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The aim of this chapter is to introduce same of the more basic primitive computational
problems and solution techniques. These problems are basic in the sense that their solution is
commonly (sometimes, frequently) required for the functioning of the system (e.g., broadcast
and wakeup); they are primitive in the sense that their computation is often a preliminary
step or a module of complex computations and protocols (e.g., traversal and spanning-tree
construction).

Some of these problems, by their nature, are started by a single entity, while others have no
such a restriction. The computational differences created by the additional assumption of a
single initiator can be dramatic; we will examine the two settings separately.

Included also in this chapter are the (multiple-initiators) computations in tree networks.
Their fundamental importance derives from the fact that most global problems (i.e., problems
that, to be solved, require the involvement of all entities), oftentimes can be correctly, easily,
and efficiently solved by designing a protocol for trees, and executing it on a spanning-tree
of the network.
All the problems considered here require, for their solution, the Connectivity (CN) restriction
(i.e., every entity must be reachable from every other entity). In general, and unless otherwise
stated, we will also assume Total Reliability (TR), and Bidirectional Links (BL). These three
restrictions are commonly used together, and the set R = {BL, CN, TR} will be called set
of standard restrictions.

The techniques we introduce in this chapter to solve these problems are basic ones; once prop-
erly understood, they form a powerful and essential toolset that can be effectively employed
by every designer of distributed algorithms.

1 SINGLE-INITIATOR COMPUTATIONS

In this section we will discuss some of the most basic primitive distributed computations
broadcast, traversal, and spanning-tree construction. The resulting protocols are important
computational tools, usually employed as a preliminary step for more complex computations,
or as modules within advanced protocols.

What broadcast and traversal also have in common is that, by their nature, are always started
by a single entity. In other words, these two computational problems have, in their definition,
the restriction unique initiator (UI); depending on the problem, this additional assumption
can be further restricted. Unlike the other two problems, the spanning-tree construction
problem does not have such a restriction in its definition. In this section, we will consider
its solution under restriction UI; the more general case, without this restriction, will be
discussed later, in Section 2 as well as in the next Chapter.
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Figure 1: Broadcasting Process.

1.1 Broadcast

1.1.1 The Problem

Consider a distributed computing system where only one entity, x, knows some important
information; this entity would like to share this information with all the other entities in the
system. This problem is called broadcasting (Bcast), and we have started its examination
already in the previous chapter. To solve this problem means to design a set of rules that,
when executed by the entities, will lead (within finite time) to a configuration where all
entities know the information; the solution must work regardless of which entity has the
information at the beginning.

Built-in the definition of the problem, there is the assumption, Unique Initiator (UI), that
only one entity will start the task. Actually, this assumption is further restricted, since the
unique initiator must be the one with the initial information; we shall denote this restriction
by UI+.

Clearly, every entity must be involved in the computation; however, x can send messages
only to those entities to which it is connected directly (its out-neighbours). For its solution,
broadcasting requires the Connectivity (CN) restriction (i.e., every entity must be reachable
from every other entity) since in its absence, the problem is clearly unsolvable: some entities
will never receive the information. We have seen a simple solution to this problem, Flooding,
under two additional restrictions: Total Reliability (TR), and Bidirectional Links (BL).
Recall that the set R ={BL, CN, TR} is the set of standard restrictions.

1.1.2 Cost of Broadcasting

As we have seen, the solution protocol Flooding uses O(m) messages and, in the worst case,
O(d) ideal time units, where d is the diameter of the network.

The first and natural question is whether these costs could be reduced significantly (i.e., in
order of magnitude) using a different approach or technique, and if so by how much. This
question is equivalent to ask what is the complexity of the broadcasting problem. To answer
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this type of questions we need to establish a lower bound: to find a bound f (typically, a
function of the size of the network) and to prove that the cost of every solution algorithm is
at least f . In other words, a lower bound is irrespective of the protocol and depends solely
on the problem; hence, it is an indication of how complex the problem really is.

We will denote by M(Bcast/RI+) and T (Bcast/RI+) the message and the time complex-
ity of broadcasting under RI+ = R ∪ UI+, respectively.

