaller not only of id∗ in M∗ but also of the ids in the
messages “jumped over” by M∗ (Exercise 9.13). In this case, x can act as it has received
already from that side all the messages from stages i, i + 1, . . . , j, and they all have an id
larger than id(x). We will indicate this fact by saying that x has now a credit of j − i
messages on that port. In other words, if a candidate x has a credit c > 0 associated with a
port, it does not have to wait for a message from that port during the current stage. Clearly,
the credit must be decreased in each stage.

To write the set of rules for protocol Stages* is a task that, although not difficult, requires
great care and attention to details (Exercise 9.12); similar characteristics has the task of
proving the correctness of the protocol Stages* (Exercise 9.14).

As for the resulting communication complexity, the number of messages is never more (some-
times less) than with message ordering (Exercise 9.15).

Interestingly, if we attempt to measure the ideal time complexity, we will only see executions
with message ordering. In other words,

the phenomenon of messages delivered out of order will disappear !

This is yet another case showing how biased and limited (and thus dangerous) ideal time is
as a cost measure.

3.5 Stages with Feedback

We have seen how, with the proper use of electoral stages in protocol Stages, we can obtain a
O(n log n) performance without the need of controlling the distance travelled by a message.

In addition to controlled distances, protocol Control uses also a “feedback” technique: if a
message successfully reaches its target, it returns back to its originator, providing it with
a “positive feedback” on the situation it has encountered. Such a technique is missing in
Stages: a message always successfully reaches its target (the next candidate in the direction
it travels) which could be at an unpredictable distance; however the use of the message ends
there.
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Figure 17: Only some candidates will send a Feedback.

Let us integrate the positive feedback idea in the overall strategy of Stages: when an “Elec-
tion” message reaches its target, a positive feedback will be sent back to its originator if the
id contained in the message is the smallest seen by the target in this stage.

More precisely, when a candidate x receives Election messages containing id(y) and id(z) from
its neighbouring candidates, y = r(i, x) and z = l(i, x), it will send a (positive) “Feedback”
message: to y if id(y) < Min{id(x), id(z)}, to z if id(z) < Min{id(x), id(y)}, to none
otherwise. A candidate will then survive this stage and enter the new one if and only if it
receives a Feedback from both sides.

In the example of Figure 17, candidates with ids 2, 5 and 8 will not send any feedback;
of these three, only candidate with id=2 will enter next stage. The fate of entity with id
7 depends on its other neighbouring candidate, which is not shown; so, we do not know
whether it will survive or not.

If a node sends a “Feedback” message, it knows that it will not survive this stage. This is
the case, in the example, of the entities with ids 6, 9, 10, 11.

Some entities, however, do not send any “Feedback” and wait for a “Feedback” that will
never arrive; this is for example the cases of the entities with ids 5 and 8. How will such
an entity discover that no “Feedback” is forthcoming, and it must become defeated ? The
answer is fortunately simple. Every entity that survives stage i (e.g., the node with id= 2)
will start the next stage; its Stage message will act as a negative feedback for those entities
receiving the message while still waiting in stage i.

More specifically, if while waiting for a “Feedback” message in stage i, an entity receives
an “Election” message (clearly with a smaller id) in stage i + 1, it becomes defeated and
forwards the message.

We shall call the protocol Stages with Feedback; our description was assuming message or-
dering. As for protocol Stages, this restriction can and will be logically enforced with just
local processing.

3.5.1 Correctness

The correctness and termination of the protocol follows from the fact that the entity xmin

with the smallest identity will always receive a positive feedback from both sides; hence it
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Figure 18: If x survives, those other candidates do not.

will never be defeated. At the same time xmin never sends a positive feedback; hence its
left and right neighbouring candidates in that stage do not survive it. In other words, the
number ni of candidates in stage i is monotonically decreasing, and eventually only xmin will
be in such a state. When this happens, its own “Election” messages will travel along the
ring, and termination will be detected.

3.5.2 Messages

We are adding bookkeeping and additional messages to the already highly efficient protocol
Stages. Let us examine the effect of these changes.

Let us start with the number of stages.

As in Stages, if a candidate x in stage i survives, it is guaranteed that its neighbouring
candidates in the same stage, r(i, x) and l(i, x), will become defeated. With the introduction
of positive feedback, we can actually guarantee that if x survives, also the first candidate to
the right of r(i, x) will not survive ! and neither will the first candidate to the left of l(i, x).

This is because, if x survives, it must have received a “Feedback” from both r(i, x) and
l(i, x). But if r(i, x) sends “Feedback” to x, it does not send one to its neighbouring candidate
r2(i, x); similarly, l(i, x) does not send a “Feedback” to l2(i, x).

In other words,

ni ≤ ni−1

3

That is, at most one third of the candidates starting a stage will enter the next one. Since
n1 = n , the total number of stages σStages is at most σStages ≤ ⌈log3n⌉ + 1. Note that this
number is actually achievable: there are initial configurations of the ids that will force the
protocol to have exactly these many stages (Exercise 9.22).

In other words, the number of stages has decreased with the use of “Feedback” messages.
However, we are sending more messages in each stage.

Let us examine now how many messages will be sent in each stage. Consider stage i; this will
be started by ni candidates. Each candidate will send an “Election” message that will travel
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to the next candidate on either side. Thus, exactly like in Stages, two “Election” messages
will be sent over each link, one in each direction, for a total of 2n “Election” messages per
stage. Consider now the “Feedback” messages; a candidate sends at most one “Feedback”
and only in one direction. Thus, in the segment of the ring between two candidates, there
will be at most one “Feedback” message on each link; hence there will be no more than n
“Feedback” transmissions in total in each stage. This means that, in each stage there will
be at most 3n messages.

Summarizing

M[StageswithFeedback] ≤ 3 n log3n + O(n) ≤ 1.89 n log n + O(n) (18)

In other words, the use of feedback with the electoral stages allows us to reduce the number
of messages in the worst case. the use of Minimum Initiator strategy yields the similar result:

M[StageswithFeedback −MinInit] ≤ 1.89 n log k∗ + O(n) (19)

In the analysis of the number of “Feedback” messages sent in each stage, we can be more
accurate; in fact, there are some areas of the ring (composed of consecutive defeated entities
between two successive candidates) where no feedback messages will be transmitted at all.
In the example of Figure 17, this is the case of the area between the candidates with ids
8 and 10. The number of these areas is exactly equal to the number ni+1 of candidates
that survive this stage (Exercise 9.19). However, the savings are not enough to reduce the
constant in the leading term of the message costs (Exercise 9.21).

Granularity of Analysis: Bit Complexity

The advantage of protocol Stages with Feedback becomes more evident when we look at
communication costs at a finer level of granularity, focusing on the actual size of the messages
being used. In fact, while the “Election” messages contain values, the “Feedback” messages
are just signals, each containing O(1) bits. (recall the discussion in Section 2).

In each stage, only the 2n “Election” messages carry a value, while the other n are signals;
hence, the total number of bits transmitted will be at most

2 n (c + log id) log3n + n c log3n + l.o.t.

where id denotes the largest value sent in a message, c = O(1) denotes the number of bits
required to distinguish among the different types of message, and l.o.t. stands for “lower
order terms”. That is

B[StageswithFeedback] ≤ 1.26 n log n log id + l.o.t. (20)

The improvement on the bit complexity of Stages, where every message carries a value, is
thus in the reduction of the constant from 2 to 1.26.
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3.5.3 Further improvements ?

The use of electoral stages allows to transform the election process into one of successive
“eliminations”, reducing the number of candidates at each stage. In the original protocol
Stages each surviving candidate will eliminate its neighbouring candidate on each side, guar-
anteeing that at least half of the candidates are eliminated in each stage. By using feedback,
protocol Stages with Feedback extends the “reach” of a candidate also to the second neigh-
bouring candidate on each side, ensuring that at least 2/3 of the candidates are eliminated
in each stage. Increasing the “reach” of a candidate during a stage will result in a larger pro-
portion of the candidates in each stage, thus reducing the number of stages. So, intuitively,
we would like a candidate to reach as far as possible during a stage. Obviously the price to
be paid is the additional messages required to implement the longer reach.

In general, if we can construct a protocol that guarantees a reduction rate of at least b, i.e.,
ni ≤ ni−1

b
, then the total number of stages would be logb(n); if the messages transmitted in

each stage are at most an, then the overall complexity will be

a n logb(n) = a
log b

n log n

To improve on Stages with Feedback, the reduction must be done with a number of messages
such that a

log b
< 1.89. Whether this is possible, it is an open problem (Problem 9.3).

3.6 Alternating Steps

It should be clear by now that the road to improvement, on which creative ingenuity will
travel, is oftentimes paved by a deeper understanding of what is already available.

A way to achieve such an understanding is by examining the functioning of the object of our
improvement in “slow motion”, so to observe its details.

Let us consider protocol Stages. It is rather simple and highly efficient. We have already
shown how to achieve improvements by extending the “reach” of a candidate during a stage”;
in a sense, this was really “speeding up” the functioning of the protocol. Let us examine
now Stages instead by “slowing down” its functioning.

In each stage, a candidate sends its id in both direction, receives an id from each direction,
and decides whether to survive, be elected, or become defeated based on its own and the
received values.

Consider the example shown in Figure 19; the result of stages will result in: candidates w, y
and v being eliminated; x and z surviving; the fate of u will depend on its right candidate
neighbour, which is not shown.

We can obviously think of “sending in both direction” as two separate steps: send to one
direction (say “right”), and send to the other. Assume for the moment that the ring is
oriented: “right” has the same meaning for all entities. Thus, the stage can be though of
two steps: (1) the candidate sends to the “right” and receives from the “left”; (2) it will then
send to the “left” and receive from the “right”.
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Figure 19: Alternating Steps: slowing the execution of Stages.

Consider the first step in the same example shown in Figure 19; both candidates y and v
already know at this time that they do not survive. Let us take advantage of this “early”
discovery. We will use each of these two steps to make an electoral decision, and we will
eliminate a candidate after step (1) if it receives a smaller id in this step. Thus, a candidate
will perform step (2) only if is not eliminated in step (1).

The advantage of doing so becomes clear observing that, by eliminating in each step of a
phase, we eliminate more than in the original phase; in the example of Figure 19, also x will
be eliminated !

Summarizing, the idea is that, at each step, a candidate sends only one message with its
value, waits for one message, and decides based on its value and the received one; the key is
to alternate at each step the direction in which messages are sent.

This protocol, which we shall call Alternate, is shown in Fig. 20, where close and open

denote the operation of closing a port (with the effect of enqueueing incoming messages), and
opening a closed port (dequeueing the messages), respectively; and the procedures Initialize
and Process Message are shown in Fig. 21.

Correctness

The correctness of the protocol follows immediately from observing that, as usual, the candi-
date xmin with smallest value will never be eliminated and that, on the contrary, will in each
step eliminate a neighbouring candidate. Hence, the number of candidates is monotonically
decreasing in the steps; when only xmin is left, its message will complete the tour of the ring
transforming it into the leader. The final notification will ensure proper termination of all
entities.

Costs

To determine the cost is slightly more complex. There are exactly n messages transmitted in
each step, so we need to determine the total number σAlternate of steps until a single candidate
is left, in the worst case, regardless of the placement of the ids in the ring, time delays, etc.

Let ni be the candidate entities starting step i; clearly n1 = n and nk = 1. We know that
two successive steps of Alternate will eliminate more candidates than a single stage of Stages;
hence, the total number of steps σAlternate (or, where no confision arises, simply σ) will be
less than twice the number of stages of Stages:

σAlternate < 2 log n.

We can however be more accurate on the amount of elimination is performed in two successive
steps.
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PROTOCOL Alternate.

• States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
SINIT = {ASLEEP};
STERM = {FOLLOWER, LEADER}.

• Restrictions: RI ∪OrientedRing ∪MessageOrdering.

ASLEEP
Spontaneously
begin

INITIALIZE;
become CANDIDATE;

end

Receiving(‘‘Election’’, id*, step*)
begin

INITIALIZE;
become CANDIDATE;
PROCESS MESSAGE;

end

CANDIDATE
Receiving(‘‘Election’’, id*, step*)
begin

if id* 6= id(x) then
PROCESS MESSAGE;

else
send(Notify) to N(x);
become LEADER;

end

DEFEATED
Receiving(⋆)
begin

send(⋆) to other;
if ⋆ = Notify then become FOLLOWER endif;

end

Figure 20: Protocol Alternate
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Procedure INITIALIZE
begin

step:= 1;
min:= id(x);
send(‘‘Election’’, id(x), step) to right;
close(right);

end

Procedure PROCESS MESSAGE
begin

if id*< min then
open(other);
become DEFEATED;

else
step:= step+1;
send(‘‘Election’’, id(x), step) to sender;
close(sender);
open(other);

endif
end

Figure 21: Procedures used by protocol Alternate

Assume that in step i the direction is “right” (thus, it will be “left” in step i + 1). Let di

denote the number of candidates that are eliminated in step i. Of those ni candidates which
start step i, di will be defeated and only ni+1 will survive that step. That is,

ni = di + ni+1

Consider a candidate x that survives both step i and step i +1. First of all observe that the
candidate to the right of x in step i will be eliminated in that step. (If not, it would mean
that its id is smaller than id(x) and thus would eliminate x in step i + 1; but we know that
x survives.)

This means that every candidate which, like x, survives both stages, will eliminate one
candidate in the first stage; in other words,

di ≥ ni+2

but then

ni ≥ ni+1 + ni+2 (21)

The consequence of this fact is very interesting. In fact, we know that nσ = 1 and, obviously,
nσ−1 ≥ 2. From Equation 21 we have nσ−i ≥ nσ−i+1 + nσ−i+2.

Consider now the Fibonacci numbers Fj defined by Fj = Fj+1 + Fj+2, where F−1 = 0 and
F0 = 1. Then, clearly
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nσ−i ≥ Fi+1

It follows that n1 ≥ Fσ, but n1 = n; thus σ is the index of the largest Fibonacci number
not exceeding n. Our goal is to determine σ, the number of steps until there is only one
candidate left; now we can. Since Fj = b (1+

√
5

2
)j where b is a positive constant, we have

n ≥ Fσ = b (1+
√

5
2

)σ

from where

σAlternate ≤ 1.44 log n + O(1)

That means that after at most so many steps, there will be only one candidate left. Observe
that this we have derived is actually achievable. In fact, there are allocations of the ids to
the nodes or a ring which will force the protocol to perform σAlternate steps before there is
only one candidate left (Exercise 9.26). In the next step, this candidate will become leader
and start the notification. These last two operations require n messages each,

Thus the total number of messages will be

M[Alternate] ≤ 1.44 n log n + O(n) (22)

In other words, protocol Alternate is not only simple but also more efficient that all other
protocols seen so far.

Recall however that it has been described and analyzed assuming that the ring is oriented.

Question. What happens if the ring is not oriented ?

If the entities have different meaning for “right”, when implementing the first step, some
candidates will send messages clockwise while others in a counterclockwise direction.

Notice that, in the implementation for oriented rings described above, this would lead to
deadlock, because we close the port we are not waiting to receive from; the implementation
can be modified so that ports are never closed (Exercise 9.24). Consider this to be the case.

It will then happen that a candidate waiting to receive from “left” will instead receive from
“right”. Call this situation a conflict.

What we need to do is to add to the protocol a conflict resolution mechanism to cope with
such situations. Clearly this complicates the protocol and increases the number of messages
(Problem 9.2).

3.7 Unidirectional Protocols

The first two protocols we have examined, All the Way and AsFar, did not really require
the restriction Bidirectional Links; in fact, they can be used without any modification in
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a directed or unidirectional ring. The subsequent protocols, Distances, Stages, Stages with
Feedback, and Alternate all used the communication links in both directions; e.g., for obtain-
ing feedback. It was through them that we have been able to reduce the costs from O(n2)
to a guaranteed O(n logn) messages. The immediate and natural question is:

Question: Is “Bidirectional Links” necessary for a O(n log n) cost ?

The question is practically relevant because, if the answer is positive, it would indicate that
an additional investment in communication hardware (i.e., full duplex lines) is necessary
to reduce the operating costs of the election task. The answer is important also from a
theoretical point of view because, if positive, it would clearly indicate the “power” of the
restriction Bidirectional Links. Not surprisingly, this question has attracted the attention of
many researchers.

We are going to see now that the answer is actually: No !

We are also going to see that, strangely enough, we know how to do better with unidirectional
links than with bidirectional ones !

First of all, we are going to show how the execution of protocols Stages and Alternate can be
simulated in a unidirectional links yielding the same (if not better) complexity. Then, using
the lessons learned in this process, we are going to develop a more efficient unidirectional
solution.

3.7.1 Unidirectional Stages

What we are going to do is to show how to simulate the execution of protocol Stages in
unidirectional rings ~R, with the same message costs.

Consider how protocol Stages work. In a stage, a candidate entity x
(1) sends a message carrying a value v(x) (its id) in both directions, and thus receives a
message with the value (the id) of another candidate from each directions; then,
(2) based these three values (i.e., its own and the two received ones), makes a decision on
whether it (and its value) should survive this stage and start the next stage.

Let us implement each of these two steps separately.

Step (1) is clearly the difficult one since, in a unidirectional ring, messages can only be sent
in one direction. Decompose the operation “send in both direction” into two substep: (I)
“send in one direction”, and then (II) “send in the other direction”.

Now, substep (I) can be executed directly in ~R; as a result, every candidate will receive a
message with the value of its neighbouring candidate from the opposite direction (see Figure
22 c)). The problem is in implementing now substep (II); since we cannot send in the other
direction, we will send again in the same direction, and, since it is meaningless to send again
the same information, we will send the information we just received. As a result, every
candidate will receive now the value of another candidate from the opposite direction (see
Figure 22 a)).

Every entity in ~R has now three values at its disposal: the one it started with. plus the two
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Figure 22: (a) Initial configuration. (b) Information after the first full stage of Stages with bidi-
rectional links. (c) Information after first substep in the unidirectional simulation. (d) Information
after the second substep

received ones. We can now proceed to implement Step (1). To simulate the bidirectional
execution, we need that a candidate decides on whether to survive or to became passive
based on exactly the same information in ~R as in the bidirectional case. Consider the initial
configuration in the example shown in Figure 22 and focus on the candidate x with starting
value 7; in the bidirectional case, x decides that the value 7 should survive based on the
information: 7, 15 and 8. In the unidirectional case, after the implementation of Step (1), x
knows now 4 and 15 in addition to 7. This is not the same information at all ! In fact, it
would lead to totally different decisions in the two cases, destroying the simulation.

There is however in ~R a candidate which, at the end of Stage (1), has exactly the same
information that x has at the end of Stage (1) in the bidirectional case: this is the candidate

that started with value 8. In fact, the information available in R exists in ~R (compare
carefully Figures 22 (b) and (d)), but it is shifted to the “next” candidate in the ring direction

! It is thus possible to make the same decisions in ~R as in R; they will just have be made
by different entities in the two cases.

In each stage, a candidate makes a decision on a value. In protocol Stages, this value was
always the candidate’s id. In the unidirectional algorithm this value is not the id; it is the
first value sent by its neighbouring candidate in Step (1). We will call this value the envelope.
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IMPORTANT. Be aware that, unless we add the assumption Message Ordering, it is
possible that the second value arrives before the envelope. This problem can be easily solved;
e.g., by having a bit in the message indicating its order (first or second) of transmission within
the stage.

It is not difficult to verify that the simulation is exact: in each stage, exactly the same values
survive in ~R as in R; thus, the number of stages is exactly the same. The cost of each stage is
also the same: 2n messages. In fact, each node will send (or forward) exactly two messages.

In other words,

M[UniStages] ≤ 2 n log n + O(n) (23)

This shows that O(n log n) guaranteed message costs can be achieved in ring networks also
without Bidirectional Links.

The corresponding protocol UniStages is shown in Fig. 23, described not as a unidirectional
simulation of Stages (which indeed it is) but directly as a unidirectional protocol.

NOTES. In this implementation:
(1) we elect a leader only among the initiators (using approach minimum initiator);
(2) message ordering is not assumed; within a stage, we use a Boolean variable, order to
distinguish between value and envelope; to cope with messages from different stages arriving
out of order: if a candidate receives a message from the “future” (i.e., with a higher stage
number), it will be transformed immediately into defeated and forward the message.

3.7.2 Unidirectional Alternate

We have shown how to simulate Stages in a unidirectional ring, achieving exactly the same
cost. Let us focus now on Alternate; this protocol makes full explicit use of the full du-
plex communication capabilities of the bidirectional ring by alternating direction at each
step. Surprisingly, it is possible to achieve an exact simulation also of this protocol in a
unidirectional ring ~R.

Consider how protocol Alternate works. In a “left” step, a candidate entity x
(1) sends a message carrying a value v(x) to the “left”, and receives a message with the value
of another candidate from the “right”
(2) based on these two values (i.e., its own and the received one), x makes a decision on
whether it (and its value) should survive this step and start the next step.

The actions in a “right” step are the same except that “left” and “right” are interchanged.

Consider the ring ~R shown in Figure 25, and assume we can send messages only to “right”.
This means that the initial “right” step can be trivially implemented: every entity will send
a value (its own) and receive another; it starts the next step if and only if the value it receives
is not smaller that its own.

Let us concentrate on the “left” step. Since a candidate cannot send to the left, it will have
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PROTOCOL UniStages.

• States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
SINIT = {ASLEEP};
STERM = {FOLLOWER, LEADER}.

• Restrictions: {Connectivity, T otalReliability, UnidirectionalRing}.