A lower bound on the amount of ideal time units required to perform a broadcast is simple
to derive: every entity must receive the information regardless of how distant they are from
the initiator, and any entity could be the initiator. Hence, in the worst case,

T (Bcast/RI+) ≥ Max{d(x, y) : x, y ∈ V } = d. (1)

Since Flooding performs the broadcast in d ideal time units, the lower bound is tight (i.e., it
can be achieved). In other words, we know exactly the ideal time complexity of broadcasting:

Property 1.1 The ideal time complexity of broadcasting under RI+ is Θ(d)

Let us now consider the message complexity. An obvious lower bound on the number of
messages is also easy to derive: in the end, every entity must know the information; thus
a message must be received by each of the n − 1 entities who initially do not have the
information. Hence,

M(Bcast/RI+) ≥ n − 1.

With little extra effort, we can derive a more accurate lower bound:

Theorem 1.1 M(Bcast/RI+) ≥ m

Proof. Assume that there exists a correct broadcasting protocol A which, in each execution
under RI+ on every G, uses fewer than m(G) messages. This means that there is at least
one link in G where no message is transmitted in any direction during an execution of the
algorithm. Consider an execution of the algorithm on G, and let e = (x, y) ∈ E be the link
where no message is transmitted by A. Now construct a new graph G′ from G by removing
the edge e, and adding a new node z and two new edges e1 = (x, z) and e2 = (y, z) (see Fig.
2). Set z in a non initiator status. Run exactly the same execution of A on the new graph G′:
since no message was sent along (x, y), this is possible. But since no message was sent along
(x, y) in the original execution, x and y never send a message to z in the current execution.
As a result, z will never receive the information (i.e., change status). This contradicts the
fact that A is a correct broadcasting protocol.
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Figure 2: A message must be sent on each link.

This means that any broadcasting algorithm requires Ω(m) messages.

Since Flooding solves broadcasting with 2m− n + 1 messages (see Exercise 6.1), this implies
M(Bcast/RI+) ≤ 2m−n+1. Since the upper-bound and the lower-bound are of the same
order of magnitude, we can summarize

Property 1.2 The message complexity of broadcasting under RI+ is Θ(m)

The immediate consequence is that, in order of magnitude, Flooding is a message-optimal
solution. Thus, if we want to design a new protocol to improve the 2m − n + 1 cost of
Flooding, the best we can hope to achieve is to reduce the constant 2; in any case, because
of Theorem 1.1, the reduction cannot bring the constant below 1.

1.1.3 Broadcasting in Special Networks

The results we have obtained so far apply to generic solutions; that is solutions that do not
depend on G, and can thus be applied regardless of the communication topology (provided
it is undirected and connected).

We will consider next performing the broadcast in special networks. Throughout we will
assume the standard restrictions plus UI+.

Broadcasting in Trees

Consider the case when G is a tree; that is, G is connected and contains no cycles. In a
tree, m = n − 1; hence, the use of protocol Flooding for broadcasting in a tree will cost
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Figure 3: Labelled Hypercube Networks

2m − (n − 1) = 2(n − 1) − (n − 1) = n − 1 messages.

IMPORTANT. This cost is achieved even if the entities do not know that the network is
a tree.

Broadcasting in Labeled Hypercubes A communication topology which is commonly
used as an interconnection network is the (k-dimensional) labeled hypercube, denoted by Hk.

A labeled hypercube H1 of dimension k = 1 is just a pair of nodes called (in binary) “0”
and “1”, connected by a link labelled “1” at both nodes.
A hypercube Hk of dimension k > 1 is obtained by taking two hypercubes of dimension
k − 1, H ′

k−1 and H ′′
k−1, and connecting the nodes with the same name with a link labelled k

at both nodes; the name of each node in H ′
k−1 (resp. H ′′

k−1) is then modified by prefixing it
with the bit 0 (resp., 1); see Fig. 3.
So, for example, node “0010” in H ′

4 will be connected to node “0010” in H ′′
4 by a link labeled

l = 5, and their names will become “00010” and “10010”, respectively.

This labelling λ of the links is symmetric (i.e., λx(x, y) = λy(x, y)), and is called the dimen-
sional labelling of a hypercube.
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IMPORTANT. These names are used only for descriptive purposes; they are not known
to the entities. On the other hand, the labels of the links (i.e., the port numbers) are known
to the entities by the Local Orientation axiom.

A hypercube of dimension k has n = 2k nodes; each node has k links, labelled 1, 2, . . . , k.
Hence the total number of links is m = nk/2 = O(n logn).

A straightforward application of Flooding in a hypercube will cost 2m−(n−1) = nk−(n−1) =
O(n log n) messages. However, hypercubes are highly structured networks with many very
interesting properties. We can exploit these special properties to construct a more efficient
broadcast. Obviously, if we do so, the protocol cannot be used in other networks.

Consider the following simple strategy.

STRATEGY HyperFlood:
(1) The initiator sends the message to all its neighbours.
(2) A node receiving a message from the link labelled l, will send the messages only to those
neighbours with label l′ < l.

NOTE. The only difference with the normal flooding is in step 2: instead of sending the
message to all neighbours except the sender, the entity will forward it only to some of them;
which ones will depend on the label of the port from where the message is received.

As we will see. this strategy correctly performs the broadcast using only n − 1 messages
(instead of O(n logn)). Let us first examine termination and correctness.

Let Hk(x) denote the subgraph of Hk induced by the links where messages are sent by
HyperFlood when x is the initiator. Clearly every node in Hk(x) will receive the information.

Lemma 1.1 HyperFlood correctly terminates.

Proof. Let x be the initiator; starting from x, the messages are sent only on links with
decreasing labels: if y receives the message from link 4 it will forward it only to the ports
1, 2, and 3. To prove that every entity will receive the information sent by x, we need to
show that, for every node y, there is a path from x to y such that the sequence of the labels
on the path from x to y is decreasing. (Note that the labels on the path do not need to be
consecutive integers.) To do so we will use the following property of hypercubes.

Property 1.3 In a k dimensional hypercube Hk, any node x is connected to any other node
y by a path π ∈ Π[x, y] such that Λ(π) is a decreasing sequence.

Proof. Consider the k-bit names of x and of y in Hk: < xk, xk−1, . . . , x1, x0 > and <
yk, yk−1, . . . , y1, y0 >. If x 6= y, these two strings will differ in t ≥ 1 positions. Let j1, j2, . . . , jt

be those positions in decreasing order; i.e., ji > ji+1. Consider now the nodes v0, v1, v2, . . . , vt,
where v0 = x, and the name of vi differs from the name of vi+1 only in the ji+1-th position.
Thus, there is a link labeled ji+1 connecting vi to vi+1, and clearly vt = y. But this means
that < v0, v1, v2, . . . , vt >, is a path from x to y and the sequence of labels on this path is
< j1, j2, . . . , jt > which is decreasing.
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Thus, Hk(x) is connected and spans (i.e., it contains all the nodes of) Hk, regardless of x.
In other words, within finite time, every entity will have the information.

Let us now concentrate on the cost of HyperFlood.

Lemma 1.2

M [HyperFlood/Hk] = n - 1.
T [HyperFlood/Hk] = k.

Proof. To prove that only n − 1 messages will be sent during the broadcast, we just need
to show that every entity will receive the information only once. This is true because, for
every x, Hk(x) contains no cycles (see Exercise 6.9). Also as an exercise it is left the proof
that for every x, the eccentricity of x in Hk(x) is k (see Exercise 6.10); this implies that the
ideal time delay of HyperFlood in Hk is always k.

These costs are the best any broadcast algorithm can perform in a hypercube regardless of
how much more knowledge they have. However, they are obtained here under the additional
restriction that the network is a k-dimensional hypercube with a dimensional labeling; that
is, under H = {(G, λ) = Hk}. Summarizing, we have

Property 1.4 The message complexity of broadcasting a k-dimensional hypercube with a
dimensional labeling under RI+ is Θ(n)

IMPORTANT. The reason why we are able to “bypass” the Ω(m) lower bound expressed
by Theorem 1.1 is because we are restricting the applicability of the protocol.

Property 1.5 The ideal time complexity of broadcasting a k-dimensional hypercube with a
dimensional labeling under RI+ is Θ(k)

Broadcasting in Complete Graphs

Among all network topologies, the complete graph is the one with the most links: every
entity is connected to all others; thus m = n(n − 1)/2 = O(n2) (recall we are considering
bidirectional links), and d = 1.