ASLEEP
Spontaneously
begin

INITIALIZE;
become CANDIDATE;

end

Receiving(‘‘Election’’, value*, stage*,order*)
begin

send (‘‘Election’’, value*, stage*, order*);
become DEFEATED;

end

CANDIDATE
Receiving(‘‘Election’’, value*, stage*, order*)
begin

if value* 6= value1 then
PROCESS MESSAGE;

else
send(Notify);
become LEADER;

end

DEFEATED
Receiving(⋆)
begin

send(⋆);
if ⋆ = Notify then become FOLLOWER endif;

end

Figure 23: Protocol Unistages
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Procedure INITIALIZE
begin

stage:= 1;
count:= 0;
order:= 0;
value1:= id(x);
send(‘‘Election’’, value1, stage, order);

end

Procedure PROCESS MESSAGE
begin

if stage* = stage then
if order* = 0 then

envelope:= value*;
order:= 1;
send (‘‘Election’’, value*, stage*, order);

else
value2:= value*;

endif
count:=count+1;
if count=2 then

if envelope < Min(value1, value2) then
order:= 0;
count:= 0;
stage:= stage+1;
value1:= envelope;
send (‘‘Election’’, value1, stage, order);

else
become DEFEATED;

endif
endif

else
if stage* > stage then

send (‘‘Election’’, value*, stage*, order*);
become DEFEATED;

endif
endif

end

Figure 24: Procedures used by protocol Unistages

42



5

(b)

(d)(c)

(a)

15

7

11

9

12

7

11

97

5

1215

8

13

15

8

12

9

11

5

13

7

5

8

9

7

97

5

8

8

13

11

97

5

1215

8

13

5

8
97

5

8

Figure 25: (a-b) Information after (a) the first step and (b) the second step of Alternate in an
oriented bidirectional ring. (c-d) Information after (c) the first step and (d) the second step of the
unidirectional simulation.

to send to the “right’. Let us do so. Every candidate in ~R has now two values at its disposal:
the one it started with, plus the received one.

To simulate the bidirectional execution, we need that a candidate makes a decision on
whether to survive or to became passive based on exactly the same information in ~R as
in the bidirectional case. Consider the initial configuration in the example shown in Figure
25. First of all observe that the information in the “right” step is the same both in the
bidirectional (a) and in the unidirectional (c) case. The differences occur in the “left” step.

Focus on the candidate x with starting value 7; in the second step of the bidirectional case,
x decides that the value 7 should not survive based on the information: 5 and 7. In the
unidirectional case, after the second step, x knows now 7 and 8. This is not the same
information at all ! In fact, it would lead to totally different decisions in the two cases,
destroying the simulation.

There is however in ~R a candidate which, at the end of the second step, has exactly the
same information that x has in the bidirectional case: this is the candidate that started with
value 5. As we have seen already in the simulation of Stages, the information available in R
exists in ~R (compare carefully Figures 25(b) and (d). It is thus possible to make the same

decisions in ~R as in R; they will just have be made by different entities in the two cases.
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Summarizing, in each step, a candidate makes a decision on a value. In protocol Alternate,
this value was always the candidate’s id. In the unidirectional algorithm this value changes
depending on the step. Initially, it is its own value; in the “left” step it is the value it receives;
in the “right” step it is the value it already has.

In other words:

1. in the “right” step, a candidate x survives if and only the received value is larger than
v(x);

2. in the “left” step, a candidate x survives if and only if the received value is smaller
than v(x), and if so, x will now play for that value.

Working out a complete example will help clarify the simulation process and dispel any
confusion (Exercise 9.33).

IMPORTANT. Be aware that, unless we add the assumption Message Ordering, it is
possible that the value from step i + 1 arrives before the value for step i. This problem can
be easily solved; e.g., by having a bit in the message indicating its order (first or second) of
transmission within the stage.

It is not difficult to verify that the simulation is exact: in each step, exactly the same values
survive in ~R as in R; thus, the number of steps is exactly the same. The cost of each step is
also the same: n messages. Thus,

M[UniAlternate] ≤ 1.44 n log n + O(n) (24)

The unidirectional simulation of Alternate is shown in Fig. 26; it has been simplified so that
we elect a leader only among the initiators, and assuming Message Ordering. The protocol
can be modified to remove this assumption without changes in its cost (Exercise 9.34). The
procedures Initialize and Prepare Message are shown in Fig. 27.

3.7.3 An Alternative Approach

In all the solutions we have seen so far, both for unidirectional and bidirectional rings, we
have use the same basic strategy of minimum finding; in fact in all or protocols so far, we
have electing as a leader the entity with smallest value (either among all the entities or just
the initiators). Obviously, we could have used maximum finding in those solution protocols,
just substituting the function Min with Max, and obtaining the exact same performance.

A very different approach consists in mixing these two strategies. More precisely, consider
the protocols based on electoral stages. In all of them, what we could do is to alternate
strategy in each stage: in “odd” stages we use the function Min, and in “even” stages we
use the function Max. Call this approach min-max.

It is not difficult to verify that all the stage-based protocols we have seen so far, both
bidirectional and unidirectional, still correctly solve the election problem; moreover, they do
so with the same costs as before (Exercises 9.11, 9.23, 9.28, 9.31, 9.36).
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PROTOCOL UniAlternate.

• States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
SINIT = {ASLEEP};
STERM = {FOLLOWER, LEADER}.

• Restrictions: {Connectivity, T otalReliability, UnidirectionalRing, MessageOrdering}.

ASLEEP
Spontaneously
begin

INITIALIZE;
become CANDIDATE;

end

Receiving(‘‘Election’’, value*, stage*,order*)
begin

send (‘‘Election’’, value*, stage*, order*);
become DEFEATED;

end

CANDIDATE
Receiving(‘‘Election’’, value*, stage*)
begin

if value* 6= value then
PROCESS MESSAGE;

else
send(Notify);
become LEADER;

end

DEFEATED
Receiving(⋆)
begin

send(⋆);
if ⋆ = Notify then become FOLLOWER endif;

end

Figure 26: Protocol UniAlternate
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Procedure INITIALIZE
begin

step:= 1;
direction:= "right";
value:= id(x);
send(‘‘Election’’, value, step, direction);

end

Procedure PROCESS MESSAGE
begin

if direction = "right" then
if value < value* then

step:= step+1;
direction:= "left";
send (‘‘Election’’, value, step, direction);

else
become DEFEATED;

endif
else

if value > value* then
step:= step+1;
direction:= "right";
send (‘‘Election’’, value, step, direction);

else
become DEFEATED;

endif
endif

end

Figure 27: Procedures used by protocol UniAlternate
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The interesting and surprising thing is that this approach can lead to the design of a more
efficient protocol for unidirectional rings.

The protocol we will construct has a simple structure. Let us assume that every entity starts
and that there is Message Ordering (we will remove both assumptions later).

1. Each initiator x becomes candidate, prepares a message containing its own value id(x)
and the stage number i = 1, and sends it (recall, we are in a unidirectional ring, so there
is only one out-neighbour); x is called the originator of this message and remembers
its content.

2. When a message with value b arrives at a candidate y, y compares the received value
b to the value a it sent in its last message.

(a) If a = b, the message originated by y has made a full trip around the ring; y
becomes the leader and notifies all other entities of termination.

(b) If a 6= b,the action y will take depends on the stage number j:

i. if j is “even”, the message is discarded if and and only if a < b (i.e., b survives
only if max);

ii. if j is “odd”, the message is discarded if and and only if a > b (i.e., b survives
only if min ).

If the message is discarded, y becomes defeated; otherwise, y will enter the next
stage: originate a message with content (b, j + 1) and send it.

3. A defeated entity will, as usual, forward received messages.

For an example, see Fig. 28.

The correctness of the protocol follows from observing that,
(a) in an even stage i, the candidate x receiving the largest of all values in that stage,
vmax(i), will survive and enter the next stage; on the other hand, its “predecessor” l(i, x)
that originated that message will become defeated (Exercise 9.37). and
(b) in an odd stage j, the candidate y receiving the smallest of all values in that stage,
vmin(j), will survive and and enter the next stage; furthermore, its “predecessor” l(j, y) that
originated that message will become defeated.
In other words, in each stage at least one candidate will survive that stage, and the number
of candidates in a stage is monotonically decreasing with the number of stages. Thus, within
finite time, there will only one candidate left; when that happens, its message returns to it
transforming it into leader.

IMPORTANT Note that the entity that will be elected leader will not be the one with the
smallest value nor the one with the largest value.

Let us now consider the costs of this protocol, we will call MinMax. In a stage, each candidate
sends a message that travels to the next candidate. In other words, in each stage there will be
exactly n messages. Thus, to determine the total number of messages, we need to compute
the number σMinMax of stages.
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Figure 28: Protocol MinMax: (a) In an even stage, a candidate survives only if it receives an
envelope with a larger value; (b) it then generates an envelope with that value and starts the next
stage. (c) In an odd stage, a candidate survives only if it receives an envelope with a smaller value;
if so, it generates an envelope with that value and starts the next stage.

We can rephrase the protocol in terms of values instead of entities. Each value sent in a
stage j travels from its originator to the next candidate in stage j. Of all these values, only
some will survive and be sent in the next stage: in an even stage, a value survives if it is
larger than its “successor” (i.e., the next value in the ring also this stage); similarly, in an
odd stage, it survives if it is smaller than its successor. Let ni be the number of values in
stage i; of those, di will be discarded and ni+1 will be sent in the next stage. That is,

ni+1 = ni − di

Let i be an odd (i.e., min) stage, and let value v survive this stage; this means that the
successor of v in stage i, say u, is larger than v; i.e., u > v. Let v survive also stage i + 1
(an even, i.e. max, stage). This implies that that v must have been discarded in stage i: if
not, the entity that originates the message (i + 1, u) would discard (i + 1, v) because u > v;
but we know that x survives this stage. This means that every value that, like v, survives
both stages, will eliminate one value in the first of the two stages; in other words,

ni+2 ≤ di

but then

ni ≥ ni+1 + ni+2 (25)
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Notice that this is exactly the same equation as the one (Equation 21) we derived for protocol
Alternate. We thus obtain that

σMinMax ≤ 1.44 logn + O(1)

After at most these many stages, there will be only one value left. Observe that this bound
we have derived is actually achievable. In fact, there are allocations of the ids to the nodes
or a ring which will force the protocol to perform σMinMax steps before there is only one
value left (Exercise 9.38). The candidate sending this value will receive its message back and
become leader; it will then start the notification. These last two steps require n messages
each; thus the total number of messages will be

M[MinMax] ≤ 1.44 n log n + O(n) (26)

In other words, we have been able to obtain the same costs of UniAlternate with a very
different protocol, MaxMin, described in Fig. 29.

We have assumed that all entities start. When removing this assumption we have two options:
the entities that are not initiators can be 1. made to start (as if they were initiators) upon
receiving their first message; or 2. transformed into passive and just act as relayers. The
second option is the one used in Fig. 29.

We have also assumed message ordering in our discussion. As with all the other protocols we
have considered, this restriction can be enforced with just local bookkeeping at each entity,
without any increase in complexity (Exercise 9.39).

Hacking: Employing the Defeated

The different approach used in protocol MinMax has led to a different way of obtaining the
same efficiency as we had already with UniAlternate. The advantage of MinMax is that it is
possible to obtain additional improvements that lead to a significantly better performance.

Observe that, like in most previous protocols, the defeated entities play a purely passive role;
i.e., they just forward messages. The key observation we will use to obtain an improvement
in performance is that these entities can be exploited in the computation.

Let us concentrate on the even stages, and see if we can obtain some savings for those
steps. The message sent by a candidate travels (forwarded by the defeated entities) until it
encounters the next candidate. This distance can vary, and be very large. We we will do
is to control the maximum distance to which the transfer will travel, following the idea we
developed in section 3.3.

(I) In an even step j, a message will travel no more than a predefined distance dis(j).

This is implemented by having in the message a counter (initially set to dis(j)) that will
be decremented by one by each defeated node it passes. What is the appropriate choice of
dis(i) will be discussed next.
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PROTOCOL MinMax.

• States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
SINIT = {ASLEEP}; STERM = {FOLLOWER, LEADER}.

• Restrictions: {Connectivity, T otalReliability, MessageOrdering}.

ASLEEP
Spontaneously
begin

stage:= 1; value:= id(x);
send(‘‘Envelope’’, value, stage);
become ORIGINATOR;

end

Receiving(‘‘Envelope’’, value*, stage*)
begin

send (‘‘Envelope’’, value*, stage*);
become DEFEATED;

end

CANDIDATE
Receiving(‘‘Envelope’’, value*, stage*)
begin

if value* 6= value then
PROCESS ENVELOPE;

else
send(Notify);
become LEADER;

end

DEFEATED
Receiving(‘‘Envelope’’, value*, stage*)
begin

send(‘‘Envelope’’, value*, stage*);
end

Receiving(‘‘Notify’’)
begin

send (‘‘Notify’’);
become FOLLOWER;

end

Figure 29: Protocol MinMax
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Procedure PROCESS ENVELOPE
begin

if odd(stage*) then
if value* < value then

stage= stage+1;
value:= value*;
send (‘‘Envelope’’, value*, stage);

else
become DEFEATED;

else
if value* > value then

stage= stage+1;
value:= value*;
send (‘‘Envelope’’, value, stage);

else
become DEFEATED;

endif
endif

end

Figure 30: Procedure Process Envelope of Protocol MinMax

Every change we make in the protocol has strong consequences. As consequence of (I), the
message from x might not reach the next candidate y if it is too far away (more than dis(j))
(see Figure 31). In this case, the candidate y does not receive the message in this stage and
thus does not know what to do for the next stage.

IMPORTANT. It is possible that every candidate is too far away from the next one in this
stage, and hence none of them will receive a message.

However, if candidate y does not receive the message from x, it is because the counter of the
message containing (v, j) reaches 0 at a defeated node z, on the way from x to y (see Figure
31). To ensure progress (i.e., absence of deadlock), we will make that defeated z become
candidate and start the next stage j + 1 immediately, sending (v, j + 1). That is,

(II) In an even step j, if the counter of the message reaches 0 at a defeated node z, then
z becomes candidate and start stage j + 1 with value = v∗, where v∗ is the value in the
transfer message.

In other words, we are bringing some defeated nodes back into the game making them
candidate again. This operation could be dangerous for the complexity of the protocol, as
the number of candidates appears to be increasing (and not decreasing) ! This is easily
taken care of: those originators, like y, waiting for a transfer message that will not arrive,
will become defeated.

Question. How will y know that is defeated ?

The answer is simple. The candidate that starts the next stage (e.g., z in our example) sends
a message; when this message reaches a candidate (e.g., y) still waiting for a message from
the previous stage, that entity will understand, become defeated, and forward the message.

51



(b)

(a)

-

yzx

z yx

- -

- -- ~

~����

����

����

����

Figure 31: Protocol MinMax+. Controlling the distance: in even stage j, the message does not
travel more than dis(j) nodes. (a) If it does not reach the next candidate y, the defeated node
reached last, z, will become candidate and start the next step; (b) in the next step, the message
from z transforms into defeated the entity y still waiting for the stage j message.

In other words,

(III) When, in an even step, an candidate receives a message for the next step, it becomes
defeated and forwards the message.

We are giving decisional power to the defeated nodes, even bringing some of them back to
“life”. Let us push this concept forward. and see if we can obtain some other savings.

Let us concentrate on the odd stages.

Consider an even stage i in MinMax (eg., Figure 28(a)). Every candidate x sends its message
containing the value and the stage number, and receives a message; it becomes defeated if
the received value is smaller than the one it sent. If it survives, x starts stage i+1: it sends a
message with the received value and the new stage number (see Figure 28(b)); this message
will reach the next candidate.

Concentrate on the message (11, 3) in Figure 28(b) sent by x. Once (11, 3) reaches its
destination y, since 11 < 22 and we are in a odd (i.e., min) stage, a new message (11, 4) will
be originated. Observe that the fact that (11, 4) must be originated can be discovered before
the message reaches y; see Fig. 32. In fact, on its travel from x to y, message (11, 3) will
reach the defeated node z, that originated (20, 2) in the previous stage; once this happens, z
knows that 11 will survive this stage. (Exercise 9.40). What z will do is to become candidate
again and immediately send (11, 4).

(IV) When, in an even stage, a candidate becomes defeated, it will remember the stage
number and the value it sent. If, in the next stage, it receives a message with a smaller
value, it will become candidate again and start the next stage with that value.

In our example, this means that the message (11, 3) from x will stop at z and never reach y;
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Figure 32: Protocol MinMax+. Early promotion in odd stages. (b) The message (11, 3) from x,
on its way to y reaches the defeated node z that originated (20, 2). (c) Node z becomes candidate
and immediately originates envelope (11, 4).

thus, we will save d(z, y) messages. Notice that in this stage every message with a smaller
value will be stopped earlier. We have however transformed a defeated entity into a candidate.
This operation could be dangerous for the complexity of the protocol, as the number of
candidates appears to be increasing (and not decreasing) ! This is easily taken care of: those
candidates, like y, waiting for a message of an odd stage that will not arrive, will become
defeated.

How will y know that is defeated ? The answer again is simple. The candidate that starts the
next stage (e.g., z in our example) sends the message; when this message reaches an entity
still waiting for a message from the previous stage (e.g., y), that entity will understand,
become defeated, and forward the message. In other words,

(V) When, in an odd step, a candidate receives a message for the next step, it becomes
defeated and forwards the message.

The modifications to MinMax described by (I)-(V) generate a new protocol that we shall
call MinMax+. (Exercises 9.41 and 9.42.)

Messages

Let us estimate the cost of protocol MinMax+. First of all observe that, in protocol MinMax,
in each stage a message (v, i) would always reach the next candidate in that stage. This is
not necessarily so in MinMax+. In fact, in an even stage i no message will travel more than
dis(i), and in an odd stage a message can be “promoted” by a defeated node on the way.
We must concentrate on the savings in each type of stages.
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Consider a message (v, i); denote by hi(v) the candidate that originates it, and if the message
is discarded in this stage, denote by gi(v) the node that discards it.

For the even stages, we must first of all choose the maximum distance dis(i) a message will
travel. We will use

dis(i) = Fi+2

With this choice of distance, we have two very interesting properties.

Property 3.1 Let i be even.
If message (v, i) is discarded in this stage, then d(hi(v), gi(v)) ≥ Fi.
For any message (v, i + 1), d(hi(v), hi+1(v)) ≥ Fi+1.

This property allows us to determine the number of stages σMinMax+: in a even stage i the
distance travelled by any message in stage i is at least Fi; however, none of this messages
travels beyond the next candidate in the ring. Hence, the distance between two successive
candidates in odd stage i is at least Fi; this means that the number ni of candidates is at
most ni ≤ n

Fi
. Hence, the number of stages will be at most F−1

n + O(1), where F−1
n is the

smallest integer j such that Fj ≥ n. Thus the algorithm will use at most

σMinMax+ ≤ 1.44 log n + O(1)

stages. This is the same as protocol MinMax !

The property also allows us to measure the number of messages we save in the odd stages.
In our example of Fig. 32(b), message (11, 3) from x will stop at z and never reach y; thus,
we will save d(z, y) transmissions. In general, a message with value v that reaches an even
stage i + 1 (e.g., (11, 4)) saves at least Fi transmissions in stage i (Exercise 9.44). The total
number of transmissions in an odd stage i is thus at most

n− ni+1Fi

where ni+1 denotes the number of candidates in stage i + 1.

The total number of messages in an even stage is at most n. Since in an even stage i+1 each
message travels at most Fi+3 (by Property 3.1, the total number of message transmissions
in an even stage i + 1 will be at most ni+1Fi+3. Thus, the total number of messages in even
i + 1 is at most

Min{n, ni+1Fi+3}.

If we now consider an odd stage i followed by an even stage i+1, the total number of message
transmissions in the two stages will be at most

Min{n + ni+1(Fi+3 − Fi), 2n− ni+1Fi} ≤ 2n− n Fi

Fi+3
< n(4−

√
5 + φ−2i).
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where φ = 1+
√

5
2

. Hence,

M[MinMax+] ≤ 4−
√

5

2
nlogφ(n) + O(n) < 1.271 n log n + O(n) (27)

Thus, protocol MinMax+ is the most efficient protocol we have seen so far, with respect to
the worst case.

3.8 ⋆ Limits to Improvements

Throughout the previous sections, we have reduced the message costs further and further
using new tools or combining existing ones. A natural question is how far can we go ?
Considering that the improvements have only been in the multiplicative constant of the
n log n factor, the next question becomes: is there a tool or technique which would allow to
reduce the message costs for election significantly, e.g. from O(n logn) to O(n) ?

These type of questions are all part of a larger and deeper one: what is the message complexity
of election in a ring ? To answer this question, we need to establish a lower bound, a limit
which no election protocol can improve upon, regardless of the amount and cleverness of the
design effort.

In this section we will see different bounds, some for unidirectional rings and others for
bidirectional ones, depending on the amount of a priori knowledge the entities have about
the ring. As we will see, in all cases, the lower bounds are all of the form Ω(n log n). Thus,
any further improvement can only be in the multiplicative constant.

3.8.1 Unidirectional rings

We want to know what is the number of messages that any election algorithm for unidirec-
tional rings must transmit in the worst case. A subtler question is to determine the number
of messages that any solution algorithm must transmit on the average; clearly, a lower bound
on the average case is also a lower bound on the worst case1.

We will establish a lower-bound under the standard assumptions of Connectivity and Total
Reliability, plus Initial Distinct Values (required for election), and obviously Ring. We will
actually establish the bound assuming that there is Message Ordering; this implies that, in
systems without Message Ordering, the bound is at least as bad. The lower-bound will be
established for minimum-finding protocols; because of the Initial Distinct Values restriction,
every minimum-finding protocol is also an election protocol. Plus we know that with an
additional n messages every election protocol becomes a minimum-finding protocol.

When a minimum-finding algorithm is executed in a ring of entities with distinct values, the
total number of transmitted messages depends on two factors: communication delays and
the assignment of initial values.