The use of a generic protocol will require O(n2) messages. But this is really unnecessary.

Broadcasting in a complete graph is easily accomplished: since everybody is connected to
everybody else, the initiator just needs to send the information to its neighbours (i.e., execute
the command “send(I) to N(x)”) and the broadcast is completed. This uses only n − 1
messages and d = 1 ideal time !

Clearly this protocol, KBcast, works only in a complete graph, that is under the additional
restriction K ≡ “G is a complete graph”. Summarizing:

Property 1.6

M(Bcast/RI+ ; K) = n − 1
T (Bcast/RI+ ; K) = 1

7



1.2 Traversal

Traversal of the network allows every entity in the network to be “visited” sequentially (one
after the other). Its main use is in the control and management of a shared resource and in
sequential search processes. In abstract terms, the traversal problem starts with an initial
configuration where all entities are in the same state (say unvisited) except one that is visited
and is the sole initiator; the goal is to render all the entities visited but sequentially (i.e.,
one at the time).

A traversal protocol is a distributed algorithm that, starting from the single initiator, allows a
special message called ”traversal token” (or simply, token), to reach every entity sequentially
(i.e., one at the time). Once a node is reached by the token, it is marked as “visited”.
Depending on the traversal strategy employed, we will have different traversal protocols.

1.2.1 Depth-First Traversal

A well known strategy is the depth-first traversal of a graph. According to this strategy, the
graph is visited (i.e., the token is forwarded) trying to go forward as long as possible; if it is
forwarded to an already visited node, it is sent back to the sender, and that link is marked as
a back-edge; if the token can no longer be forwarded (it is at a node where all its neighbours
have been visited), the algorithm will “backtrack” until it finds an unvisited node where the
token can be forwarded to.

The distributed implementation of depth-first traversal is straightforward.
(1) When first visited, an entity remembers who sent the token, creates a list of all its still
unvisited neighbours, forwards the token to one of them (removing it from the list), and
waits for its reply returning the token.
(2) When the neighbour receives the token, it will return the token immediately if it had
been visited already by somebody else, notifying that the link is a back-edge; otherwise, it
will first forward the token to each of its unvisited neighbours sequentially, and then reply
returning the token.
(3) Upon reception of the reply, the entity forwards the token to another unvisited neighbour.
(4) Should there be no more unvisited neighbours, the entity can no longer forward the token;
it will then send the reply to the node from which it first received the token.

NOTE. When the neighbour in step (2) determines that a link is a back-edge , it knows that
the sender of the token is already visited; thus, it will remove it from the list of unvisited
neighbours.

We will use three types of messages: “T” to forward the token in the traversal, “Backedge” to
notify the detection of a back-edge, and “Return” to return the token upon local termination.

Protocol DF Traversal is shown in Fig. 4, where the operation of extracting an element from
a set B and assigning it to variable a is denoted by a ⇐ B. Let us examine its costs.

Theorem 1.2 T[DF Traversal] = M[DF Traversal]= 2m

Proof. Focus on a link (x, y) ∈ E. What messages can be sent on it? Suppose x sends

8



PROTOCOL DF Traversal.

• Status: S = {INITIATOR,IDLE,VISITED,DONE};
SINIT = {INITIATOR,IDLE}; STERM = {DONE}.

• Restrictions: R ;UI.

INITIATOR
Spontaneously
begin

Unvisited:= N(x);
initiator:= true;
VISIT;

end

IDLE
Receiving(T)
begin

entry:=sender;
Unvisited:= N(x) − {sender};
initiator:= false;
VISIT;

end

VISITED
Receiving(T)
begin

Unvisited:= Unvisited −{sender};
send(Backedge) to {sender};

end

Receiving(Return)
begin

VISIT;
end

Receiving(Backedge)
begin

VISIT;
end

Procedure VISIT
begin

if Unvisited 6= ∅ then
next ⇐ Unvisited;
send(T) to next;
become VISITED

else
if not(initiator) then send(Return) to entry; endif
become DONE;

endif
end

Figure 4: DF Traversal
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T to y; then y will only send to x either Return (if it was idle when the T arrived) or
Backedge (otherwise). In other words, on each link there will be exactly two messages
transmitted. Thus, M[DF Traversal]= 2m. Since the traversal is sequential, T[DF Traversal
] = M[DF Traversal ].

To determine how efficient is the protocol, we are going to determine what is the complexity
of the problem.

Using exactly the same technique we employed in the proof of Theorem 1.1, we have (Exercise
6.11):

Theorem 1.3 M(DFT/ R) ≥ m

Therefore, the 2m message cost of protocol DF Traversal is indeed excellent, and the protocol
is message optimal.

Property 1.7 The message complexity of depth-first traversal under R is Θ(m)

The time requirements of a depth-first traversal are quite different from those of a broadcast.
In fact, since each node must be visited sequentially, starting from the sole initiator, the time
complexity is at least the number of nodes:

Theorem 1.4 T (DFT/ R) ≥ n − 1

The time complexity of protocol DF Traversal is dreadful. In fact, the upperbound 2m could
be several order of magnitude larger than the lowerbound n− 1. For example, in a complete
graph, 2m = n2 − n. Some significant improvements in the time complexity can however be
made by going into a finer granularity. We will discuss this topic in greater details later.

1.2.2 Hacking ⋆

Let us examine protocol Protocol DF Traversal to see if it can be improved, especially its
time cost.

IMPORTANT. When measuring ideal time, we consider only synchronous executions; how-
ever, when measuring messages and establishing correctness we must consider every possible
schedule of events, especially the non-synchronous executions.

Basic Hacking

The protocol we have constructed is totally sequential: in a synchronous execution, at each
time unit only one message will be sent, and every message requires one unit of time. So,
to improve the time complexity, we need to (1) reduce the number of messages, and/or (2)
introduce some concurrency.

10



By definition of traversal, each entity must receive the token (message T) at least once. In
the execution of our protocol, however, some entities receive it more than once; those links
from which these other T messages arrive are precisely the back-edges.

Question. Can we avoid sending T messages on back-edges?

To answer this question we must understand why T messages are sent on back-edges. When
an entity x sends a T message to y, it does not know whether the link is a back-edge or not;
that is, whether y has already been visited by somebody else or not. If x knew which of its
neighbours are already visited, it would not send a T message to them, there would be no
need for Backedge messages from them, and we would be saving messages and time. Let us
examine how to achieve such a condition.

Suppose that, whenever a node is visited (i.e., it receives T) for the first time, it notifies
all its (other) neighbours of this event (e.g., sending a “Visited” message), and waits for an
acknowledgment (e.g., receiving a “Ack” message) from them before forwarding the token.

The consequence of such a simple act is that now an entity ready to forward the token (i.e.,
to send a T message) really knows which of its neighbours have already been visited.

This is exactly what we wanted. The price we have to pay is the transmission of the Visited
and Ack messages.

Notice that now an idle entity (that is an entity that has not yet been involved in the
traversal) might receive a Visited message as its first message. In the revised protocol, we
will make such an entity enter a new status, available.

Let us examine the effects of this change on the overall time cost of the protocol; call DF+
the resulting protocol. The time is really determined by the number of sequential messages.
There are four types of messages which are sent: T, Return, Visited, and Ack.

Each entity (except the initiator) will receive only one T message and send only one Return
message; the initiator does not receive any T message and does not send any Return; thus, in
total there will be 2(n−1) such messages. Since all these communications occur sequentially
(i.e., without any overlap), the time taken by sending the T and Return messages will be
2(n − 1).

To determine how many ideal time units are added by the transmission of Visited and Ack
messages, consider an entity: its transmission of all the Visited messages takes only a single
time unit, since they are sent concurrently; the corresponding Ack messages will also be sent
concurrently, adding an additional time unit. Since every node will do it, the sending of the
Visited messages and receiving the Ack messages will increase the ideal time of the original
algorithm by exactly 2n.