1the converse is not true !
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Consider the unidirectional ring ~R = (x0, x1, , . . . , xn−1); let si = id(xi) be the unique value
assigned to xi. The sequence s =< s1, s2, . . . , sn > thus describes the assignment of ids to
the entities.

Denote by S the set of all such assignments. Given a ring R of size n and an assignment
s ∈ S of n ids, we will say that ~R is labelled by s, and denote it by ~R(s).

Let A be a minimum-finding protocol under the restrictions stated above. Consider the
executions of A started simultaneously by all entities, and their cost. The average and the
worst-case cost of these executions are possibly better but surely not worse than the average
and the worst-case costs, respectively, over all possible executions; thus, if we find them,
they will give us a lower bound.

Call global state of an entity x at time t, the content of all its local registers and variables
at time t. As we know, the entities are event-driven. This means that, for a fixed set of
rules A, their next global state will depend solely on the current one and on what event has
occurred. In our case, once the execution of A is started, the only external events are the
arrival of messages.

During an action, an entity might send one or more message to its only out-neighbour; if it is
more than one, we can “bundle” them together since they are all sent within the same action
(i.e., before any new message is received). Thus, we assume that in A, only one message is
sent in the execution of an action by an entity.

Associate to each message all the “history” of that message. That is, with each message M
we associate a sequence of values, called trace, as follows: (1) if the sender has id si and has
no previously received any message, the trace will be just < si >. (2) if the sender has id si

and its last message previously received has trace < l1, . . . , lk−1 >, k > 1, the trace will be
< l1, . . . , lk−1, si >, which has length k.

Thus, a message M with trace < si, si+1 . . . , si+k > indicates that: a message was originally
sent by entity xi; as a reaction, the neighbour xi+1, sent a message; as a reaction, the
neighbour xi+2 sent a message; . . . ; as a reaction, xi+k sent the current message M.

IMPORTANT. Note that, because of our two assumptions ( simultaneous start by all en-
tities, and only one message per action), messages are uniquely described by their associated
trace.

We will denote by ab the concatenation of two sequences a and b. If d = abc, then a,
b, and c are called subsequences of d; in particular, each of a, ab and abc will be called
a prefix of d; each of c, bc and abc will be called a suffix of d. Given a sequence a, will
denote by len(a) the length of a, and by C(a) the set of cyclic permutations of a; clearly,
|C(a)| = len(a).

Example. If d =< 2, 15, 9, 27 >, then: len(d) = 4; the subsequences < 2 >, < 2, 15 >,
< 2, 15, 9 > and < 2, 15, 9, 27 > are prefixes; the sequences < 27 >, < 9, 27 >, <
15, 9, 27 >, and < 2, 15, 9, 27 > are suffixes; and C(d) = {< 2, 15, 9, 27 >, < 15, 9, 27, 2 >, <
9, 27, 2, 15 >, < 27, 2, 15, 9 >}.
The key point to understand is the following: if in two different rings, e.g. in ~R(a) and in
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~R(b), an entity executing A happens to have the same global state, and it receives the same
message, then it will perform the same action in both cases, and the next global state will
be the same in both executions.

Let us use this point.

Lemma 3.1 Let a and b both contain c as a subsequence. If a message with trace c is sent
in an execution of A on ~R(a), then c is sent in an execution of A on ~R(b).

Proof. Assume that a message with trace c =< si, . . . , si+k > is sent when executing A
on ~R(a). This means that, when entity xi started the trace, it had not received any other
message, and so, the transmission of this message was part of its initial “spontaneous” action;
since the nature of this action depends only on A, xi will send the message both in ~R(a) and

in ~R(b). This message was the first and only message xi+1 received from xi both in ~R(a)

and in ~R(b); in other words, its global state until it received the message with trace starting
with < si > was the same in both rings; hence, it will send the same message with trace
< si, si+1 > to xi+2 in both situations. In general, between the start of the algorithm and
the arrival of a message with trace < si, . . . , sj−1 >, entity xj with id sj , i < j ≤ i + k is

in the same global state, and sends and receives the same message in both ~R(a) and ~R(b);
thus, it will send a message with trace < si, . . . , sj−1, sj > regardless of whether the input
sequence is a or b.

Thus, if an execution of A in ~R(a) has a message with trace c, then there is an execution of

A in ~R(b) which has a message with trace c.

In other words, if ~R(a) and ~R(b) have a common segment c (i.e., a consecutive group of

len(c) entities in ~R(a) has the same ids as a consecutive group of entities in ~R(b)) the
entity at the end of the segment cannot distinguish between the two rings when it sends the
message with trace c.

Since different assignments of values to rings may lead to different results (i.e., different
minimum value), the protocol A must allow the entities to distinguish between those assign-
ments. As we will see, this will be the reason Ω(n log n) messages are needed. To prove
it, we will consider a set of assignments on rings which makes distinguishing among them
“expensive” for the algorithm.

A set E ⊆ S of assignments of values is called exhaustive if it has the following two properties:

1. (Prefix Property) For every sequence belonging to E, its nonempty prefixes also belongs
to E; that is, if ab ∈ E and len(a) ≥ 1, then a ∈ E.

2. (Cyclic Permutation Property) Whether an assignment of values s belongs or not to E,
at least one of its cyclic permutations belongs to E; that is, if s ∈ S, then C(s)∩E 6= φ

Lemma 3.2 A has an exhaustive set E(A) ⊆ S.
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Proof. Define E(A) to be the set of all the arrangements s∈ S such that a message with

trace s is sent in the execution of A in ~R(s). To prove that this set is exhaustive, we need
to show that the cycle permutation property and the prefix property hold.

To show that the prefix property is satisfied, choose an arbitrary s=ab ∈ E(A) with len(a) ≥
1; by definition of E(A), there will be a message with trace ab when executing A in ~R(ab);

this means that in ~R(ab) there will also be a message with trace a. Consider now the

(smaller) ring ~R(a); since a is a subsequence of both ab and (obviously) a, and there was a

message with that trace in ~R(ab), by Lemma 3.1 there will be a message with trace a also

in ~R(a); but this means that a∈ E(A). In other words, the suffix property holds.

To show that the cyclic permutation property is satisfied, choose an arbitrary s=< s1, . . . , sk >∈
S and consider ~R(s). At least one entity must receive a message with a trace of length k,
otherwise the minimum value could not have been determined; then t is a cyclic permutation
of s. Furthermore, since t is a trace in ~R(t), t ∈ E(A). Summarizing, t ∈ E(A) ∪ S(s). In
other words, the cyclic permutation property holds.

Now we are going to measure how expensive it is for the algorithm A to distinguish between
the elements of E(A).

Let m(s, E) be the number of sequences in E ⊆ S, which are prefixes of some cyclic permu-
tation of s ∈ S, and mk(s, E) denote the number of those which are of length k > 1.

Lemma 3.3 The execution of A in ~R(s) costs at least m(s, E(A)) messages.

Proof. Let t∈ E(A) be the prefix of some r∈ C(s). That is, a message with trace t is

sent in ~R(t) and, because of Lemma 3.1, a message with trace t is sent also in ~R(r); since

r∈ C(s), then a message with trace t is sent also in ~R(r). That is, for each prefix t∈ E(A)
of a cyclic permutation of s there will be a message sent with trace t. The number of such
prefixes t is by definition m(s, E(A)).

Let I = {s1, s2, . . . , sn} be the set of ids, Perm(I) be the set of permutations of I. Assum-
ing that all n! permutations in Perm(I) are equally likely, the average number aveA(I) of
messages sent by A in the rings labelled by I, will be the average message cost of A among
the rings ~R(s), where s∈ Perm(I). By Lemma 3.3, this means:

aveA(I) ≥ 1
n!

∑

s∈Perm(I) m(s, E(A))

By definition of mk(s, E(A)), we have

aveA(I) ≥ 1
n!

∑

s∈Perm(I)

∑n
k=1 mk(s, E(A)) = 1

n!

∑n
k=1

∑

s∈Perm(I) mk(s, E(A))

We need to determine what
∑

s∈Perm(I) mk(s, E(A)) is. Fix k and s∈ Perm(I). Each cyclic

permutations C(s) of s has only one prefix of length k. In total, there are n prefixes of of
length k among all the cyclic permutations of s∈ Perm(I). Since there are n! elements in
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Perm(I), there are n! n instances of such prefixes for a fixed k. These n! n prefixes can
be partitioned in groups Gk

j of size k, by putting together all the cyclic permutations of the

same sequence; there will be q = n! n
k

such groups. Since E(A) is exhaustive, by the cyclic
permutation property, the set E(A) intersects each group, that is |E(A) ∪Gk

j | ≥ 1.

∑

s∈Perm(I)mk(s, E(A)) ≥∑q
j=1 |E(A) ∪Gk

j | ≥ n!n
k

Thus,

aveA(I) ≥ 1
n!

∑n
k=1

n!n
k
≥ n

∑n
k=1

1
k

= nHn

where Hn is the n-th harmonic number. This lower bound on the average case, is also a
lower bound on the number worstA(I) of messages sent by A in the worst case in the rings
labelled by I:

worstA(I) ≥ aveA(I) ≥ nHn ≈ 0.69 n log n + O(n) (28)

This result states that Ω(n logn) messages are needed in the worst case by any solution
protocol (the bound is true for every A), even if there is Message Ordering. Thus, any
improvement we can hope to obtain by clever design will at most reduce the constant; in any
case, the constant can not be smaller than .69. Also, we can not expect to design election
protocols that might have a bad worst case but cost dramatically less on the average. In
fact, Ω(n logn) messages are needed on the average by any protocol.

Notice that the lower bound we have established can be achieved ! In fact, protocol AsFar
requires on the average nHn messages (Theorem 3.1). In other words, protocol AsFar is
optimal on the average.

If the entities know n, it might be possible to develop better protocols; so far none is known.
In any case (Exercise 9.45):

worstA(I|n known) ≥ aveA(I|n known) ≥ (
1

4
− ǫ) n log n (29)

That is, even with the additional knowledge of n, the improvement can only be in the
constant.

3.8.2 Bidirectional Rings

In bidirectional rings, the lower bound is slightly different both in derivation and value
(Exercise 9.46).

worstA(I) ≥ aveA(I) ≥ 1

2
nHn ≈ 0.345 n log n + O(n) (30)

Again, if the entities know n, it might be possible to develop better protocols; so far, none
is known. In any case (Exercise 9.47):
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worstA(I : n known) ≥ aveA(I : n known) ≥ 1

2
n log n (31)

That is, even with this additional knowledge, the improvement can only be in the constant.

3.8.3 Practical and Theoretical Implications

The lower bounds we have discussed so far indicate that Ω(n log n) messages are needed
both in the worst case and on the average, regardless of whether the ring is unidirectional or
bidirectional, and whether n is known or not. The only difference between these case will be
in the constant. In the previous sections we have seen several protocols that use O(n log n)
messages in the worst case (and are thus optimal); their cost provide us with upper bounds
on the complexity of leader election in a ring.

If we compare the best upper and lower bounds for unidirectional rings with those for bidi-
rectional rings, we notice the existence of a very surprising situation: the bounds for uni-
directional rings are “better” than those for bidirectional ones: the upper-bound is smaller
and the lower bound is bigger (see Figures 34 and 33). This fact has strange implications:
as far as the electing a leader in a ring is concerned, unidirectional rings seem to be better
systems than bidirectional ones; which in turn implies that practically

half duplex links are better than full duplex links !

This is clearly counter-intuitive: in terms of communication hardware, bidirectional links are
clearly more powerful than half-duplex links. On the other hand, the bounds are quite clear:
election protocols for unidirectional rings are more efficient than those for bidirectional ones.

A natural reaction to this strange status of affairs is to suggest the use in bidirectional rings
of unidirectional protocols; after all, with bidirectional links we can send in both directions,
“left” and “right”, so we can just decide to use only one, say “right”. Unfortunately this
argument is based on the hidden assumption that the bidirectional ring is also oriented; that
is, “right” means the same to all processors. In other words, it assumes that the labelling of
the port numbers, which is purely local, is actually globally consistent.

This explains why we cannot use the (more efficient) unidirectional protocol in a generic
bidirectional ring. But why should we do better in unidirectional rings ?

The answer is interesting: in a unidirectional ring, there is orientation: each entity has only
one out-neighbour so there is no ambiguity so to where to send a message. In other words,
we have discovered an important principle of the nature of distributed computing

global consistency is more important than hardware communication power.

This principle is quite general. In the case of rings, the difference is not much, just in the
multiplicative constant. As we will see in other topologies, this difference can actually be
dramatic.
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bidirectional worst case average notes
protocol

All the Way n2 n2

AsFar n2 0.69n log n + O(n)
ProbAsFar n2 0.49n log n + O(n)

Control 6.31n log n + O(n)
Stages 2n log n + O(n)

StagesFbk 1.89n log n + O(n)
Alternate 1.44n log n + O(n) oriented ring
BiMinMax 1.44n log n + O(n)

lowerbound 0.35n log n + O(n) n = 2p known
lowerbound 0.25n log n + O(n)

Figure 33: Summary of bounds for bidirectional rings.

unidirectional worst case average notes
protocol

All the Way n2 n2

AsFar n2 0.69n log n + O(n)
UniStages 2n log n + O(n)

UniAlternate 1.44n log n + O(n)
MinMax 1.44n log n + O(n)

MinMax+ 1.271n logn + O(n)

lowerbound 0.173n logn + O(n) n = 2p known
lowerbound 0.69n log n + O(n)

Figure 34: Summary of bounds for unidirectional rings.

If the ring is both bidirectional and oriented, then we can clearly use any unidirectional
protocol as well as any bidirectional one. The important question is whether in this case we
can do better than that. That is, the quest is for a protocol for bidirectional oriented rings
that

1. fully exploits the power of both full duplex links and orientation

2. cannot be used nor simulated in unidirectional rings, nor in general bidirectional ones;
and

3. is more efficient than any unidirectional protocol or general bidirectional one.

We have seen a protocol for oriented rings, Alternate; however, it can be simulated in unidi-
rectional rings (protocol UniAlternate). To date, no protocol with such properties is known.
It is not even known whether it can exist. (Problem 9.7)
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3.9 Summary and Lessons

We have examined the design of several protocols for leader election in ring networks, and
analyzed the effects that design decisions have had on the costs.

When developing the election protocols, we have introduced some key strategies that are
quite general in nature and, thus, can be used for different problems and for different net-
works. Among them: the idea of electoral stages and the concept of controlled distances.
We have also employed ideas and tools, e.g. feedback and notification, already developed for
other problems.

In terms of costs, we have seen that Θ(n log n) messages will be used both in the worst case
and on the average, regardless of whether the ring is unidirectional or bidirectional, oriented
or unoriented, and n is known or not. The only difference is in the multiplicative constant.
The bounds are summarized in Figures 34 and 33. As a consequence of these bounds, we
have seen that orientation of the ring is, so far, more powerful than presence of bidirectional
links.

Both ring networks and tree networks have very sparse topologies: m = n− 1 in trees and
m = n in rings. In particular, if we remove any single link from a ring we obtain a tree. Still,
electing a leader costs Θ(n log n) in rings but only Θ(n) in trees. The reason for such a drastic
complexity difference has to be found not in the number of links but instead on the properties
of the topological structure of the two types of networks. In a tree there is a high level of
asymmetry: we have two types of nodes, internal nodes and leaves; it is by exploiting such
asymmetry that election can be performed in a linear number of messages. On the contrary,
a ring is a highly symmetrical structure, where every node is indistinguishable from another.
Consider that the election task is really a task of breaking symmetry: we want one entity
to become different from all others. The entities already have a behavioral symmetry: they
all have the same set of rules, the same initial state, and potentially they are all initiators.
Thus, the structural symmetry of the ring topology only make the solution to the problem
more difficult and more expensive. This observation reflects a more general principle: as far
as election is concerned, structural asymmetry is to the protocol designer’s advantage; on
the contrary, the presence of structural symmetry is an obstacle for the protocol designer.

4 Election in Mesh Networks

Mesh networks constitute a large class of architectures that includes meshes and tori; this
class is popular especially for parallel systems, redundant memory systems, and intercon-
nection networks. These networks, like trees and rings, are sparse: m = O(n). Using our
experience with trees and rings, we will now approach the election problem in such networks.
Unless otherwise stated, we will consider Bidirectional Links.

62



x4,5

x1,1

m m m mm
m m m mm

m mmmm
m m m mm

Figure 35: Mesh of dimension 4× 5.

4.1 Meshes

A mesh M of dimensions a × b has n = a × b nodes, xi,j(1 ≤ i ≤ a, 1 ≤ j ≤ b). Each node
xi,j is connected to xi−1,j , xi,j−1, xi+1,j, xi,j+1 if they exist; let us stress that these names are
used for descriptive purposes only and are not known to the entities. The total number of
links is thus m = a(b− 1) + b(a− 1) = 2ab− a− b (see Fig. 35).

Observe that, in a mesh, we have three types of nodes: corner (entities with only two
neighbours), border (entities with three neighbours), and interior (with four neighbours)
nodes. In particular, there are 4 corner nodes, 2(a+ b−4) border nodes, and n−2(a+ b−2)
interior nodes.

4.1.1 Unoriented Mesh

The asymmetry of the mesh can be exploited to our advantage when electing a leader: since
it does not matter which entity becomes leader, we can elect one of the four corner nodes.
In this way, the problem of choosing a leader between (possibly) n nodes is reduced to the
problem of choosing a leader among the four corner nodes. Recall that any number of nodes
can start (each unaware of when and where the others will start, if at all); thus, to achieve
our goal, we need to design a protocol that first of all makes the corners aware of the election
process (they might not be initiators at all), and then performs the election among them.

The first step, to make the corners aware, can be performed doing a wake up of all entities.
When an entity wakes up (spontaneously if it is an initiator, upon receiving a wake-up
message otherwise), its subsequent actions will depend on whether it is a corner, a border
or an interior nodes.

In particular, the four corners will become awake and can start the actual election process.

Observe the following interesting property of a mesh: if we consider only the border and
corner nodes and the links between them, they form a ring network. We can thus elect a
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leader among the corners by using a election protocol for rings: the corners will be the only
candidates, the borders will act as relayers (defeated nodes). When one of the corner nodes
is elected, it will notify all other entities of termination.

Summarizing the process will consist of:
(1) Wake-up, started by the initiators;
(2) Election (on outer ring), among the corners;
(3) Notification (i.e., broadcast) started by the leader.

Wake up is straightforward. Each of the k⋆ initiators will send a wake-up to all its neighbours;
a non-initiator will receive the wake-up message from a neighbour and forward it to all its
other neighbours (no more than 3); hence the number of messages (Exercise 9.48) will be no
more than

3n + k⋆

The election on the outer ring requires a little more attention.

First of all, we must choose which ring protocol we will use; clearly, the selection is among
the efficient ones we have discussed at great length in the preceding sections.

Then we must ensure that the messages of the ring election protocol are correctly forwarded
along the links of the outer ring.

Let us use protocol Stages, and consider the first stage. According to the protocol, each
candidate (in our case, a corner node) sends a message containing its value in both directions
in the ring; each defeated entity (in our case, a border node) will forward the message along
the (outer) ring.

Thus, in the mesh, each corner node will send a message to the only two neighbours. A
border node y, however, has three neighbours, of which only two are in the outer ring; when
y receives the message, it does not know to which of the other two ports it must forward the
message. What we will do is simple; since we do not know to which, we will forward to both:
one will be along the ring and proceed safely, the other will instead reach an interior node z;
when the interior node z receives such an election message, it will reply to the border node
y “I am in the interior”, so no subsequent election messages are sent to it. Actually, it is
possible to avoid those replies without affecting the correctness (Exercise 9.50).

In Stages the number of candidates is at least halved every time. This means that, after the
second stage, one of the corners will determine that it has the smallest id among the four
candidates and will become leader.

Each stage requires 2n′ messages, where n′ = 2(a + b− 2) is the dimension of the outer ring.
An additional 2(a + b − 4) are unknowingly sent by the border to the interior in the first
stage; there are also the 2(a + b− 4) replies from those interior nodes, that however can be
avoided (Exercise 9.50). Hence, the number of messages for the election process will be at
most

4(a + b− 2) + 2(a + b− 4) = 6(a + b)− 16.
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IMPORTANT. Notice that in a square mesh (i.e., a=b), this means that the election
process proper can be achieved in O(

√
n) messages !

Broadcasting the notification can be performed using Flood, which will require less than 3n
messages since it is started by a corner. Actually, with care, we can ensure that less than
2n messages are sent in total (Exercise 9.49).

Thus in total, the protocol ElectMesh we have designed will have cost:

M[ElectMesh] ≤ 6(a + b) + 5n + k⋆ − 16 (32)

NOTES.

The most expensive operation is to wake-up the nodes.
In a square mesh (i.e., a=b), the election process proper can be achieved in O(

√
n) messages

!

Hacking:

With a simple modification to the protocol, it is possible to save an additional 2(a + b− 4)
messages (Exercise 9.51), achieving a cost of at most

4(a + b) + 5n + k⋆ − 32.

4.1.2 Oriented Mesh

A mesh is called oriented if the port numbers are the traditional compass labels ( North,
South, East, West) assigned in a globally consistent way. This assignment of labels has many
important properties, in particular one called sense of direction which we will discuss later
in much detail. These properties can be exploited to obtain efficient solutions to problems
such as broadcast and traversal (Problems 9.52 and 9.53). For the purposes of election,

in an oriented mesh, it is trivial to identify a unique node.

For example, there is only one corner with link labels “South” and “West”. Thus, to elect a
leader in an oriented mesh, we must just ensure that that unique node knows that it must
become leader.

In other words, the only part needed is a Wake-up: upon becoming awake, and participating
in the wakeup process, an entity can immediately become follower or leader.