This will give us a time cost of
T[DF+] = 4n − 2. (2)

How many messages this will cost is also easy to compute. As mentioned above, there is
a total of 2(n − 1) T and Return messages. In addition, each entity (except the initiator)
sends a Visited message to all its neighbours except the one from which it received the token;
the initiator will send it to all its neighbours. Thus, denoting by s the initiator, the total
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number of Visited messages is |N(s)| +
∑

x 6=s(|N(x)| − 1) = 2m − (n − 1). Since for each
Visited message there will be an Ack, the total message cost will be

M[DF+] = 4m − 2(n − 1) + 2(n − 1) = 4m (3)

Summarizing, we have been able to reduce the time costs from O(m) to O(n) which, because
of Theorem 1.4, is optimal. The price has been the doubling of the number of messages.

Property 1.8 The ideal time complexity of depth-first traversal under R is Θ(n)

Advanced Hacking

Let us see if the number of messages can be decreased without significantly increasing the
time costs.

Question. Can we avoid sending the Ack messages?

To answer this question we must understand what would happen if we do not send Ack
messages. Consider an entity x that sends Visited to its neighbours; (if we no longer use
Ack) x will proceed immediately with forwarding the token. Assume that, after some time,
the token arrives, for the first time, to a neighbour z of x (see Figure ??); it is possible that
the Visited message sent by x to z has not arrived yet (due to communication delays). In this
case, z would not know that x has already been visited, and would send the T message to it.
That is, we will again send a T message on a back-edge undoing what we had accomplished
with the previous change to the protocol !

Visited

T

Visited

T

Visited

T

(a) (b) (c)

X

Y

Z

X

Y

Z

X

Y

Z

Figure 5: Slow Visited message : z does not know that x has been visited.

But the algorithm now is rather different (we are using Visited messages, no longer Backedge
messages) and this situation might not happen all the time.

Still, if it happens, z will eventually receive the Visited message from x (recall we are oper-
ating under total reliability); z can then understand its mistake, pretend nothing happened
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(just the waste of a T message), and continue like that T message was never really sent. On
its side, x upon receiving the token will also understand that z made a mistake, and ignore
the message; x also realizes (if it did not know already) that z is visited and will remove it
from its list of unvisited neighbours.

Although the correctness will not be affected (Exercise 6.15), mistakes cost additional mes-
sages. Let us examine what is really the cost of this modified protocol, which we shall call
DF++.

As before, the “correct” T and Return yield a total of 2n − 2 messages, and the Visited
messages are 2m − n + 1 in total.

Then there are the “mistakes”; each mistake costs one message. The number of mistakes can
be very large. In fact, unfriendly time delays can force mistakes to occur on every back-edge;
on some backedges, there can be two mistakes, one in each direction ! (Exercise 6.16). In
other words, there will be at most 2(m− n + 1) incorrect T messages. Summing all up, this
yields:

M[DF + +] ≤ 4m − n + 1. (4)

Let us consider now the time. We have an improvement in that the Ack messages are no
longer sent, saving n time units.

Since there are no more Ack to wait for, an entity can forward the token at the same time
as the transmission of the Visited messages; if it does not have any unvisited neighbour to
send the T to, the entity will send the Return at the same time as the Visited. Hence, the
sending of the Visited is done in overlap with the sending of either a T or a Return message,
saving another n time units.

In other words, without considering the mistakes, the total time will be 2n − 2. Let us now
consider also the mistakes and evaluate the ideal time of the protocol.

Strange as it might sound, when we attempt to measure the ideal execution time of this
protocol, in the execution no mistakes will ever occur ! This is because mistakes can only
occur due to arbitrarily long communication delays; on the other hand, ideal time is only
measured under unitary delays. But under unitary delays there are no mistakes. Therefore,

T[DF + +] = 2n − 2 (5)

IMPORTANT. It is crucial to understand this inherent limit of the cost measure we call
ideal time. Unlike the number of messages, ideal time is not a “neutral” measure; it influ-
ences (thus limiting) the nature of what we want to measure. In other words, it should be
treated and handled with caution. Even greater caution should be employed in interpreting
the results it gives.

Extreme Hacking

Since we are on a roll, let us observe that we could actually use the T message as an implicit
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Visited, saving some additional messages.

This saving will happen at every entity except those that, when they are reached for the first
time by a T message, do not have any unvisited neighbour. Let f⋆ denote the number of
these nodes; thus the number of Visited messages we save is n−f⋆. Hence, the total number
of messages is 4m − n + 1 − n + f⋆.