Notice that, in an oriented mesh, we can exploit the structure of the mesh and the orientation
to perform a WakeUp with fewer than 2n messages (Problem 9.54).

Complexity

These results mean that, regardless of whether the mesh is oriented or not, a leader can be
elected with O(n) messages, the difference being solely in the multiplicative constant. Since
no election protocol for any topology can use fewer than n messages, we have

Lemma 4.1 M(Elect/RI ; Mesh) = Θ(n)
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4.2 Tori

Informally, the torus is a mesh with “wrap-around” links which transform it into a regular
graph: every node will have exactly four neighbours.

A torus of dimensions a×b has n = ab nodes vi,j (0 ≤ i ≤ a−1,0 ≤ j ≤ b−1); each node vi,j

is connected to four nodes vi,j+1, vi,j−1, vi+1,j , and vi−1,j; all the operations on the first index
are modulo a, while those on the second index are modulo b. For an example, see Figure 36.

In the following we will focus on square tori (i.e., where a = b).

4.2.1 Oriented Torus

We will first develop an election protocol assuming that there is the compass labelling (i.e.,
the links are consistently labelled North, South, East, West and the dimensions are known);
we will then see how to solve the problem also when the labels are arbitrary. A torus with
such a labelling is said to be oriented.

v

v

0,0

3,4

Figure 36: Torus of dimension 4× 5.

In designing the election protocol, we will use the idea of electoral stages developed originally
for ring networks, and we will use the defeated nodes in an active way. We will also employ
a new idea, marking of territory.

(I) In stage i, each candidate x must “mark” the boundary of a territory Ti (a di× di region
of the torus), where di = αi for some fixed constant α > 1; initially the territory is just the
single candidate node. The marking is done by originating a “Marking” message (with x’s
value) that will travel to distance2 di first North, then East, then South, and finally West
to return to x.

2Distances include the starting node.
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Figure 37: Marking the territory. If the territories of two candidates intersect, one of them
will see the marking of the other.

A very important fact is that, if the territory of two candidates have some elements in com-
mon, the Marking message of at least one of them will encounter the marking of the other
(Figure 37).

(II) If the “Marking” message of x does not encounters any other marking of the same stage,
x survives this stage, enters stage i + 1 and starts the marking of a larger territory Ti+1 .

(III) If the “Marking” message arrives at a node w already marked by another candidate y
in the same stage, the following will occur.

1. If y has a larger Id, the Marking message will continue to mark the boundary, setting
a boolean variable SawLarger to true.

2. If the Id of y is instead smaller, then w will terminate the “Marking” message from x; it
will then originate a message “SeenbyLarger(x, i)” that will travel along the boundary
of y’ territory.

If candidate x receives both its Marking message with SawLarger=true and a “SeenbyLarger”
message, x survives this stage, enters stage i + 1 and starts the marking of a larger territory
Ti+1.

Summarizing, for a candidate x to survive, it is necessary that it receives its “Marking”
message back. If SawLarger=false, then that suffices; if SawLarger=true, x must also receive
a “SeenbyLarger” message.

Note that, if x receives a “SeenbyLarger(z, i)” message, then z did not finish marking its
boundary; thus z does not survives this stage. In other words, if x survives, either its mes-
sage found no other markings, or at least another candidate does not survive.

(IV) A relay node w might receive several “Marking” messages from different candidates in
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the same stage. It will only be part of the boundary of the territory of the candidate with
the smallest id.

This means that if w was part of the boundary of some candidate x and now becomes part of
the boundary of y, a subsequent “SeenbyLarger” message intended for x will be sent along
the boundary of y. This is necessary for correctness. To keep the number of messages small,
we will also limit the number of “SeenbyLarger” messages sent by a relayer.

(V) A relay node will only forward one “SeenbyLarger” message.

The algorithm continues in this way until di ≥
√

n. In this case, a candidate will receive its
“Marking” message from South instead of East, due to the ”wrap around” in the torus; it
then sends the message directly East, and will wait for it to arrive from West.

(VI) When a wrap-around is detected (receive its “Marking” message from South rather
than East), a candidate x sends the message directly East, and waits for it to arrive from
West.

If it survives, in all subsequent stages the marking becomes simpler.

(VII) In every stage after wrap-around, a candidate x sends its “Marking” message first
North, and waits to receive it from South, then it sends it East, and waits for it to arrive
from West.

The situation where there is only one candidate left will be for sure reached a constant num-
ber p of stages after the wrap-around occurs, as we will see later.

(VIII) If a candidate x survives p stages after wrap-around, it will become leader and notify
all other entities of termination.

Let us now discuss the correctness and cost of the algorithm, Protocol MarkBoundary, we
have just described.

Correctness and Cost

For the correctness, we need to show progress - i.e., at least one candidate survives each stage
of the algorithm- and termination -i.e., p stages after wrap-around there will be only one
candidate left.

Let us discuss progress first. A candidate, whose “Marking” message does not encounter any
other boundary, will survive this stage; so the only problem is if, in a stage, every “Marking”
message encounters another candidate’s boundary, and somehow none of them advances. We

68



must show that this can not happen. In fact, if every “Marking” message encounters another
candidate’s boundary, the one with the largest Id will encounter a smaller Id; the candidate
with this smaller Id will go onto the next stage unless its message encountered the boundary
with an even smaller id, and so on; however, the message of the candidate with the smallest
Id can not encounter a larger Id (because it is the smallest) and thus that entity would
survive this stage.

For termination, the number of candidates does decrease overall, but not in a simple way.
However, it is possible to bound the maximum number of candidates in each stage, and that
bound strictly decreases. Let ni to be the maximum number of candidates in stage i. Up
until wrap around, there are two types of survivors: (a) those entities whose message did not
encounter any border, and (b) those whose message encountered a border with a larger id,
and whose border was encountered by a message with a larger id. Let ai denote the number
of the first type of survivors; clearly ai ≤ n/d2

i . The number of the second type will be at
most (ni − ai)/2 since each defeated one can cause at most one candidate to survive. Thus

ni+1 ≤ ai + (ni − ai)/2 = (ni + ai)/2 ≤ (ni + n
d2

i

)/2

Since di = αi is increasing each stage, the upper bound ni on the number of candidates is
decreasing. Solving the recurrence relation gives

ni+1 ≤ n/α2i(2− α2) (33)

Wrap-around occurs when αi ≥ √n; in that stage, only one candidate can can complete
the marking of its boundary without encountering any markings, and at most half the
remaining candidates will survive. So, the number of candidates surviving this stage is
at most (2−α2)−1. In all subsequent stages, again only one candidate can can complete the
marking without encountering any markings, and at most half the remaining candidates will
survive. Hence, after

p > ⌈log(2− α2)−1⌉

additional stages for sure there will be only one candidate left. Thus, the protocol correctly
terminates.

To determine the total number of messages, consider that, in stage i before wrap-around,
each candidate causes at most 4di “Marking” messages to mark its boundary and another 4di

“SeenbyLarger” messages, for a total of 8di = 8αi messages; as the number of candidates is
at most as expressed by equation 33, the total number of messages in this pre-wrap-around
stage will be at most

O(nα2 /(2− α2)(α− 1))

In each phase after wrap-around, there is only a constant number of candidates, each sending
O(
√

n) messages. Since the number of such phases is constant, the total number of messages
sent after wrap-around is O(

√
n).

69



Choosing α ≈ 1.1795 yields the desired bound

M[MarkBoundary] = Θ(n) (34)

The preceding analysis ignores the fact that αi is not an integer: the distance to travel must
be rounded up and this has to taken into account in the analysis. However, the effect is not
large and will just affect the low order terms of the cost (Exercise 9.55).

The algorithm as given is not very time efficient. In fact, the ideal time can be as bad as
O(n) (Exercise 9.56). The protocol can be however modified so that, without changing its
message complexity requires no more than O(

√
n) time (Exercise 9.57).

The protocol we have described is tailored for square tori. If the torus is not square but
rectangular with length l and width w (l ≤ w), then the algorithm can be adapted to use
Θ(n + l log l/w) messages (Exercise 9.58).

4.2.2 Unoriented Torus

The algorithm we just described solved the problem of electing a leader in an oriented torus,
e.g. among the buildings in Manhattan (well-known for its mesh-like design), by sending
a messenger along east-west streets and north-south avenues, turning at the appropriate
corner. Consider now the same problem when the streets have no signs and the entities have
no compass.

Interestingly, the same strategy can be still used: a candidate needs to mark off a square;
the orientation of the square is irrelevant. To be able to travel along a square, we just need
to know how to (1) forward a message “in a straight line” and (2) make the “appropriate
turn”. We will discuss how to achieve each, separately.

Forwarding in a Straight Line. We first consider how to forward a message in the
direction opposite to the one from which the message was received, without knowing the
directions.

Consider an entity x, with its four incident links, and let a, b, c, d be the arbitrary port
numbers associated with them; (see Figure 38); to forward a message in a straight line,
x needs to determine that a and d are opposite, and so are b and c. This can be easily
accomplishing by having each entity send its identity to each of its four neighbours, which
will forward it to its three other neighbours; the entity will in turn acquire the identity and
relative position of each entity at distance 2. As a result, x will know which the two pairs of
opposite port numbers. In the example of Figure 38, x will receive the message originating
from z via both port a and port b; it thus knows that a is not opposite to b. It also receives
the message from y via ports a and c; thus x knows also that a is not opposite to c. Then,
x can conclude that a is opposite to d.

It will then locally relabel one pair of opposite ports as east, west, and the other north, south;
it does not matter which pair is chosen first.

Making the Appropriate Turn. As a result of the the previous operation, each entity
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Figure 38: Even without a compass, x can determine which links are opposite.

x knows two perpendicular directions, but the naming (north,south) and (east,west) might
not be consistent with the the one done by other entities. This can create problems when
wanting to make a consistent turn.

Consider a message, originating by x which is travelling “south” (according to x’s view of
the torus); to continue to travel “south” can be easily accomplished since each entity knows
how to forward a message in a straight line. At some point, according to the protocol, the
message must turn, say to “east” (always according to x’s view of the torus) and continue
in that direction.

To achieve the turn correctly, we add a simple information, called handrail, to a message.
The handrail is the id of the neighbour in the direction the message must turn, and the
name of the direction. In the example of Figure 38, if x is sending a message south which
must then turn east, the handrail in the message will be the id of its eastern neighbour q
plus the direction “east”. Because every entity knows the ids and the relative position of
all the entities within distance 2, when y receives this message with the handrail from x, it
can determine what x means by “east”, and thus in which direction the message must turn
(when the algorithm prescribes it).

Summarizing, even without a compass, we can execute the protocol TorusElect, by adding
the preprocessing phase, and including the handrail information in the messages.

The cost of the preprocessing is relatively small: each entity receives four messages for its
immediate neighbours and 4× 3 for entities at distances 2, for a total of 16n messages.

5 Election in Cube Networks

5.1 Oriented Hypercubes

The k-dimensional oriented hypercube Hk, which we have introduced in Section ??, is a
common interconnection network, consisting of n = 2k nodes, each with degree k; hence, in
Hk there are m = k2k−1 = O(n log n) edges.

In an oriented hypercube Hk, the port numbers 1, 2, . . . , k for the k edges incident on a node
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x are called dimensions, and are assigned according to the “construction rules” specifying
Hk (see Figure 39):
The oriented hypercube H1 of dimension k = 1 is just a pair of nodes called (in binary)
“0”and “1”, connected by a link labelled “1” at both nodes.
The oriented hypercube Hk of dimension k > 0 is obtained by taking two hypercubes of
dimension k − 1, H and Q, and connecting the corresponding pairs of nodes (i.e., with the
same name) with a link labelled k; the name of each node in H (resp. Q) is then modified
by prefixing it with the bit 0 (resp., 1).
It is important to observe that these names are used only for descriptive purposes, are not
related to the id of the entities, and are unknown to the entities.

We will solve the election problem in oriented hypercubes using the approach, electoral
stages, we have developed for ring networks. The metaphor we will use is that of a fencing
tournament: in a stage of the tournament, each candidate, called duelist, will be assigned
another duelist, and each pair will have a match; as a result of the match, one duelist will
be promoted to the next stage, the other excluded from further competition. In each stage
only half of the duelists enter the next stage; at the end, there will be only one duelist that
will become the leader and notify the others.

Deciding the outcome of a match is easy: the duelist with the smaller id will win; for reasons
that will become evident later, we will have the defeated duelist remember the shortest path
to the winning duelist.

The crucial and difficult parts are how pairs of opposite duelists are formed, and how a
duelist finds its competitor. To understand how this can be done efficiently, we need to
understand some structural properties of oriented hypercubes.

A basic property of an oriented hypercube is that, if we remove from Hk all the links with
label greater than i, (i.e., consider only the first i dimensions), we are left with 2k−i disjoint
oriented hypercubes of dimension i; denote the collection of these smaller cubes by Hk:i For
example, removing the links with label 3 and 4 from H4 will result into 4 disjoint oriented
hypercubes of dimension 2 (see Figure 39(a,b)).

What we will do is to ensure that

(I) at the end of stage i−1 there will be only one duelist left in each of the oriented hypercubes
of dimension i− 1 of Hk:i−1.

So, for example, at the end of stage 2, we want to have only one duelist left in each of the
four hypercubes of dimension 2. (see Figure 39(c)).

Another nice property of oriented hypercubes is that, if we add to Hk:i−1 the links labelled
i (and, thus, construct Hk:i) the elements of Hk:i−1 will be grouped into pairs.
We can use this property to form the pairs of duelists in each stage of the tournament:

(II) a duelist x starting stage i will have as its opponent the duelist in the hypercube of
dimension i− 1 connected to x by the link labelled i.

Thus, in stage i, a duelist x will send a Match message to (and receive a Match message
from) the duelist y in hypercube (of dimension i− 1) that is on the other side of link i. The
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Figure 39: (a) the 4-dimensional hypercube H4 and (b) the collection H4:2 of 2-dimensional hy-
percubes obtained by removing the links with labels greater than 2. (c) Duelists (in black) at the
end of stage 2.

Match message from x will contain the id id(x) (as well as the path travelled so far) and
will be sent across dimension i (i.e., the link with label i). The entity z on the other end of
the link might however not be the duelist y and might not even know who (and where) y is
(Figure 40) We need the Match message from x to reach its opponent y. We can obtain this
by having z broadcast the message in its (i− 1)-dimensional hypercube (e.g. using protocol
HyperFlood presented in Section ??); in this way we are sure that y will receive the message.
Obviously, this approach is an expensive one (how expensive is determined in Exercise 9.59).

To solve this problem efficiently, we will use the following observation. If node z is not
the duelist (i.e., z 6= y), node z was defeated in a previous stage, say i1 < i; it knows the
(shortest) path to the duelist zi1 which defeated it in that stage, and can thus forward the
message to it. Now, if zi1 = y then we are done: the message from x has arrived and the
match can take place. Otherwise, in a similar way, zi1 was defeated in some subsequent
stage i2, i1 < i2 < i; it thus knows the (shortest) path to the duelist zi2 which defeated it
in that stage, and can thus forward the message to it. In this way, the message from x will
eventually reach y; the path information in the message is updated during its travel, so that
y will know the dimensions traversed by the message from x to y in chronological order. The
Match message from y will reach x with similar information.
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Figure 40: Each duelist (in black) sends a Match message that must reach its opponent.

The match between x and y will take place both at x and y; only one of them, say x, will
enter stage i + 1, while the other, y, is defeated.

From now on, if y receives a Match message, it will forward it to x; as mentioned before,
we need this to be done on the shortest path. How can y (the defeated duelist) know the
shortest path to x (the winner) ?

The Match message y received from x contained the labels of a walk to it, not necessarily
the shortest path. Fortunately, it is easy to determine the shortcuts in any path using the
properties of the labelling. Consider a sequence α of labels (with or without repetitions);
remove from the sequence any pair of identical labels and sort the remaining ones, obtaining
a compressed sequence α. For example, if α = 〈231345212〉 then α = 〈245〉.
The important property is that, if we start from the same node x, the walk with labels α
will lead to the same node y as the walk with labels α. The other important property is that
α actually corresponds to a shortest path between x and y. Thus, y needs only to compress
the sequence contained in the Match message sent by x.
Important. We can perform the compression while the message is travelling from x to y;
in this way the message will contain at most k labels.

Finally, we must consider the fact that, due to different transmission delays, it is likely that
the computation in some parts of the hypercube is faster than in others. Thus, it may
happen that a duelist x in stage i sends a Match message for its opponent, but the entities
on the other side of dimension i are still in earlier stages.

So, it is possible that the message from x reaches a duelist y in an earlier stage j < i. What
y should do with this message depends on future events that have nothing to do with the
message: if y wins all matches in stages j, j + 1, . . . , i − 1, then y is the opponent of x in
stage i, and it is the destination of the message; on the other hand, if it loses one of them, it
must forward the message to the winner of that match. In a sense, the message from x has
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arrived “too soon”; so, what y will do is to delay the processing of this message until the
“right” time, i.e. until it enters stage i or it becomes defeated.

Summarizing,

1. a duelist in stage i will send a Match message on the edge with label i;

2. when a defeated node receives a Match message, it will forward it to the winner of the
match in which it was defeated;

3. when a duelist y in stage i receives a Match message from a duelist x in stage i: if
id(x) > id(y) then y will enter stage i + 1, otherwise it will become defeated and
compute the shortest path to x.

4. when a duelist y in stage j receives a Match message from a duelist x in stage i > j, y
will enqueue the message and process it (as a newly arrived one) when it enters stage
i or becomes defeated

The protocol terminates when a duelist wins the k-th stage. As we will see, when this
happen, that duelist will be the only one left in the network.

The algorithm, protocol HyperElect, is shown in Figures 41 and 42.

NextDuelist denotes the (list of labels on the) path from a defeated node to the duelist
which defeated it. The Match message contains: (Id*, stage*, source*, dest*), where Id* is
the identity of the duelist x originating the message; stage* is the stage of this match; source*
is (the list of labels on) the path from the duelist x to the entity currently processing the
message; finally, dest* is (the list of labels on) the path from the entity currently processing
the message to a target entity (used to forward message by the shortest path between a
defeated entity and its winner).

Given a list of labels list, the protocol uses the following functions:
- first(list) returns the first element of the list;
- list ⊕ i (resp. ⊖) updates the given path by adding (resp. eliminating) a label i to the list
and compressing it.
To store the delayed messages, we use a set Delayed which will be kept sorted by stage
number; for convenience, we also use a set delay of the corresponding stage numbers.

Correctness and termination of the protocol follow from the following fact (Exercise 9.61):

Lemma 5.1 Let id(x) be the smallest id in one of the hypercubes of dimension i in Hk:i.
Then x is a duelist at the beginning of stage i + 1.

This means that, when i = k, there will be only one duelist left at the end of that stage; it
will then become leader and notify the others so to ensure proper termination.

To determine the cost of the protocol, we need to determine the number of messages sent in
a stage i. For a defeated entity z denote by w(z) its opponent, (i.e., the one that won the
match). For simplicity of notation, let wj(z) = w(wj−1(z)) where w0(z) = z.
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PROTOCOL HyperElect.

• States: S = {ASLEEP, DUELLIST, DEFEATED, FOLLOWER, LEADER};
SINIT = {ASLEEP}; STERM = {FOLLOWER, LEADER}.

• Restrictions: RI∪{OrientedHypercube}.

ASLEEP
Spontaneously
begin

stage:= 1; delay:=0; value:= id(x);
Source:= [stage];
Dest:= [];
send(‘‘Match’’, value, stage, Source, Dest) to 1;
become DUELLIST;

end

Receiving(‘‘Match’’, value*, stage*, Source*, Dest*)
begin

stage:= 1; value:= id(x);
Source:= [stage];
Dest:= [];
send(‘‘Match’’, value, stage, Source, Dest) to 1;
become DUELLIST;
if stage* =stage then

PROCESS MESSAGE;
else

DELAY MESSAGE;
endif

end

DUELLIST
Receiving(‘‘Match’’, value*, stage*, Source*, Dest*)
begin

if stage* =stage then
PROCESS MESSAGE;

else
DELAY MESSAGE;

endif
end

DEFEATED
Receiving(‘‘Match’’, value*, stage*, Source*, Dest*)
begin

if Dest* = [ ] then Dest*:= NextDuelist; endif
l:=first(Dest*); Dest:=Dest* ⊖l; Source:= Source* ⊕l;
send(‘‘Match’’, value*, stage*, Source, Dest) to l;

end

Receiving(‘‘Notify’’)
begin

send ("Notify") to {l ∈ N(x) : l > sender};
become FOLLOWER;

end

Figure 41: Protocol HyperElect
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Procedure PROCESS MESSAGE
begin

if value* > value then
if stage* =k then

send ("Notify") to N(x);
become LEADER;

else
stage:= stage+1; Source:=[stage] ; dest:= [ ];
send(‘‘Match’’, value, stage, Source, Dest) to stage;
CHECK;

endif
else

NextDuelist := Source;
CHECK ALL;
become DEFEATED;

endif
end

Procedure DELAY MESSAGE
begin

Delayed ⇐ (value*, stage*, Source*, Dest*);
delay ⇐ stage*;

end

Procedure CHECK
begin

if Delayed 6= ∅ then
next:=Min{delay};
if next = stage then

(value*, stage*, Source*, Dest*) ⇐ Delayed;
delay:= delay-{next};
PROCESS MESSAGE

endif
endif

end

Procedure CHECK ALL
begin

while Delayed 6= ∅ do
(value*, stage*, Source*, Dest*) ⇐ Delayed;
if Dest* [ ] then Dest*:= NextDuelist; endif
l:=first(Dest*) ; Dest:=Dest* ⊖l ; Source:= Source* ⊕l
send(‘‘Match’’, value*, stage*, Source, Dest) to l;

endwhile
end

Figure 42: Procedures used by Protocol HyperElect
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Consider an arbitrary H ∈ Hk:i−1; let y be the only duelist in H in stage i, and let z be the
entity in H that receives first the Match message for y from its opponent. Entity z must
send this message to y; it forwards the message (through the shortest path) to w(z), which
will forward it to w(w(z)) = w2(z), which will forward it to w(w2(z)) = w3(z), and so on,
until wt(z) = y. There will be no more than i such “forward” points (i.e., t ≤ i); since we
are interested in the worst case, assume this to be the case. Thus the total cost will be the
sum of all the distances between successive forward points, plus one (from x to z). Denote
by d(j−1, j) the distance between wj−1(z) and wj(z); clearly d(j−1, j) ≤ j (Exercise 9.60);
then the total number of messages required for the Match message from a duelist x in stage
i to reach its opposite y will be at most

L(i) = 1 +
∑i−1

j=1 d(j − 1, j) = 1 +
∑i−1

j=1 j = 1 + i·(i−1)
2

.

Now we know how much does it cost for a Match message to reach its destination. What we
need to determine is how many such messages are generated in each stage; in other words,
we want to know the number ni of duelists in stage i (since each will generate one such
message). By Lemma 5.1, we know that at the beginning of stage i, there is only one duelist
in each of the hypercubes H ∈ Hk:i−1; since there are exactly n

2i−1 = 2k−i+1 such cubes,

ni = 2k−i+1.

Thus the total number of messages in stage i will be

niL(i) = 2k−i+1(1 + i·(i−1)
2

).

and over all stages the total will be

∑k
i=1 2k−i+1(1 + i·(i−1)

2
) = 2k(

∑k
i=1

i
2i−1 +

∑k
i=1

i2

2i +
∑k

i=1
i
2i ) = 6 2k − k2 − 3k − 7.

Since 2k = n, and adding the (n− 1) messages to broadcast the termination, we have

M[HyperElect] ≤ 7n− (log n)2 − 3 log n− 7 (35)

That is, we can elect a leader in less than 7n messages ! This result should be contrasted
with the fact that in a ring we need Ω(n log n) messages.

As for the time complexity, it is not difficult to verify that protocol HyperFlood requires at
most O(log3 N) ideal time (Exercise 9.62).

Practical Considerations

The O(n) message cost of protocol HyperElect is achieved by having the Match messages
convey path information in addition to the usual id and stage number. In particular, the
fields Source and Dest have been described as lists of labels; since we only send compressed

78



paths, Source and Dest contain at most log n labels each. So it would appear that the
protocol requires “long” messages.

We will now see that, in practice, each list only requires log n bits (i.e., the cost of a counter).

Examine a compressed sequence of edge labels α in Hk (e.g., α = 〈1457〉 in H8); since the
sequence is compressed, there are no repetitions. The elements in the sequence are a subset
of the integers between 1 and k; thus α can be represented as a binary string 〈b1, b2, . . . , bk〉
where each bit bj = 1 if and only if j is in α. Thus, the list α = 〈1457〉 in H8 is uniquely
represented as 〈10011010〉. Thus, each of Source and Dest will be just a k = log n bits
variable.

This also implies that the cost in terms of bits of the protocol will be no more than

B[HyperElect] ≤ 7n(log id + 2 log n + log log n) (36)

where the log log n component is to account for the stage field.

5.2 Unoriented Hypercubes

Hypercubes with arbitrary labellings obviously do not have the properties of oriented hyper-
cubes. It is still possible to take advantage of the highly regular structure of hypercubes to
do better than in ring networks. In fact, (Problem 9.8):

Lemma 5.2 M(Elect/RI ; Hypercube) ≤ O(n log log n)

To date, it is not known whether it is possible to elect a leader in an hypercube in just O(n)
messages even when it is not oriented (Problem 9.9).

6 Election in Complete Networks

We have seen how structural properties of the network can be effectively used to overcome
the additional difficulty of operating in a fully symmetric graph. For example, in oriented
hypercubes, we have been able to achieve O(n) costs, i.e., comparable to those obtainable in
trees.

On the other hand, a ring has very few links and no additional structural property capable
of overcoming the disadvantages of symmetry. In particular, it is so sparse (i.e., m = n) that
it has the worst diameter among regular graphs (to reach the furthermost node, a message
must traverse d = n/2 links) and no short cuts. It is thus no surprising that election requires
Ω(n log n) messages.

The ring is the sparsest network and it is an extreme in the spectrum of regular networks.
At the other end of the spectrum lies the complete graph Kn; in Kn, each node is connected
directly to every other node. It is thus the densest network
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m = 1
2
n(n− 1)

and the one with smallest diameter

d = 1.

Another interesting property is that Kn contains every other network G as a subgraph !
Clearly, physical implementation of such a topology is very expensive.

Let us examine how to exploit such very powerful features to design an efficient election
protocol.

6.1 Stages and Territory

To develop an efficient protocol for election in complete networks, we will use electoral stages
as well as a new technique, territory acquisition.

In territory acquisition, each candidate tries to “capture” its neighbours (i.e., all other nodes)
one at a time; it does so by sending a Capture message containing its id as well as the number
of nodes captured so far (the stage). If the attempt is successful, the attacked neighbour
becomes captured, the candidate enters the next stage and continues; otherwise, the candidate
becomes passive. The candidate that is successful in capturing all entities becomes the leader.

Summarizing, at any time an entity is either candidate, or captured, or passive. A captured
entity remembers the id, the stage and the link to its “owner” (i.e., the entity that captured
it). Let us now describe an electoral stage.

1. A candidate entity x sends a Capture message to a neighbour y.

2. If y is candidate, the outcome of the attack depends on the stage and the id of the two
entities:

(a) if stage(x) > stage(y), the attack is successful.

(b) If stage(x) = stage(y), the attack is successful if id(x) < id(y); otherwise x
becomes passive.

(c) If stage(x) < stage(y), x becomes passive.

3. If y is passive, the attack is successful.

4. If y is already captured, then x has to defeat y’s owner z before capturing y. Specifically,
a Warning message with x’s id and stage is send by y to its owner z.

(a) If z is a candidate in a higher stage, or in the same stage but with a smaller id
than x, then the attack to y is not successful: z will notify y which will notify x.

(b) In all other cases (z is already passive or captured, z is a candidate in a smaller
stage, or in the same stage but with a larger id than x), then the attack to y is
successful: z notifies x via y, and if candidate it becomes passive.
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5. If the attack is successful, y is captured by x, x increments stage(x) and proceeds with
its conquest.

Notice that each attempt from a candidate costs exactly two messages (one for the Capture,
one for the notification) if the neighbour is also a candidate or passive; instead, if the neigh-
bour was already captured, two additional messages will be sent (from the neighbour to its
owner, and back).

The strategy just outlined will indeed solve the election problem (Exercise 9.65). Eventhough
each attempt costs only four (or fewer) messages, the overall cost can be prohibitive; this
is due to the fact that the number ni of candidates at level i can in general be very large
(Exercise 9.66).

To control the number ni, we need to ensure that a node is captured by at most one candidate
in the same level. In other words, the territories of the candidates in stage i must be mutually
disjoint. Fortunately, this can be easily achieved.

First of all, we provide some intelligence and decisional power to the captured nodes:

• If a captured node y receives a Capture message from a candidate x that is in a stage
smaller than the one known to y, then y will immediately notify x that the attack is
unsuccessful.

As a consequence, a captured node y will only issue a Warning for an attack at the highest
level known to y. A more important change is the following.

• If a captured node y sends a Warning to its owner z about an attack from x, y will
wait for the answer from z (i.e., locally enqueue any subsequent Capture message in
same or higher stage) before issuing another Warning.

As a consequence, if the attack from x was successful (and the stage increased), y will
send to the new owner x any subsequent Warning generated by processing the enqueued
Capture messages. After this change, the territory of any two candidates in the same level
are guaranteed to have no nodes in common (Exercise 9.64).

Protocol CompleteElect implementing the strategy we have just designed is shown in Figures
43, 44, and 45.

Let us analyze the cost of the protocol.

How many candidates there can be in stage i ? Since each of them has a territory of size i
and these territories are disjoint, there cannot be more than ni ≤ n/i such candidates. Each
will originate an attack which will cost at most 4 messages; thus, in stage i there will be at
most 4n/i messages.

Let us now determine the number of stages needed for termination. Consider the following
fact: if a candidate has conquered a territory of size n/2 + 1, no other candidate can become
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PROTOCOL CompleteElect.

• S = {ASLEEP, CANDIDATE,PASSIVE, CAPTURED, FOLLOWER, LEADER};
SINIT = {ASLEEP}; STERM = {FOLLOWER, LEADER}.

• Restrictions: RI∪{CompleteGraph}.

ASLEEP
Spontaneously
begin

stage:= 1; value:= id(x);
Others:= N(x);
next ← Others;
send(‘‘Capture’’, stage, value) to next;
become CANDIDATE;

end

Receiving(‘‘Capture’’, stage*, value*)
begin

send(‘‘Accept’’, stage*, value*) to sender;
stage:= 1;
owner:= sender;
ownerstage:= stage* +1;
become CAPTURED;

end

CANDIDATE
Receiving(‘‘Capture’’, stage*, value*)
begin

if (stage* < stage) or ((stage* = stage) and (value* > value)) then
send(‘‘Reject’’, stage) to sender;

else
send(‘‘Accept’’, stage*, value*) to sender;
owner:= sender;
ownerstage:= stage* +1;
become CAPTURED;

endif
end

Receiving(‘‘Accept’’, stage, value)
begin

stage:= stage+1;
if stage ≥ 1 + n/2 then

send(‘‘Terminate’’) to N(x);
become LEADER;

else
next ← Others;
send(‘‘Capture’’, stage, value) to next;

endif
end

(CONTINUES ...)

Figure 43: Protocol CompleteElect (I)
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CANDIDATE
Receiving(‘‘Reject’’, stage*)
begin

become PASSIVE;
end

Receiving(‘‘Terminate")
begin

become FOLLOWER;
end

Receiving(‘‘Warning’’, stage*, value*)
begin

if (stage* < stage) or ((stage* = stage) and (value* > value)) then
send(‘‘No’’, stage) to sender;

else
send(‘‘Yes", stage*) to sender;
become PASSIVE;

endif
end

PASSIVE
Receiving(‘‘Capture’’, stage*, value*)
begin

if (stage* < stage) or ((stage* = stage) and (value* > value)) then
send(‘‘Reject’’, stage) to sender;

else
send(‘‘Accept’’, stage*, value*) to sender;
ownerstage:= stage* +1;
owner:= sender;
become CAPTURED;

endif
end

Receiving(‘‘Warning’’, stage*, value*)
begin

if (stage* < stage) or ((stage* = stage) and (value* > value)) then
send(‘‘No’’, stage) to sender;

else
send(‘‘Yes", stage*) to sender;

endif
end

Receiving(‘‘Terminate")
begin

become FOLLOWER;
end

(CONTINUES ...)

Figure 44: Protocol CompleteElect (II)
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CAPTURED
Receiving(‘‘Capture’’, stage*, value*)
begin

if stage* < ownerstage then
send(‘‘Reject’’, ownerstage) to sender;

else
attack:= sender;
send(‘‘Warning", value*, stage*) to owner;
close N(x)− {owner};

endif
end

Receiving(‘‘No", stage*)
begin

open N(x);
send(‘‘Reject’’, stage*) to attack;

end

Receiving(‘‘Yes", stage*)
begin

ownerstage:= stage*+1;
owner:= attack;
open N(x);
send(‘‘Accept’’, stage*, value*) to attack;

end

Receiving(‘‘Warning’’, stage*, value*)
begin

if (stage* < ownerstage) then
send(‘‘No’’, ownerstage) to sender;

else
send(‘‘Yes", stage*) to sender;

endif
end

Receiving(‘‘Terminate")
begin

become FOLLOWER;
end

Figure 45: Protocol CompleteElect (III)
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leader. Hence, a candidate can become leader as soon as it reaches that stage (it will then
broadcast a termination message to all nodes).

Thus the total number of messages, including the n− 1 for termination notification, will be

n + 1 +
∑n/2

i=1 4ni = n + 1 + 4n
∑n/2

i=1
1
i

= 4nHn/2 + n + 1

which gives the overall cost

M[CompleteElect] ≤ 2.76 n log n− 1.76n + 1 (37)

Let us now consider the time cost of the protocol. It is not difficult to see that, in the worst
case, the ideal time of protocol CompleteElect is linear (Exercise 9.67):

T[CompleteElect] = O(n) (38)

This must be contrasted with the O(1) time cost of the simple strategy of each entity sending
its id immediately to all its neighbours, thus receiving everybody’s else id, and determining
the smallest id. Obviously, the price we would pay for a O(1) time cost is O(n2) messages.

Appropriately combining the two strategies we can actually construct protocols that offer
optimal O(n logn) message costs with O(n/ logn) time (Exercise 9.68).

The time can be further reduced at the expenses of more messages. In fact, it is possible to
design an election protocol that, for any log n ≤ k ≤ n, uses O(nk) messages and O(n/k)
time in the worst case (Exercise 9.69).

6.2 Surprising Limitation

We have just developed an efficient protocol for election in complete networks. Its cost is
O(n log n) messages. Observe that this is the same as we were able to do in ring networks (
actually the multiplicative constant is worse).

Unlike rings, in complete networks each entity has a direct link to all other entities, and
there is a total of O(n2) links. By exploiting all this communication hardware, we should be
able to do better than in rings, where there are only n links, and where entities can be O(n)
far apart.

The most surprising result about complete networks is that, in spite of having available the
largest possible amount of connection links and a direct connect between any two entities,
for election they do not fare better than ring networks.

In fact, any election protocol will require in the worst case Ω(n log n) messages. That is,

Property 6.1 M(Elect/IR; K) = Ω(n log n)
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To see why this is true, observe that any election protocol also solves the wake-up problem;
to become defeated or leader an entity must have been active (i.e. awake). This simple
observation has dramatic consequences. In fact, any Wake-up protocol requires at least
.5n log n messages in the worst case (Property ??); thus, any Election protocol requires in
the worst case the same number of messages.

This implies that, as far as election is concerned, the very large expenses due to the physical
construction of m = (n2 + n)/2 links are not justifiable, since the same performance and
operational costs can be achieved with only m = n links arranged in a ring.

6.3 Harvesting the Communication Power

The lower bound we have just seen carries a very strong and rather surprising message for
network development: insofar election is concerned, complete networks are not worth the
large communication hardware costs. The facts that Election is a basic problem and its
solutions are routinely used by more complex protocols, makes this message even stronger.

The message is surprising because the complete graph, as we mentioned, has the most
communication links of any network, and the shortest possible distance between any two
entities.

To overcome the limit imposed by the lower bound, and thus to harvest the communication
power of complete graphs, we need the presence of some additional tools (i.e., properties, re-
strictions, etc.). The question becomes: which tool is powerful enough? Since each property
we assume restricts the applicability of the solution, our quest for a powerful tool should be
focused on the least restrictive ones.

In this section we will see how to answer this question. In the process, we will discover some
intriguing relationships between port numbering and consistency, and shed light on some
properties of whose existence we already had an inkling in earlier section.

We will fist examine a particular labelling of the ports that will allow us to make full use of
the communication power of the complete graph.

The first step consists in viewing a complete graph Kn as a ring Rn, where any two non-
neighbouring nodes have been connected by an additional link, called chord. Assume that
the label associated at x to link (x, y) is equal to the (clockwise) distance from x to y in the
ring. Thus, each link in the ring is labelled 1 in the clockwise direction, and n − 1 in the
other. In general, if λx(x, y) = i then λy(y, x) = n− i (see Figure 47); this labelling is called
chordal.

Let us see how election can be performed in a complete graph with such a labelling.

First of all, observe the following: since the links labelled 1 and n−1 form a ring, the entities
could ignore all the other links and execute on this subnet an election protocol for rings, e.g.,
Stages. This approach will yield a solution requiring 2n log n messages in the worst case,
thus already improving on CompleteElect. But we can do better than that.

Consider a candidate entity x executing stage i: it will send an election message in both
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Figure 46: A complete graph with chordal labelling. The links labelled 1 and 4 form a ring.

directions, which will travel along the ring until they reach another candidate, say y and z
(see Figure ??). This operation will require the transmission of d(x, y) + d(x, z) messages.
Similarly, x will receive the Election messages from both y and z, and decide whether it
survives this stage or not, based on the received ids.

x

z

y

5n−3

Figure 47: A complete graph with chordal labelling. The links labelled 1 and 4 form a ring.

Now, in a complete graph there exists a direct link between x and y, as well as between x
and z; thus, a message from one to the other could be conveyed with only one transmission.
Unfortunately, x does not know which of its n − 1 links connect it to y or to z; y and z
are in a similar situation. In the example of Figure ??, x does not know that y is the node
at distance 5 along the ring (in the clockwise direction), and thus the port connecting x to
it is the one with label 5. If it did, those three defeated nodes in between them could be
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bypassed. Similarly, x does not know that z is at distance −3 (i.e., at distance 3 in the
counterclockwise direction) and thus reachable through port n− 3.

However, this information can be acquired !

Assume that the Election message contains also a counter, initialized to one, which is in-
creased of one unit by each node forwarding it. Then, a candidate receiving the Election
message knows exactly which port label connects it to the originator of that message. In our
example, the election message from y will have a counter equal to 5 and will arrive from link
1 (i.e., counterclockwise), while the message from z will have a counter equal to 3 and will
arrive from link n− 1 (i.e., clockwise). From this information x can determine that y can be
reached directly though port 5, and z is reachable through link n− 3. Similarly, y (resp. z)
will know that the direct link to x is the one labelled n− 5 and (resp. 3).

This means that, in the next stage, these chords can be used instead of the corresponding
segments of the ring, thus saving message transmissions. The net effect will be that, in stage
i + 1, the candidates will use the (smaller) ring composed only of the chords determined in
the previous stage; that is, messages will be sent only on the links connecting the candidates
of stage i, thus completely bypassing all entities defeated in stage i− 1 or earlier.

Assume in our example that x enters stage i + 1 (and thus both y and z are defeated); it
will prepare an election message for the candidates in both directions, say u and v, and will
send it directly to y and to z. As before, x does not know where u and v are (i.e., which of
its links connect it to them) but, as before, it can determine it.

The only difference is that the counter must be initialized to the weight of the chord: thus
the counter of the Election message sent by x directly to y is equal to 5, and the one to z is
equal to 3. Similarly, when an entity forwards the Election message through a link, it will
add to the counter the weight of that link.

Summarizing, in each stage the candidates will execute the protocol in a smaller ring. Let
R(i) be the ring used in stage i; initially R(1) = Rn. Using the ring protocol Stages in each
stage, the number of messages we will be transmitting will be exactly 2(n(1) + n(2) + . . . +
n(k)), where n(i) is the size of R(i) and k ≤ log n is the number of stages; an additional
n− 1 messages will be used for the leader to notify termination.

Observe that all the rings R(2), . . . , R(k) do not have links in common (Exercise 9.70). This
means that if we consider the graph G composed of all these rings, then the number of links
m(G) of G is exactly m(G) = n(2) + . . . + n(k). Thus to determine the cost of the protocol,
we need to find out the value of m(G).

This can be determined in many ways. In particular, it follows from a very interesting
property of those rings. In fact, each R(i) is “contained” in the interior of R(i + 1): all
the links of R(i) are chords of R(i + 1), and these chords do not cross. This means that
the graph G formed by all these rings is planar; that is can be drawn in the plane without
any edge crossing. A well known fact of planar graphs is that they are sparse, i.e., contain
very few links: no more than 3(n − 2) (if you did not know it, now you do). This means
that our graph G has m(G) ≤ 3n − 6. Since our protocol, which we shall call Kelect, uses
2(n(1) + m(G)) + n messages in the worst case, and n(1) = n, we have
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M[Kelect] < 8n− 12

A less interesting, but more accurate measurement of the message costs follows from ob-
serving that the nodes in each ring R(i) are precisely the entities that were candidates in
stage i − 1; thus, n(i) = ni−1. Recalling that ni ≤ 1

2
ni−1, and since n1 = n, we have

n(1) + n(2) + . . . + n(k) ≤ n +
∑k−1

i=1 ni < 3n, which will give

M[Kelect] < 7n (39)

The conclusion is that the chordal labeling allows us to finally harvest the communication
power of complete graphs, and do better than in ring networks.

7 Election in Chordal Rings ⋆

We have seen how election requires Ω(n log n) messages in rings, and can be done with just
O(n) messages in complete networks provided with chordal labelling. Interestingly, oriented
rings and complete networks with chordal labelling are part of the same family of networks,
known as loop networks or chordal rings.

A chordal ring Cn〈d1, d2, ..., dk〉 of size n and k-chord structure 〈d1, d2, ..., dk〉, with d1 = 1,
is a ring Rn of n nodes {p0, p1, ..., pn−1}, where each node is also directly connected to the
nodes at distance di and N − di by additional links called chords. The link connecting two
nodes is labelled by the distance which separates these two nodes on the ring, i.e. following
the order of the nodes on the ring: node pi is connected to the node p

i+dj mod n
through its

link labelled dj (as shown in Figure 48). In particular, if the link between p and q is labelled
d at p, this link is labelled n− d at q.

Figure 48: Chordal ring C11〈1, 3〉

Note that the oriented ring is the chordal ring Cn〈1〉 where label 1 corresponds to “right”, and
n−1 to “left”. The complete graph with chordal labelling is the chordal ring Cn〈1, 2, 3, · · · , ⌊n/2⌋〉
In fact, rings and complete graphs are two extreme topologies among chordal rings.
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Clearly, we can exploit the techniques we designed for complete graph with chordal labelling
to develop an efficient election protocol for the entire class of chordal ring networks. The
strategy is simple:
1. Execute an efficient ring election protocol (e.g., Stages or Alternate) on the outer ring.
As we did in Kelect, the message sent in a stage will carry a counter, updated using the link
labels, that will be used to compute the distance between two successive candidates.
2. Use the chords to bypass defeated nodes in the next stage.

Clearly, the more distances can be “bypassed” by chords, the more messages we will be able
to save. As an example, consider the chordal ring Cn〈1, 2, 3, 4..., t〉, where every entity is
connected to its distance-t neighbourhood in the ring. In this case (Exercise 9.76), a leader
can be elected with a number of messages no more than

O(n + n
t
log n

t
)

A special case of this class is the complete graphs, where t = ⌊n/2⌉⌋; in it we can bypass
any distance in a single “hop” and, as we know, the cost becomes O(n).

Interestingly, we can achieve the same O(n) result with fewer chords. In fact, consider the
chordal ring Cn〈1, 2, 4, 8..., 2⌈logn/2⌉〉; it is called double cube and k = ⌈log n⌉. In a double
cube, this strategy allows election with just O(n) messages (Exercise 9.78), like if we were
in a complete graph and had all the links !

At this point, an interesting and important question is what is the smallest sets of links that
must be added to the ring in order to achieve a linear election algorithm. The double cube
indicates that k = O(log n) suffice. Surprisingly, this can be significantly further reduced
(Problem 9.12); furthermore (Problem 9.13), the O(n) cost can be obtained even if the links
have arbitrary labels !

Lower bounds

The class of chordal rings is quite large; it includes rings and complete graphs, and the cost
of electing a leader varies greatly depending on the structure. For example we have already
seen that the complexity is Θ(n log n) and Θ(n) in those two extreme chordal rings.

We can actually establish precisely the complexity of the election problem for the entire class
of chordal rings Ct

n = Cn〈1, 2, 3, 4..., t〉. In fact, we have (Exercise 9.77):

M(Elect/IR; Ct
n) = Ω(n +

n

t
log

n

t
) (40)

Notice that this class includes the two extremes. In view of the matching upper bound
(Exercise 9.76), we have

Property 7.1 The message complexity of Elect in Ct
n under IR is Θ(n + n

t
log n

t
)
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8 Universal Election Protocols

We have so far studied in detail the election problem in specific topologies; i.e., we have de-
veloped solution protocols for restricted classes of networks, exploiting in their design all the
graph properties of those networks so to minimize the costs and increase the efficiency of the
protocols. In this process we have learned some strategies and principles which are however
very general (e.g., the notion of electoral stages), as well as the use of known techniques (e.g.,
broadcasting) as modules of our solution.

We will now focus on the main issue, the design of universal election protocols, that is
protocols which run in every network, requiring no a priori knowledge of the topology of the
network nor of its properties (not even its size !). In terms of communication software, such
protocols are obviously are totally portable, and thus highly desirable.

We will describe two such protocols, radically different from each other. The first, Mega-
Merger, constructs a rooted spanning-tree, is highly efficient (optimal in the worst case);
the protocol is however rather complex both in terms of specifications and analysis, and its
correctness is still without a simple formal proof. The other, Yo-Yo, is a minimum-finding
protocol which is exceedingly simple to specify and to prove correct; its real cost is however
not yet known.

8.1 Mega-Merger

In this section we will discuss the design of an efficient algorithm for leader election, called
Mega-Merger. This protocol is topology independent (i.e., universal) and constructs a (min-
imum cost) rooted spanning tree of the network.

Nodes are small villages, and edges are roads each with a different name and distance. The
goal is to have all villages merge into one large megacity. A city (even a small village will
be considered such) always tries to merge with the closest neighbouring city.

When merging, there are several important issues that must be resolved. First and foremost,
the naming of the new city. The resolution of this issue depends on how far the involved
cities have progressed in the merging process, i.e. on the level they have reached, and on
whether the merger decision is shared by both cities.

The second issue to be resolved during a merging is the decision of which roads of the new
city will be serviced by public transports. When a merge occurs, the roads of the new city
serviced by public transports will be the roads of the two cities already serviced plus only
the shortest road connecting them.

Let us clarify some of these concepts and notions, as well as the basic rules of the game.

• (1) A city is a rooted tree; the nodes are called districts, the root is also known as
downtown.

• (2) Each city has a level and a unique name; all districts eventually know the name
and the level of their city.
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Figure 49: A city is a tree rooted in its downtown.

• (3) Edges are roads, each with a distinct name and distance. The city roads are only
those serviced by public transport.

• (4) Initially, each node is a city with just one district, itself, and no roads. All cities
are initially at the same level.

Note that, as a consequence of rule (1), every district knows the direction (i.e., which of its
links in the tree leads) to its downtown (Figure 49).

• (5) A city must merge with its closest neighbouring city. To request the merging, a
Let-us-Merge message is sent on the shortest road connecting it to that city.

• (6) The decision to request for a merger must originate from downtown, and there
cannot be more than one request at a time from the same city.

• (7) When a merge occurs, the roads of the new city serviced by public transports will
be the roads of the two cities already serviced plus only the shortest road connecting
them.

Thus, to merge, the downtown of city A will first determine the shortest link, which we shall
call the merge link, connecting it to a neighbouring city; once this is done, a Let-us-Merge
is sent through that link; the message will contain information identifying the city and the
chosen merge link. Once the message reaches the other city, the actual merger can start to
take place. Let us examine the components of this entire process in some details.

We will consider city A, denote by D(A) its downtown, by level(A) its current level, and by
e(A) = (a, b) the merge link connecting A to its closest neighbouring city; let B be such a
city.
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8.1.1 Processing the merger request

Once the Let-us-Merge message from a in A reaches the district b of B, three cases are
possible.

If the two cities have the same level and each asks to merge with the other, we have what is
called a friendly merger: the two cities merge into a new one that, to avoid any conflict, will
be named after the shortest road connecting them; the level of the new megacity will be one
unit more than that of the two cities forming it. In short,

• (8) If level(A) = level(B) and the merge link chosen by A is the same as that chosen
by B (i.e., e(A) = e(B)), then A and B perform a friendly merger.

If a city asks a merger with a city of higher level, it will just be absorbed; that is, it will
acquire the name and the level of the other city:

• (9) If level(A) < level(B), A is absorbed in B.

In all other cases, the request for merging and thus the decision on the name are postponed
! In particular, if a city asks to merge with a city of smaller level, the request will wait until
that city reaches an equal or larger level than its own. (Why? the second city, like every city,
is in the process of merging with some other city and, as a result, will eventually increase its
level.) Similarly, if the two cities have the same level but the merger was requested by only
one of them, that one will wait until the other city reaches a larger level than its own, and
it will then be absorbed. That is,

• (10) If level(A) = level(B) but the merge link chosen by A is not the same as that
chosen by B (i.e., e(A) 6= e(B)),then the merge process of A with B is suspended until
the level of b’s city is larger than that of A.

• (11) If level(A) > level(B), the merge process of A with B is suspended: x will locally
enqueue the message until the level of b’s city is at least as large as the one of A.

Let us see these rules in more details, and examine what happens when the Let-us-Merge
message sent from node a in city A arrives to a node b in city B. Node b will be called the
entry point of the request from A to B, and node a the exit point. Let us denote by dA and
dB the two downtowns. Assume for the moment that no concurrent merging requests are
sent to B from other cities. The entry point b will perform the processing of the request.
Let level(B) and name(B) be the values known to b. (Note that, unknown to b, these
values might be changing.) The possible outcomes will be absorption, friendly merger or
suspension.

Absorption

The absorption process is the conclusion of a merger request sent by A to a city with a higher
level (rule 9). As a result, city A becomes part of city B acquiring the name, the downtown,
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Figure 50: Absorption. The logical direction of the links (in bold) from the downtown to
the exit point of A is “flipped”.

and the level of B. This means that, during absorption:
i) the logical orientation of the roads in A must be modified so that they are directed towards
the new downtown (so rule (1) is satisfied);
ii) all districts of A must notified of the name and level of the city they just joined (so rule
(2) is satisfied).
All these requirements can be easily and efficiently achieved.
First of all, the entry point b will notify a (the exit point of A) that the outcome of the
request is absorption, and it will include in the message all the relevant information about
B (name and level). Once a receives this information, it will broadcast it in A; as a result,
all districts of A will join the new city, and know its name and its level.
To transform A so it is rooted in the new downtown is fortunately simple. In fact, it is
sufficient to logically direct towards B the link connecting a to b, and to “flip” the logical
direction only of the edges in the path from the exit point a to the old downtown of A
(Exercise 9.79). The latter can be done as follows: each of the districts of B on the path
from a to dA, when it receives the broadcast from a, it will locally direct towards B two
links: the one from which the broadcast message is received and the one towards its old
downtown.

Friendly merger

If A and B are at the same level in the merging process (i.e., level(A) = level(B)) and want
to merge with each other (i.e., e(A) = e(B)), we have a friendly merger. Notice that, if this
is the case, also a must receive a Let-us-Merge message from b. The two cities now become
one with a new downtown, a new name, and an increased level. The new downtown will be
the one of a and b that has smaller id (recall that we are working under the ID restriction).
The name of the new city will be the name of the road connecting a and b (recall that, by rule
(3), we are assuming unique names and lengths for the roads). The level will be increased
by one unit. Both a and b will independently compute the new name, level, and downtown.
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Figure 51: Friendly Merger (a) The two cities have the same level and choose the same merge
link. (b) The new downtown is the exit node (a or b) with smallest id.
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Then each will broadcast this information to its old city; as a result, all districts of A and
B will join the new city, and know its name and its level.
Both A and B must be transformed so they are rooted in the new downtown. As discussed
in the case of absorption, it is sufficient to “flip” the logical direction only of the edges in
the path from the a to the old downtown of A, and of those in the path from b to the old
downtown of B (Figure 51).

Suspension

In two cases (rules (10) and (11)), the merge request of A must be suspended: b will then
locally enqueue the message until the level of its city is such that it can apply rule (8) or (9).
Notice that, in case of suspension, nobody from city A knows that their request has been
suspended; because of rule (6), no other request can be launched from A.

8.1.2 Choosing the merging edge

According to rule (6), the choice of the merging edge e(A) in A is made by the downtown
D(A); according to rule (5), e(A) must be the shortest road connecting A to a neighbouring
city. Thus, D(A) needs to find the minimum length among all the edges incident on the
nodes of the rooted tree A; this will be done as following.

• (5.1) Each district ai of A determines the length di of the shortest road connecting it
to another city (if none goes to another city, then di =∞).
(5.2) D(A) computes the smallest of all the di.

Part (5.2) is easy to accomplish; it is just a minimum-finding in a rooted tree, which we have
discussed in Section ??.

Concentrate on part (5.1), and consider a district ai; it must find, among its incident edges
the shortest one that leads to an another city.

IMPORTANT. Obviously, ai does not need to consider the internal roads (i.e., those that
connect it to other districts of A). Unfortunately, if a link is unused i.e., no message has been
sent or received through it, it is impossible for ai to know if this road is internal or leads to
a neighbouring city (Figure 52). In other words, ai must try also the internal unused roads.

Thus, ai will determine the shortest unused edge e, prepare a Outside? message, send it on
e and wait for a reply. Consider now the district c on the other side of e, which receives
this message; c knows the name(C) and the level(C) of its city (which could however be
changing).

If name(A) = name(C) (recall that the message contains the name of A), c will reply
Internal to ai, the road e will be marked as internal (and no longer used in the protocol) by
both districts, and ai will restart its process.

If name(A) 6= name(C) it does not necessarily mean that the road is not internal. In fact,
it is possible that, while c is processing this message, its city C is being absorbed by A !
Observe that, in this case, level(C) must be smaller than level(A) (because, by rule (8) only
a city with smaller level will be absorbed). This means that, if name(A) 6= name(C) but
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Figure 52: Some unused links (in bold) might lead back to the city.

level(C) ≥ level(A), then C is not being absorbed by A, and it is for sure a different city;
thus c will reply External to ai, which will have thus determined what it was looking for:
di = length(e).

The only case left is when name(A) 6= name(C) and level(C) < level(A), in which c cannot
give an answer. So, it will not: c will postpone the reply until the level of its city becomes
greater or equal to that of A. Note that this means that the computation in A is suspended
until c is ready !

Concluding: to determine if a link is internal should be simple but, due to concurrency, the
process is not trivial nor obvious.

8.1.3 Detailed Cases

We have just seen in details the process of determining the merge link as well as the rules
governing a merger. There is still few issues which require a more detailed treatment.

Discovering a friendly merger

We have seen that, when the Let-us-Merge message from A to B arrives at b, if level(A) =
level(B), the outcome will be different (friendly merger or postponement) depending on
whether e(A) = e(B) or not. Thus, to decide if it is a friendly merger, b needs to know
both e(A) and e(B). When the Let-us-Merge message sent from a arrives to b, b knows
e(A) = (a, b).
QUESTION: how does b know e(B) ? The answer is interesting.
As we have seen, the choice of e(B) is made by the downtown D(B) which will forward the
merger request message of B towards the exit point.
If e(A) = e(B), b is the exit point and thus it will eventually receive the message to be sent
to a; then (and only then) b will know the answer to the question, and that it is dealing with
a friendly merger !
If e(A) 6= e(B), b is not the exit point. Note that, unless b is on the way from downtown
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D(B) to the exit point, b will not even know what e(B) is !
Thus, what really happens when the Let-us-Merge message from A arrives at b, is the fol-
lowing. If b has received already a Let-us-Merge message from its downtown to be sent to a,
then b knows that is a friendly merger; also a will know when it receives the request from b.
(NOTE FOR HACKERS: thus, in this case, no reply to the request is really necessary.) Oth-
erwise b does not know; thus it waits: if it is a friendly merger, sooner or later the message
from its downtown will arrive and b will know; if B is requesting another city, eventually the
level of b’s city will increase becoming greater than level(A) (which, since A is still waiting
for the reply, cannot increase), and thus result in A being absorbed.

Interaction between absorption and link calculation

Because of the asynchronous nature of the system and its unpredictable (though, finite)
communication delays, it will likely be the case that different cities and districts will be
at different levels at the same time. In fact, our rules take explicitly into account the
interaction between neighbouring cities at different levels. There are a few situations where
the application of the rules will not be evident. A situation that requires attention is due to
the interaction between merge link calculation and absorption. Consider the Let-us-Merge
message sent by a on merge link e(A) = (a, b) to b, which is computing the merge-link for
its city B; from the message, b finds out that level(A) < level(B), and thus A will have to
be absorbed in B. What should b do ? On one hand, b could start the absorption process
of A first and then continue its computation of the merge-link; in this way, the districts
of A will also be involved in the computation of the merge link for B (expanding the list
of possibilities). On the other hand, b could pretend that the message from a has still not
arrived yet, conclude its computation of the merge-link, and only then start the absorption
process of A; in this way, it will possibly save the messages of involving A in this calculation
of the merge edge of B. There are also other options in which b makes a more reasoned
decision based on the length of e(A) (Exercise 9.80).

8.1.4 The Effects of Postponements and Concurrency

A city only carries out one merger requests at the time, but it can be asked concurrently by
several cities, which in turn can be asked by several others. Some of these requests will be
postponed (because the level is not right, or the entry node does not (yet) know what the
answer is, etc.) Due to communication delays, some districts will be taking decisions based
on information (level and name of its city) which is obsolete. It is not difficult to imagine
very intricate and complex scenarios which can easily occur.

How do we know that, in spite of concurrency and postponements and communication delays,
everything will eventually work out ? How can we be assured that some decisions will not
be postponed forever, i.e. there will not be deadlock ? What guarantees that, in the end, the
protocol terminates and a single leader will be elected ? In other words, how do we know
that the protocol is correct ?

Due to its complexity and the variety of scenarios that can be created, there is no satisfac-
tory complete proof of the correctness of the Mega-Merger protocol. We will discuss here a
partial proof which will be sufficient for our learning purposes.
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Progress and Deadlock

We will first discuss the progress of the computation and the absence of deadlock . To do
so, let us pinpoint the cases when the activity of a city C is halted by a district d of another
city D. This can occur only when computing the merge edge, or when requesting a merger
on the merge edge e(C); more precisely, there are four cases:
(i) when computing the merge edge, a district c of C sends the Outside? message to d and
D has a smaller level than C;
(ii) after receiving the Let-us-Merge message on the merge edge e(C) = (c, d), d realizes that
D has smaller level than C;
(iii) after receiving the Let-us-Merge message on the merge edge e(C) = (c, d), d realizes
that D and C have the same level but it is not a friendly merger.
(iv) after receiving the Let-us-Merge message on the merge edge e(C) = (c, d), d realizes that
D and C have the same level but it does not know that it is a friendly merger.

In cases (i)-(iii) the activities of C are suspended and will be resolved (if the protocol is
correct) only in the “future”, i.e. after D changes level. Case (iv) is different from the
others, as it will be resolved within the “present” (i.e., in this level); it is in fact a delay
rather than a suspension.

Observe that, if there is no suspension, there is no problem.

Property 8.1 If a city at level l will not be suspended, its level will eventually increase,
unless it is the megacity.

To see why this is true, consider the operations performed by a city C at a level l: compute
the merge edge, and send a merge request on the merge edge. If it is not suspended, its
merge request arrives at a city D with either a larger level (in which case, C is absorbed and
its level becomes level(D)), or the same level and same merge-edge (in which case, the two
cities friendly merge and their level increases).

So, only suspensions can create problems. But not necessarily so:

Property 8.2 Let city C at level l be suspended by a district d in city D. If the level of the
city of D becomes greater than l, C will no longer be suspended and its level will increase.

This is because, once the level of D becomes greater than the level of C, d can answer the
Outside? message in case (i), as well as the Let-us-Merge message in cases (ii) and (iii).

Thus, the only real problem is the presence of a city suspended by another whose level will
not grow. We are going now to see that this can not occur.

Consider the smallest level l of any city at time t, and concentrate on the cities C operating
at that level at that time.

Property 8.3 No city in C will be suspended by a city at higher level.
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This is because, for a suspension to exist, the level of D can not be greater that the level of
C (see the cases above).

Thus, if a city C ∈ C is suspended, it is for some other city C ′ ∈ C. If C ′ will not be suspended
at level l, its level will increase; when that happens, C will no longer be suspended. In other
words, there will be no problems as long as there are no cycles of suspensions within C; that
is, as long as there is no cycle C0, C1, . . . , Ck−1 of cities of C where Ci is suspended by Ci+1

(and the operation on the indices are modulo k). The crucial property is the following:

Property 8.4 There will be no cycles of suspensions within C.

The proof of this property is based heavily on the fact that each edge has a unique length
(we have assumed that !), and that the merge edge e(C) chosen by C is the shortest of all
the unused links incident on C. Remember this fact, and let us proceed with the proof.

By contradiction, assume that the property is false. That is, assume there is a cycle
C0, C1, . . . , Ck−1 of cities of C where Ci is suspended by Ci+1 (the operation on the indices
are modulo k). First of all observe that since all these cities are at the same level, then the
reason they are suspended can only be that each is involved in an “unfriendly” merger, i.e.,
case (iii). Let us examine the situation more closely: each Ci has chosen a merge edge e(Ci)
connecting it to Ci+1; thus Ci is suspending Ci−1 and is suspended by Ci+1. Clearly both
e(Ci−1) and e(Ci) are incident on Ci. By definition of merging edge (recall what we said at
the beginning of the proof), e(Ci) is shorter than e(Ci−1) (otherwise Ci would have chosen
it instead); in other words, the length di of the road e(Ci) is smaller than the length di11 of
e(Ci+1). This means that d0 > d1 > . . . > dk−1; but since it is a circle of suspensions, Ck−1

is suspended by C0, that is dk−1 > d0. We have reached a contradiction, which implies that
our assumption that the property does not hold is actually false; thus the property is true.

As a consequence of the property, all cities in C will eventually increase their level: first the
ones involved in a friendly merger, next those that had chosen them for a merger (and thus
absorbed by them), then those suspended by the latter, and so on.

This implies that, at no time there will be deadlock and there is always progress: use the
properties to show that the ones with smallest level will increase their value; when this
happens, again the ones with smallest level will increase it, and so on. That is

Property 8.5 Protocol Mega-Merger is deadlock-free and ensures progress.

Termination

We have just seen that there will be no deadlock, and that progress is guaranteed. This
means that the cities will keep on merging, and eventually the megacity will be formed. The
problem is how to detect that this has happened. Recall that no node has knowledge of the
network, not even of its size (it is not part of the standard set of assumptions for election);
how does an entity finds out that all the nodes are now part of the same city ? Clearly it is
sufficient for just one entity to determine termination (as it can then broadcast it to all the
others).
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Fortunately, termination detection is simple to achieve; as one might have suspected, it is
the downtown of the megacity that will determine that the process is terminated.

Consider the downtown D(A) of city A, and the operations it performs: it coordinates the
computation of the merge link, and then originates a merge request to be sent on that link.
Now, the merge link is the shortest road going to another city. If A is already the megacity,
there are no other cities; hence all the unused links are internal. This means that, when
computing the merge link, every district will explore every unused link left and discover that
each one of them is internal; it will thus choose ∞ as its length (meaning that it does not
have any outgoing links). This means that the minimum-finding process will return∞ as the
smallest length. When this happens, D(A) understands that the mega-merger is completed,
and can notify all others. (Notification is not really necessary: Exercise 9.82).

Since the megacity is a rooted tree with the downtown as its root, D(A) becomes the leader;
in other words

Property 8.6 Protocol Mega-Merger correctly elects a leader.

8.1.5 Cost

In spite of the complexity of protocol Mega-Merger, the analysis of its cost is not overly
difficult. We will first determine how many levels there can be, and then calculate the total
number of messages transmitted by entities at a given level.

The number of levels

A district acquires a larger level because its city has been either absorbed or involved in a
friendly merger. Notice that, when there is absorption, only the districts in one of the two
cities increase their level, and thus the max level in the system will not be increased. The
max level can only increase after a friendly merger.

How high can the max level be ? We can find out by linking the minimum number of districts
in a city to the level of the city.

Property 8.7 A city of level i has at least 2i districts.

This can be proved easily by induction. It is trivially true at the beginning (i.e., i = 0). Let
it be true for 0 ≤ i ≤ k − 1. A level k city can only be created by a friendly merger of two
level k − 1 cities; hence, by inductive hypothesis, such a city will have at least 2 2k−1 = 2k

districts; thus the property is true also for i = k.

As a consequence

Property 8.8 No city will reach a level greater than log n.

The number of messages per level

There are all types of activities performed to increase the level. Consider a level i; some
districts will reach this level from level i − 1, while others directly from a even lower level.
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We want to count how many messages are exchanged in this transition. Definitely we need
to count all the messages required by the friendly merger of cities of level i − 1, including
the cost of finding the common merge link. We also need to count all the messages incurred
by absorptions to level i by cities of lower levels, including the cost of finding their merge
link. In the calculation of the merge link we will not include, for the moment, the messages
sent to internal roads; they will be counted separately later.

Consider the cost of all the friendly mergers creating cities of level i. In each of the level i−1
cities involved in a friendly merger, three activities are performed: the computation of the
merge link; the forwarding the message from downtown to that merge link; the broadcast
from the exit point of the information about the new city (and the directive to compute the
new merge link). Using the protocol for minimum-finding in rooted trees, the computation
of the merge link costs 2 n(A) messages, in a city A with n(A) districts. The forwarding
of the Let-us-Merge message from the downtown D(A) to the merge edge e(A) = (a, b) will
cause at most n(A) transmissions. Similarly, the broadcast from a of the information about
the new city costs only n(A) − 1 messages (recall we are in a tree). In other words, for a
level i− 1 city A involved in a friendly merger, the cost will be at most 4n(A)− 1.

Consider now a city C which it is absorbed into another of level i. Also in C the same three
activities are performed. The computation of the merge link and the forwarding the message
from downtown to that merge link will cost 2 n(C) and at most n(C) messages, respectively.
The broadcast in C of the new level and name (and possibly the directive to compute the
new merge link) is started by the entry point thus requires one message more than in the
case of a friendly merger, for a total of n(C) messages. In other words, for a city C absorbed
into one of level i− 1, the cost will be at most 4n(C).

This means that the total cost Cost(i) for level i will be

Cost(i) =
∑

A∈Merge(i)(4n(A)− 1) +
∑

C∈Absorb(i) 4n(C)

where Merge(i) and Absorb(i) are the set of the cities becoming of level i through friendly
merger and absorption, respectively. Since all these cities are disjoint,

∑

B∈(Merge(i) ∪Absorb(i) n(B) ≤ n

hence

Property 8.9 Cost(i) ≤ 4n

The number of useless messages

In the calculation so far we have excluded the messages sent, during the search for a merge
link, to unused links that turn out to be internal roads. These messages are in a sense
“useless” since they do not bring to a merger; but they are also unavoidable. Let us measure
their number. On any such road there will be two messages, the Outside? message and the
Internal reply. So, we only need to determine the number of such roads. These roads are
not part of the city (i.e., not serviced by public transport). Since the final city is a tree, the
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total number or the publicly serviced roads is exactly n− 1. Thus the total number of the
other roads is exactly m − (n − 1). This means that the total number of useless messages
will be

Property 8.10 Useless = 2(m− n + 1)

The total

Combining Properties 8.8, 8.9, and 8.10, we obtain the total number of messages exchanged
in total by protocol Mega-Merger during all its levels of execution. To these, we need to
add the n − 1 messages due to the downtown of the megacity broadcasting termination
(eventhough these could be saved: Exercise 9.82), for a total of

M[Mega−Merger] ≤ 2m + 4n log n + 1 (41)

8.1.6 Road Lengths and Minimum-Cost Spanning Trees

In all the previous discussions we have made some non-standard assumptions about the
edges. We have in fact assumed that each link has a value, which we called length, and that
those values are unique. ( This last assumption provides for free unique names to the links,
as the unique length can be used as the link’s name.)

The existence of link values is not uncommon. In fact, dealing with networks, usually there
is a value associated with a link denoting e.g., the cost of using that link, the transmission
delays incurred when sending a message through it, etc.

In these situations, when constructing a spanning-tree (e.g. to use for broadcasting), the
prime concern is how to construct the one of minimum cost, i.e., where the sum of the values
of its link is as small as possible. For example, if the value of the link is the cost of using
it, a minimum-cost spanning tree is one where broadcasting would be cheapest (regardless
of who is the originator of the broadcast). Not surprisingly, the problem of constructing a
minimum-cost spanning tree is important and heavily investigated.

We have seen that protocol Mega-Merger constructs a rooted spanning tree of the network.
What we are going to see now is that this tree is actually the unique minimum-cost spanning-
tree of the network. We are also going see how the non-standard assumptions we have made
about the existence of unique lengths can be easily removed.

Minimum-Cost Spanning Trees

In general, a network can have several minimum cost spanning trees. For example, if all
links have the same value (or have no value), then every spanning tree is minimal. On the
other hand,

Property 8.11 If the link values are distinct, a network has a unique minimum-cost span-
ning tree.
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Assuming that there are distinct values associated to the links, protocol Mega-Merger con-
structs a rooted spanning tree of the network. What we are going to see now is that this
tree is actually the unique minimum-cost spanning-tree of the network.

To see why this is the case, we must observe a basic property of the minimum-cost spanning
tree T . A fragment of T is a subtree of T .

Property 8.12 Let A be a fragment of T , and let e be the link of minimum value among
those connecting A to other fragments; let B be the fragment connected by A. Then the tree
composed by merging A and B through e is also a fragment of T .

This is exactly what the Mega-Merger protocol does: it constructs the minimum-cost span-
ning tree T (the megacity) by merging fragments (cities) through the appropriate edges
(merge link). Initially each node is a city and, by definition, a single node is a fragment. In
general, each city A is a fragment of T ; its merge link is chosen as the shortest (i.e., minimum-
value) link connecting A to any neighbouring city (i.e., fragment); hence, by Property 8.12,
the result of the merger is also a fragment.

Notice that the correctness of the process depends crucially on Property 8.11, and thus on
the distinctness of the link values.

Creating Unique Lengths

We will now remove the assumptions that there are values associated to the links, and these
values are unique.

If there are no values (the more general setting), then a unique value can be easily given to
each link using the fact that the nodes have unique ids: to link e = (a, b) associate the sorted
pair d(e) =< Min{id(a), id(b)}, Max{id(a), id(b)} >, and use the lexicographic ordering to
determine which edge has smaller length. So, for example, the link between nodes with
ids 17 and 5 will have length < 5, 17 >, which is smaller than < 6, 5 > but greater than
< 4, 32 >. To do this requires however that each node knows the id of all its neighbours.
This information can be acquired in a pre-processing phase, in which every node sends to its
neighbours its id (and will receive theirs from them); the cost will be two additional messages
on each link. Thus, even if there are no values associated to the links, it is possible to use
protocol Mega-Merger. The price we have to pay is 2m additional messages.

If there are values but they are not (known to be) unique, they can be made so, again using
the fact that the nodes have unique ids. To link e = (a, b) with value v(e) associate the
sorted triple d(e) =< v(e), Min{id(a), id(b)}, Max{id(a), id(b)} >. Thus, links with the
same values will now be associated to different lengths. So, for example, the link between
nodes with ids 17 and 5 and value 7 will have length < 7, 5, 17 >, which is smaller than
< 7, 6, 5 > but greater than < 7, 4, 32 >. Also in this case, each node needs to know the
id of all its neighbours. The same pre-processing phase will achieve the goal with only 2m
additional messages.

Summarizing, protocol Mega-Merger is a universal protocol which constructs a (minimum-
cost) spanning tree and returns it rooted in a node, thus electing a leader. If there are
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no initial distinct values on the links, a pre-processing phase need to be added, in which
each entity exchanges its unique id with its neighbours; then the actual execution of the
protocol can start. The total cost of the protocol (with or without pre-processing phase) is
O(m + n log n) which, we will see, is worst case optimal.

The main drawback of Mega-Merger is its design complexity, which makes any actual imple-
mentation difficult to verify.

8.2 YO-YO

We will now examine another universal protocol for leader election. Unlike the previous one,
it has simple specifications, and its correctness is simple to establish. This protocol, called
YO-YO, is a Minimum-Finding algorithm and consists of two parts: a pre-processing phase,
and a sequence of iterations. Let us examine them in detail.

8.2.1 Setup

In the pre-processing phase, called Setup, every entity x exchanges its id with its neighbours.
As a result, it will receive the id of all its neighbours. Then x will logically orient each
incident link (x, y) in the direction of the entity (x or y, with the largest id. So, if id(x) = 5
and its neighbour y has id(y) = 7, x will orient (x, y) towards y; notice that also y will do
the same. In fact, the orientation of each link will be consistent at both end nodes.

Consider now the directed graph ~G so obtained. There is a very simple but important
property:

Property 8.13 ~G is acyclic.

To see why this is true, consider by contradiction the existence of a directed cycle x0, x1, . . . , xk;
this means that id(x0) < id(x1) < . . . < id(xk−1) but, since it is a cycle, id(xk−1) < id(x0),
which is impossible.

This means that ~G is a directed acyclic graph (DAG). In a DAG there are three types of
nodes:
- source is a node where all the links are out-edges; thus, a source in ~G is a node with an id
smaller than that of all its neighbours, i.e., it is a local minimum;
- sink is a node where all the links are in-edges; thus, a sink in ~G is a node whose id is larger
than that of all its neighbours, i.e., it is a local maximum;
- internal node is a node which is neither a source nor a sink.

As a result of the setup, each node will know whether it is a source, a sink, or an internal
node. We will also use the terminology of “down” referring to the direction towards the
sinks, and “up” referring to the direction towards the sources (See Figure 53.

Once this preprocessing is completed, the second part of the algorithm is started.
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Figure 53: In the Setup phase, (a) the entities know their neighbours’ ids, and (b) orient
each incident link towards the smaller id, creating a DAG.
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8.2.2 Iteration

The core of the protocol is a sequence of iterations. Each iteration acts as an electoral stage
in which some of the candidates are removed from consideration. As Yo-Yo is a minimum-
finding protocol, only the local minima (i.e., the sources) will be candidates (Figure 54.

Each iteration is composed of two parts, or phases, called Yo- and -Yo.

YO-

This phase is started by the sources. Its purpose is to propagate to each sink the smallest
among the values of the sources connected3 to that sink (see Figures 54(a) and 56(a)).

• (1) A source sends its value down to all its out-neighbours.

• (2) An internal node waits until it receives a value from all its in-neighbours. It then
computes the minimum of all received values and sends it down to its out-neighbours.

• (3) A sink waits until it receives a value from all its in-neighbours. It then computes
the minimum of all received values, and starts the second part of the iteration.

-YO

This phase is started by the sinks. Its purpose is to eliminate some candidates, transforming
some sources into sinks or internal nodes. This is done by having the sinks informing their
connected sources of whether their id is the smallest seen so far (see Figure 54(b)).

• (4) A sink sends YES to all in-neighbours from which the smallest value has been
received. It sends NO to all the others.

• (5) An internal node waits until it receives a vote from all its out-neighbours. If all
votes are YES, it sends YES to all in-neighbours from which the smallest value has
been received, and NO to all the others. If at least a vote was NO, it sends NO to all
its in-neighbours.

• (6) A source waits until it receives a vote from all its out-neighbours. If all votes are
YES, it survives this iteration and starts the next one. If at least a vote was NO, it is
no longer a candidate.

Before the next iteration can be started, the directions on the links in the DAG must be
modified, so that only the sources that are still candidate (i.e., those that received only YES)
will still be sources; clearly the modification must be done without creating cycles. In other
words, we must transform the DAG into a new one, whose only sources are the undefeated
ones in this iteration. This modification is fortunately simple to achieve. We need only to
“flip” the direction of each link where a NO vote is sent (see Figures 55(a) and 56(b)). Thus
we have two meta-rules for the -YO part:

3in the sense there is a directed path from the source to that sink;
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Ĵ

�
�

���

�
�

�
��	

@
@

@
@@R

?

���
���

���

���
���
������

���
���
��� ���

2

5

1

6

�
�

�
�	 ?

@
@

@
@R

?

@
@

@@R ?

�
�

��	

�
�

��	

�
�

�
�

�
�

���

�
��	

@
@@R

? ?

Q
Q

Q
Q

QQs

�
�

�
��+

A
A
A
A
AU ?

�
�

�
���

A
A
A
AU

�� ��� �

�
�

��

�
�
�
��

@
@

@
@I6

�� � �� � �� � �� �

J
J
JĴ ?
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we flip the logical direction of of the links on which a NO is sent, creating a new DAG is
created, where only the surviving candidates will be sources.

110



• (7) When a node x sends NO to an in-neighbour y, it will reverse the (logical) direction
of that link (Thus, y becomes now an out-neighbour of x).

• (8) When a node y receives NO from an out-neighbour x, it will reverse the (logical)
direction of that link (Thus, x becomes now an in-neighbour of y).

As a result, any source which receives a NO will cease to be a source; it can actually become
a sink ! Some sinks may cease to be such and become internal nodes, and some internal
nodes might become sinks. However, no sink or internal node will ever become a source
(Exercise 9.84). A new DAG is thus created, where the sources are only those that received
all YES in this iteration. See Figure 55(b).

Once a node has completed its part in the -YO phase, it will know whether it is a source, a
sink, or an internal node in the new DAG. The next iteration could now start, initiated by
the sources of the new DAG.

Property 8.14 Applying an iteration to a DAG with more than one source will result into
a DAG with fewer sources. The source with smallest value will still be a source.

In each iteration, some sources (at least one) will be no longer sources; on the other hand
the source with smallest value will eventually be the only one left under consideration. In
other words, eventually the DAG will have a single source (the overall minimum, say c), and
all other nodes are either sinks or internal nodes. How can c determine that it is the only
source left, and thus it should become the leader ?

If we were to perform an iteration now, only c’s value will be sent in the YO- phase, and only
Y ES votes will be sent in the -YO phase. The source c will receive only Y ES votes; but c
has received only Y ES votes in every iteration it has performed (that’s why it survived as
a source). How can c distinguish that this time is different, that the process should end ?
Clearly, we need some additional mechanisms during the iterations.

We are going to add some meta-rules, called Pruning, which will allow to reduce the number
of messages sent during the iterations, as well as to ensure that termination is detected when
only one source is left.

Pruning

The purpose of pruning is to remove from the computation nodes and links that are “useless”,
do not have any impact on the result of the iteration; in other words, if they where not there,
still the same result would be obtained: the same sources would stay sources, and the others
defeated. Once a link or a node is declared “useless”, during the next iterations it will be
considered non-existent and thus not used.

Pruning is achieved through two meta-rules.

The first meta-rule is a structural one. To explain it, recall that the function of the sinks is
to reduce the number of sources by voting on the received values. Consider now a sink that
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Figure 57: Rules of pruning.

is a leaf (i.e., it has only one in-neighbour); such a node will receive only one value, thus
it can only vote YES. In other words, a sink leaf can only agree with the choice (i.e., the
decision) made by its parent (i.e., its only neighbour). Thus, a sink leaf is “useless”.

• (7) If a sink is a leaf (i.e., it has only one in-neighbour), then it is useless; it then
asks its parent to be pruned. If a node is asked to prune an out-neighbour, it will do
so by declaring useless (i.e., removing from consideration in the next iterations) the
connecting link.

Notice that, after pruning a link, a node might become a sink; if it is also a leaf, then it
becomes useless !

The other meta-rule is geared towards reducing the communication of redundant information.
During YO- phase, a (internal or sink) node might receive the value of the same source from
more than one in-neighbours; this information is clearly redundant since, to do its job (choose
the minimum received value), is enough for the node to receive just one copy of that value.
Let x receive the value of source s from in-neighbours x1, . . . , xk, k > 1. This means that,
in the DAG, there are directed paths from s to (at least) k distinct in-neighbours of x. This
also means that, if the link between x and one of them, say x1, did not exist, the value from s
would still arrive to x from those other neighbours, x2, . . . , xk. In fact, if we had removed the
links between x and all those in-neighbours except one, x would still have received the value
of s from that neighbour. In other words, the links between x and x1, . . . , xk are redundant:
it is sufficient to keep one; all others are useless, and can be pruned. Notice that the choice
of which of those links should be kept is irrelevant.
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• (8) If, in the YO- phase, a node receives the same value from more than one in-
neighbour, it will ask all of them except one to prune the link connecting them, and it
will declare those links useless. If a node receives such a request, it will declare useless
(i.e., remove from consideration in the next iterations) the connecting link.

Notice that, after pruning a link because of rule (8), a sink might become a leaf, and thus
useless (by rule (7)). See Figures 58 and 59.

The pruning rules require communication: in rule (7), a sink leaf need to ask its only
neighbour to declare the link between them useless; in rule (8), a node receiving redundant
information need to ask some of its neighbours to prune connecting the link. We will have
this communication take place during the -Yo phase: the message containing the vote will
also include the request, if any, to declare that link useless. In other words,

pruning is performed when voting.

Let us return now on our concern on how to detect termination. As we will see, the pruning
operations, integrated in the -Yo phase, will do the trick. To understand how and why,
consider the effect of performing a full iteration (with pruning) on a DAG with only one
source.

Property 8.15 If the DAG has a single source, then, after an iteration, the new DAG is
composed of only one node, the source.

In other words, when there is a single source c, all other nodes will be removed, and c will be
the only useful node left ! This situation will be discovered by c when, because of pruning,
it will have no neighbours (Figure 60).

8.2.3 Costs

The general formula expressing the costs of protocol Yo-Yo is easy to establish; however, the
exact determination of the costs expressed by the formula is still an open research problem.
Let us derive the general formula.

In the Set-up phase, every node sends its value to all its neighbours; hence, on each link
there will be two messages sent, for a total of 2m messages.

Consider now an Iteration. In the Yo- stage, every useful node (except the sinks) sends a
message to its out-neighbours; hence, on each link still under consideration, there will be
exactly one message sent. Similarly, in the -Yo– stage, every useful node (except the sources)
sends a message to its in-neighbours; hence, on each link there will be again only one message
sent. Thus, in total in iteration i there will be exactly 2mi messages, where mi is the number
of links in the DAG used at stage i.

The notification of termination from the leader can be performed by broadcasting on the
constructed spanning tree with only n− 1 messages.

Hence, the total cost will be
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from consideration.
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2
∑k(G)

i=0 mi + n− 1

where m0 = m and k(G) is the total number of iterations on network G.

We need now to establish the number of iterations k(G) . Let D(1) = ~G be the original
DAG obtained from G as a result of Set-up. Let G(1) be the undirected graph defined as
follows: there is a node for each source in D(1), and there is a link between two nodes if and
only if the two corresponding sources have a sink in common4. Consider now the diameter
d(G(1)) of this graph.

Property 8.16 The number of iteration is at most ⌈log diam(G(1))⌉+ 1.

To see why this is the case, consider any two neighbours a and b in G(1). Since, by definition,
the corresponding sources in D(1) have a common sink, at least one of these two sources
will be defeated (because the sink will vote Y ES to only one of them). This means that, if
we take any path in G(1), at least half of the nodes on that path will correspond to sources
that will cease to be such at the end of this iteration.

Furthermore, if (the source corresponding to) a survives, it will now have a sink in common
with each of the undefeated (sources corresponding to) neighbours of b. This means that if
we consider the new DAG D(2), the corresponding graph G(2) is exactly the graph obtained
by removing the nodes associated to the defeated sources, and linking together the nodes
previously at length two. In other words, d(G(2)) ≤ ⌈ d(G(1))/2⌉.
Similar will be the relationship between the graphs G(i− 1) and G(i) corresponding to the
DAG D(i− 1) of iteration i− 1 and to the resulting new DAG D(i), respectively. In other

4In a DAG, two sources a and b are said to have a common sink c if c is reachable from both a and b.
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words, d(G(i)) ≤ ⌈ d(G(i− 1))/2⌉. Observe that diam(G(i)) = 1 corresponds to a situation
where all sources except one will be defeated in this iteration, and d(G(i)) = 0 corresponds
to the situation where there is only one source left (which does not know it yet). Since
d(G(i)) ≤ 1 after at most ⌈log diam(G(1))⌉ iterations, the property follows.

Since the diameter of a graph cannot be greater than the number of its nodes, and since the
nodes of G(1) correspond to the sources of ~G, we have that

k(G) ≤ ⌈log s( ~G)⌉ ≤ ⌈log n⌉

We can thus establish that, without pruning, i.e. with mi = m, we have a O(m log n) total
cost:

M[Y o− Y o (withoutpruning)] ≤ 2 m log n + l.o.t. (42)

The unsolved problem is the determination of the real cost of the algorithm, when the effects
of pruning are taken into account.

8.3 Lower Bounds and Equivalences

We have seen a complex but rather efficient protocol, MegaMerger, for electing a leader in
an arbitrary network. In fact, it uses O(m+n log n) messages in the worst case. This means
that, in a ring network it uses O(n log n) messages and it is thus optimal, without even
knowing that the network is a ring !

The next question we should ask is how efficient a universal election protocol can be. In
other words,

what is the complexity of the election problem ?

The answer is not difficult to derive.

First of all observe that any election protocol requires to send a message on every link. To
see why this is true, assume by contradiction that indeed there is a correct universal election
protocol A that, in every network G and in every execution under IR does not send a message
on every link of G. Consider a network G and an execution of A in G; let z be the entity
that becomes leader and let e = (x, y) ∈ E be a link where no message is transmitted by A
(Figure 61(a)).

We will now construct a new graph H as follows: we make two copies of G and remove from
both of them the edge e; we then connect these two graphs G′ and G′′ by adding two new
edges e1 = (x′, x′′) and e2 = (y′, y′′), where x′ and x′′ (resp. y′ and y′′) are the copies of x
(resp. y) in G′ and G′′ respectively, and where the labels are: λx′(e1) = λx′′(e1) = λx(e) and
λy′(e1) = λy′′(e2) = λy(e). See Figure 61(b).

Run exactly the same execution of A we did in G on the two components G′ and G′′ of H :
since no message was sent along (x, y) in G, this is possible. But since no message was sent
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Figure 61: Every universal election protocol must send messages on every link.

along (x, y) in the original execution, x′ and x′′ will never send messages to each other in the
current execution; similarly, y′ and y′′ will never send messages to each other. This means
that the entities of G′ will never communicate with the entities of G′′ during this execution;
thus, they will not be aware of their existence and will operate solely within G′; similarly for
the entities of G′′.

This means that, when the execution of A in G′ terminates, entity z′ will become leader;
but similarly, entity z′′ in G′′ will become leader as well. In other words, two leaders will be
elected, contradicting the correctness of protocol A. In other words,

M(Elect/ IR) ≥ m.

This lower bound is powerful enough to provide us with interesting and useful information;
for example, it states that Ω(n2) messages are needed in a complete graph if you do not know
that is a complete graph. On the other hand, we know that there are networks where election
requires way more than m messages; for example, in rings m = n but we need Ω(n log n)
messages. Since a universal election protocol must run in every network, including rings, we
can say that in the worst case

M(Elect/IR) ≥ Ω(m + n log n). (43)

This means that protocol MegaMerger is worst case optimal and we know the complexity of
the election problem.

Property 8.17 The message complexity of election under IR is Θ(m + n log n)

118



We are now going to see that constructing a spanning-tree SPT and electing a leader Elect

are strictly equivalent: any solution to one of them can be easily modified so to solve the
other with the same message cost (in order of magnitude).

First of all, observe that , similarly to the Election problem, also SPT requires a message
to be sent on every link (Exercise 9.86):

M(SPT/IR) ≥ m. (44)

We are now going to see how we can construct a spanning-tree construction algorithm from
any existing election protocol. Let A be an election protocol; consider now the following
protocol B:
(1) Elect a leader using A;
(1) The leader starts the execution of protocol Shout.

Recall that protocol Shout (seen in Section ??) will correctly construct a spanning-tree if
there is a unique initiator. Since the leader elected in step (1) is unique, a spanning-tree will
be constructed in step (2). So, protocol B solves SPT. What is the cost ? Since Shout uses
exactly 2m messages, we have

M [B] = M [A] + 2m

In other words, with at most O(m) additional messages, any election protocol can be made
to construct a spanning tree; since Ω(m) messages are needed anyway (Equation 44), this
means that

M(SPT/IR) ≤M(Elect/IR) (45)

Focus now on a spanning-tree construction algorithm C. Using C as the first step, it is easy
to construct an election protocol D where (Exercise 9.87):

M [D] = M [C] + O(n)

In other words, the message complexity of Elect is no more than that of Elect plus at most
another O(n) messages; since election requires more than O(n) messages anyway (Property
8.17), this means that

M(Elect/IR) ≤M(SPT/IR) (46)

Combining Equations 45 and 46, we have not only that the problems are computationally
equivalent

Elect(IR) ≡ SPT(IR) (47)

but also that they have the same complexity:
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M(Elect/IR) =M(SPT/IR) (48)

Using similar arguments, it is possible to establish the computational and complexity equiv-
alence of election with several other problems (e.g., see Exercise 9.88).

9 Exercises, Problems, and Answers

9.1 Exercises

Exercise 9.1 Modify protocol MinF-Tree (presented in Section ??) so to implement strategy
Elect Minimum Initiator in a tree. Prove its correctness and analyze its costs. Show that,
in the worst case, it uses 3n + k⋆ − 4 ≤ 4n− 4 messages.

Exercise 9.2 Design an efficient single-initiator protocol to find the minimum value in a
ring. Prove its correctness and analyze its costs.

Exercise 9.3 Show that the time costs of protocol All the Way will be at most 2n − 1.
Determine also the minimum cost and the condition which will cause it.

Exercise 9.4 Modify protocol All the Way so to use strategy Elect Minimum Initiator.

Exercise 9.5 Modify protocol AsFar so to use strategy Elect Minimum Initiator. Determine
the average number of messages assuming that any subset of k∗ entities is equally likely to
be the initiators.

Exercise 9.6 Expand the rules of protocol Stages described in Section 3.4, so to enforce
message ordering.

Exercise 9.7 Show that, in protocol Stages, there will be at most one enqueued message per
closed port.

Exercise 9.8 Prove that, in protocol Stages with Feedback, the minimum distance between
two candidates in stage i is d(i) ≥ 2i−1.

Exercise 9.9 Show an initial configuration for n = 8 in which protocol Stages will require
the most messages. Describe how to construct the “worst configuration” for any n.

Exercise 9.10 Determine the ideal time complexity of protocol Stages.

Exercise 9.11 Modify protocol Stages using the min-max approach discussed in Section
3.7.3. Prove its correctness. Show that its message costs are unchanged.

Exercise 9.12 Write the rules of protocol Stages* described in Section 3.4.
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Exercise 9.13 Assume that in Stages* candidate x in stage i receives a message M∗ with
stage j > i. Prove that, if x survives, then id(x) is smaller not only of id∗ but also of the
ids in the messages “jumped over” by M∗.

Exercise 9.14 Show that protocol Stages* correctly terminates.

Exercise 9.15 Prove that the message and time costs of Stages* are no worse that those of
Stages. Produce an example in which the costs of Stages* are actually smaller.

Exercise 9.16 Write the rules of protocol Stages with Feedback assuming message ordering.

Exercise 9.17 Derive the ideal time complexity of protocol Stages with Feedback.

Exercise 9.18 Write the rules of protocol Stages with Feedback enforcing message ordering.

Exercise 9.19 Prove that, in protocol Stages with Feedback, the number of ring segments
where no feedback will be transmitted in stage i is ni+1.

Exercise 9.20 Prove that, in protocol Stages with Feedback, the minimum distance between
two candidates in stage i is d(i) ≥ 3i−1.

Exercise 9.21 Give a more accurate estimate of the message costs of protocol Stages with
Feedback.

Exercise 9.22 Show an initial configuration for n = 9 in which protocol Stages with Feed-
back will require the most stages. Describe how to construct the “worst configuration” for
any n.

Exercise 9.23 Modify protocol Stages with Feedback using the min-max approach discussed
in Section 3.7.3. Prove its correctness. Show that its message costs are unchanged.

Exercise 9.24 Implement the alternating step strategy under the same restrictions and with
the same cost of protocol Alternate but without closing any port.

Exercise 9.25 Determine initial configurations which will force protocol Alternate to use k
steps when n = Fk.

Exercise 9.26 Show that the worst case number of steps of protocol Alternate is achievable
for every n > 4.

Exercise 9.27 Determine the ideal time complexity of protocol Alternate.

Exercise 9.28 Modify protocol Alternate using the min-max approach discussed in Section
3.7.3. Prove its correctness. Show that its message costs are unchanged.
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Exercise 9.29 Show the step-by-step execution of Stages and of UniStages in the ring of
Figure 3. Indicate, for each step, the values know at the candidates.

Exercise 9.30 Determine the ideal time complexity of protocol UniStages.

Exercise 9.31 Modify protocol UniStages using the min-max approach discussed in Section
3.7.3. Prove its correctness. Show that its message costs are unchanged.

Exercise 9.32 Design an exact simulation of Stages with Feedback for unidirectional rings.
Analyze its costs.

Exercise 9.33 Show the step-by-step execution of Alternate and of UniAlternate in the ring
of Figure 3. Indicate, for each step, the values know at the candidates.

Exercise 9.34 Without changing its message cost, modify protocol UniAlternate so it does
not require Message Ordering.

Exercise 9.35 Prove that the ideal time complexity of protocol UniAlternate is O(n).

Exercise 9.36 Modify protocol UniAlternate using the min-max approach discussed in Sec-
tion 3.7.3. Prove its correctness. Show that its message costs are unchanged.

Exercise 9.37 Prove that, in protocol MinMax, if a candidate x survives an even stage i,
its predecessor l(i, x) becomes defeated.

Exercise 9.38 Show that the worst case number of steps of protocol MinMax is achievable.

Exercise 9.39 Modify protocol MinMax so it does not require Message Ordering. Implement
your modification, and throughly test your implementation.

Exercise 9.40 For protocol MinMax, consider the configuration depicted in Figure 32. Prove
that, once envelope (11, 3) reaches the defeated node z, z can determine that 11 will survive
this stage.

Exercise 9.41 Write the rules of Protocol MinMax+ assuming message ordering.

Exercise 9.42 Write the rules of Protocol MinMax+ without assuming message ordering.

Exercise 9.43 Prove Property 3.1.

Exercise 9.44 Prove that, in protocol MinMax+, if an envelope with value v reaches an
even stage i + 1, it saves at least Fi messages in stage i with respect to MinMax. (Hint: use
Property 3.1.)

Exercise 9.45 Prove that, even if the entities know n, aveA(I|n known) ≥ (1
4
− ǫ) n log n

for any election protocol A for unidirectional rings.
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Exercise 9.46 Prove that,in bidirectional rings, aveA(I) ≥ 1
2

nHn for any election protocol
A.

Exercise 9.47 Prove that, even if the entities know n, aveA(I|n known) ≥ 1
2
n log n for any

election protocol A for unidirectional rings.

Exercise 9.48 Determine the exact complexity of Wake-Up in a mesh of dimensions a× b.

Exercise 9.49 Show how to broadcast from a corner of a mesh dimensions a × b with less
than 2n messages.

Exercise 9.50 In Protocol ElectMesh, in the first stage of the election process, if an interior
node receives an election message, it will reply to the sender “I am in the interior”, so that
no subsequent election messages are sent to it. Explain why it is possible to achieving the
same goal without sending those replies.

Exercise 9.51 Consider the following simple modification to Protocol ElectMesh: when
sending a wake-up message, a node includes the information of whether it is an internal,
a border or a corner node. Then, during the first stage of the election, a border node uses
this information if possible to send the election message only along the outer ring (it might
not be possible !). Show that the protocol so modified uses at most 4(a + b) + 5n + k⋆ − 32
messages.

Exercise 9.52 Broadcasting in Oriented Mesh. Design a protocol that allows to broad-
cast in an oriented mesh using n− 1 messages regardless of the location of the initiator.

Exercise 9.53 Traversal in Oriented Mesh. Design a protocol which allows to traverse
an oriented mesh using n− 1 messages regardless of the location of the initiator.

Exercise 9.54 Wake-Up in Oriented Mesh. Design a protocol which allows to wake-up
all the entities in an oriented mesh using less than 2n messages regardless of the location
and the number of the initiators.

Exercise 9.55 Show that the effect of rounding up αi does not affect the order of magnitude
of the cost of Protocol MarkBorder derived in Section 4.2.1 [Hint : Show that it amounts to
at most 8 extra messages per candidate per stage with an insignificant change in the bound
on the number of candidates in each stage.]

Exercise 9.56 Show that the ideal time of protocol MarkBorder can be as bad as O(n).

Exercise 9.57 ⋆⋆ Improving Time in Tori. Modify Protocol MarkBorder so that the time
complexity is O(

√
n) without increasing the message complexity. Ensure that the modified

protocol is correct.

Exercise 9.58 ⋆ Election in Rectangular Torus. Modify Protocol MarkBorder so that
it elects a leader in a rectangular torus of dimension l × w (l ≤ w), using Θ(n + l log l/w)
messages.
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Exercise 9.59 Determine the cost of electing a leader in an oriented hypercube if in protocol
HyperElect the propagation of the Match messages is done by broadcasting in the appropriate
subcube instead of “compressing the address”.

Exercise 9.60 Prove that in protocol HyperElect the distance d(j − 1, j) between wj−1(z)
and wj(z); is at most j.

Exercise 9.61 Prove Lemma 5.1; that is, that during the execution of protocol HyperElect,
the only duelists in stage i are the entities with the smallest id in one of the hypercubes of
dimension i− 1 in Hk:i−1.

Exercise 9.62 Show that the time complexity of Protocol HyperFlood is O(log3 N).

Exercise 9.63 ⋆⋆ Prove that it is possible to elect a leader in a hypercube using O(n)
messages with any sense of direction. Hint: use long messages.

Exercise 9.64 Prove that, in the strategy CompleteElect outlined in section 6.1, the terri-
tory of any two candidates in the same stage have no nodes in common.

Exercise 9.65 Prove that the strategy CompleteElect outlined in section 6.1 solves the elec-
tion problem.

Exercise 9.66 Determine the cost of the strategy CompleteElect described in section 6.1 in
the worst case. (Hint: consider how many candidates there can be at level i.)

Exercise 9.67 Analyze the ideal time cost of protocol CompleteElect described in section
6.1.

Exercise 9.68 Design an election protocol for complete graphs which, like CompleteElect,
uses O(n logn) messages but uses only O(n/ logn) time in the worst case.

Exercise 9.69 Generalize the answer to Exercise 9.68. Design an election protocol for
complete graphs which, for any log n ≤ k ≤ n, uses O(nk) messages and O(n/k) time in the
worst case.

Exercise 9.70 Prove that all the rings R(2), . . . , R(k) where messages are sent by protocol
Kelect do not have links in common.

Exercise 9.71 Write the code for, implement, and test protocol Kelect.

Exercise 9.72 ⋆ Consider using the ring protocol Alternate instead of Stages in Kelect.
Determine what will be the cost in this case.

Exercise 9.73 ⋆⋆ Determine the average message costs of protocol Kelect.
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Exercise 9.74 ⋆ Show how to elect a leader in a complete network with O(n log n) messages
in the worst case but only O(n) on the average.

Exercise 9.75 ⋆⋆ Prove that it is possible to elect a leader in a complete graph using O(n)
messages with any sense of direction.

Exercise 9.76 Show how to elect a leader in the chordal ring Cn〈1, 2, 3, 4..., t〉 with O(n +
n
t
log n

t
messages.

Exercise 9.77 Prove that, in chordal ring Ct
n electing a leader requires at lest Ω(n+ n

t
log n

t
messages in the worst case. Hint: Reduce the problem to that of electing a leader on a ring
of size n/t.

Exercise 9.78 Show how to elect a leader in the double cube Cn〈1, 2, 4, 8..., 2⌈logn⌉〉 with
O(n) messages.

Exercise 9.79 Consider a merger message from city A arriving at neighbouring city B along
merge link (a, b) in protocol Mega-Merger. Prove that, if we reverse the logical direction of
the links on the path from D(A) to the exit point a, and direct towards B the merge link, the
union of A and B will be rooted in the downtown of A.

Exercise 9.80 District x is involved in the computing of the merge link of its city X. In
the meanwhile, it receives a Let-us-Merge message from the unused link (x, y). From the
message, x finds out that level(Y ) < level(X), and thus Y must be absorbed in X. Should
Y (now becoming part of X) be included in the computation of the merge link of X ? Why ?

Exercise 9.81 District b of B has just received a Let-us-Merge message from a along merge
link (a, b). From the message, b finds out that level(A) > level(B); thus, it postpones the
request. In the meanwhile, the downtown D(B) chooses (a, b) as its merge link. Can this
situation occur ? If so, what will happen ? If not, why ?

Exercise 9.82 Find a way to avoid notification of termination by the downtown of the
megacity in protocol Mega-Merger. (Hint. Show that, by the time the downtown understands
that the mega-merger is completed, all other districts already know that their execution of
the protocol is terminated)

Exercise 9.83 Time Costs. Show that protocol Mega-Merger uses at most O(n logn) ideal
time units.

Exercise 9.84 Prove that, in the Yo-Yo protocol, during an iteration, no sink or internal
node will become a source.

Exercise 9.85 Modify the Yo-Yo protocol so that, upon termination, a spanning-tree rooted
in the leader has been constructed. Achieve this goal without any additional messages.

Exercise 9.86 Prove that to solve SPT under IR, a message must be sent on every link.

Exercise 9.87 Show how to transform a spanning-tree construction algorithm C so to elect
a leader with at most O(n) additional messages.

Exercise 9.88 Prove that, under IR, the problem of finding the smallest of the entities’ val-
ues is computationally equivalent to electing a leader, and has the same message complexity.
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9.2 Problems

Problem 9.1 Josephus Problem. Consider the following set of electoral rules. In stage
i, a candidate x sends its id and receives the id from its two neighbouring candidates, r(i, x)
and l(i, x): x does not survive this stage if and only if its id is larger than both received ids.
Analyze the corresponding protocol Josephus, determining in particular the number of stages
and the total number of messages both in the worst and in the average case. Analyze and
discuss its time complexity.

Problem 9.2 ⋆ Alternating Steps. Design a conflict resolution mechanism for the alter-
nating steps strategy to cope lack of orientation in the ring. Analyze the complexity of the
resulting protocol

Problem 9.3 ⋆⋆ Better Stages. Construct a protocol based on electoral stages which
guarantees ni ≤ ni−1

b
with cn messages transmitted in each stage, where c

log b
< 1.89.

Problem 9.4 ⋆ Bidirectional MinMax. Design a bidirectional version of MinMax with
the same costs.

Problem 9.5 ⋆⋆ Distances in MinMax+. In computing the cost of protocol MinMax+
we have used dis(i) = Fi+2. Determine what will be the cost if we use dis(i) = 2i instead.

Problem 9.6 ⋆⋆ MinMax+ Variations. In protocol MinMax+ we use “promotion by
distance” only in the even stages, and “promotion by witness” only in the odd stages. De-
termine what would happen if we use
(1) only “promotion by distance” but in every stage;
(2) only “promotion by witness” but in every stage;
(3) “promotion by distance” in every stage, and “promotion by witness” only in odd stages;
(4) “promotion by witness” in every stage, and “promotion by distance” only in even stages;
(5) both “promotion by distance” and “promotion by witness” in every stage.

Problem 9.7 ⋆⋆ Bidirectional Oriented Rings. Prove or disprove that there is an effi-
cient protocol for bidirectional oriented rings that cannot be used nor simulated in unidirec-
tional rings, nor in general bidirectional ones with the same or better costs.

Problem 9.8 ⋆ Unoriented Hypercubes. Design a protocol that can elect a leader in
a hypercube with arbitrary labelling using O(n log log n) messages. Implement and test your
protocol.

Problem 9.9 ⋆ ⋆ ⋆ Linear Election in Hypercubes. Prove or disprove that it is possible
to elect a leader in an hypercube in O(n) messages even when it is not oriented.

Problem 9.10 ⋆ Oriented Cube-Connected-Cycles. Design an election protocol for an
oriented CCC using O(n) messages. Implement and test your protocol.

Problem 9.11 Oriented Butterfly. Design an election protocol for an oriented butterfly.
Determine its complexity. Implement and test your protocol.
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Problem 9.12 ⋆⋆ Minimal Chordal Ring. Find a chordal ring with k = 2 where it is
possible to elect a leader with O(n) messages.

Problem 9.13 ⋆⋆ Unlabelled Chordal Rings. Show how to elect a leader in the chordal
ring of Problem 9.12 with O(n) messages even if the edges are arbitrarily labelled.

Problem 9.14 ⋆ Improved Time Show how to elect a leader using O(m+n log n) messages
but only O(n) ideal time units.

Problem 9.15 ⋆ Optimal Time. Show how to elect a leader in O(d) time using at most
O(m log d) messages.

9.3 Answers to Exercises

Answer to Exercise 9.21
The size of the areas where no feedback is sent in stage i can vary from one another, from
stage to stage, from execution to execution. We can still have an estimate of their size. In
fact, the distance di between two candidates in stage i is d(i) ≥ 3i−1 (Exercise 9.20. Thus,
the total number of message transmissions caused in stage i by the feedback will be at most
n− ni+13

i−1, yielding a total of at most 3n−∑⌈log3n⌉
i=1 ni+13

i−1 messages.

Answer to Exercise 9.44
Let hj(a) denote the candidate that originated message (a, j). Consider a message (v, i + 1)
and its originator z= hi+1(v); this message was sent after receiving (v, i) originated by
x = hi(v).
Let y = hi(u) be the first candidate after x in the ring in stage i, and (u, i) the message it
originated. Since v survives this stage, which is odd (i.e., min), then it must be that v < u.
Message (v, i) travels from x towards y; upon receiving (v, i), node z in this interval will
generate (v, i + 1). Now z cannot be after node hi−1(u) in the ring, because by rule (IV)
w = hi−1(u) would immediately generate (v, i + 1) after receiving (v, i). In other words, ei-
ther z = w or z is before w. Thus we save at least d(z, y) ≥ d(w, y) = d(hi−1(u), hi(u)) ≥ Fi,
where the last inequality is by Property 3.1.

Partial Answer to Exercise 9.66 Consider a captured node y which receives an attack
after the other, say from a candidates x1 in level i. According to the strategy, y will send
a Warning to its owner z to inform it of this attack, and wait for a reply; depending on
the reply, it will notify x1 of whether the attack was successful (in which case y will be
captured by x1) or not. Assume now that, while waiting, y receives an attack after the
other, say from candidates x2, . . . , xk in that order, all in the same level i. According to
the strategy, y will issue a Warning to its owner z for each of them. Observe now that if
id(z) > id(x1) > . . . > id(xk), each of these attacks will be successful ! and y will in turn be
captured by all those candidates.
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