Summarizing, the cost of the optimized protocol, called DF* and described in Figures 6 and
7, is as follows.

Theorem 1.5
M[DF∗] = 4m − 2n + f∗ + 1
T[DF∗] = 2n − 2

IMPORTANT. The value of f⋆, unlike n and m, is not a system parameter. In fact, it is
execution-dependent: it may change at each execution ! We shall indicate this fact (for f as
well as for any other execution dependent value) by the use of the subscript ⋆.

1.2.3 Traversal in Special Networks

Trees

In a tree network, depth-first traversal is particularly efficient in terms of messages, and there
is no need of any optimization effort (hacking). In fact, in any execution of DF Traversal
in a tree, no Backedge messages will be sent (Exercise 6.12). Hence, the total number of
messages will be exactly 2(n− 1). The time complexity is the same as the optimized version
of the protocol: 2(n − 1).

M[DF Traversal/Tree] = T[DF Traversal/Tree] = 2n − 2 (6)

An interesting side effect of a depth-first traversal of a tree, is that it constructs a virtual
ring on the tree. (Figure 8). In this ring some nodes appear more than once; in fact the ring
has size 2n − 2 (Exercise 6.13). This fact will have useful consequences.

Rings

In a ring network, every node has exactly two neighbours. Depth-first traversal in a ring
can be achieved in a simple way: the initiator chooses one direction and the token is just
forwarded along that direction; once the token reaches the initiator, the traversal has been
completed. In other words, each entity will send and receive a single T message. Hence both
the time and the message costs are exactly n. Clearly this protocol can be used only in rings.

Complete Graph

In a complete graph, execution of DF* will require O(n2) messages. Exploiting the knowledge
of being in a complete network, a better protocol can be derived: the initiator sequentially
will sends the token to all its neighbours (which are all the other entities in the network);
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PROTOCOL DF*

• Status: S = {INITIATOR,IDLE,AVAILABLE,VISITED,DONE};
SINIT = {INITIATOR,IDLE}; STERM = {DONE}.

• Restrictions: R ;UI.

INITIATOR
Spontaneously
begin

initiator:= true;
Unvisited:= N(x);
next ⇐ Unvisited;
send(T) to next;
send(Visited) to N(x)-{next};
become VISITED

end

IDLE
Receiving(T)
begin

Unvisited:= N(x);
FIRST-VISIT;

end

Receiving(V isited)
begin

Unvisited:= N(x) − {sender};
become AVAILABLE

end

AVAILABLE
Receiving(T)
FIRST-VISIT;

Receiving(Visited)
begin

Unvisited:= Unvisited− {sender};
end

VISITED
Receiving(Visited)
begin

Unvisited:= Unvisited −{sender};
if next = sender then VISIT; endif

end

Receiving(T)
begin

Unvisited:= Unvisited −{sender};
if next = sender then VISIT; endif

end

Receiving(Return)
begin

VISIT;
end

Figure 6: Protocol DF*
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Procedure FIRST-VISIT
begin

initiator:= false;
entry:=sender;
Unvisited:= Unvisited-{sender};

if Unvisited 6= ∅ then
next ⇐ Unvisited;
send(T) to next;
send(Visited) to N(x)−{entry,next};
become VISITED;

else
send(Return) to {entry};
send(Visited) to N(x)−{entry};
become DONE;

endif
end

Procedure VISIT
begin

if Unvisited 6= ∅ then
next ⇐ Unvisited;
send(T) to next;

else
if not(initiator) then send(Return) to entry; endif
become DONE;

endif
end

Figure 7: Routines used by Protocol DF*
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Figure 8: Virtual ring created by df-traversal.

each of this entities will return the token to the initiator without forwarding it to anybody
else. The total number of messages is 2(n − 1), and so is the time.

1.2.4 Considerations on Traversal

Traversal as Access Permission

The main use of a traversal protocol is in the control and management of shared resources.

For example, access to a shared transmission medium (e.g., bus) must be controlled to avoid
collisions (simultaneous frame transmission by two or more entities). A typical mechanism
to achieve this is by the use of a control (or permission) token. This token is passed from one
entity to another according to the same set of rules. An entity can only transmit a frame
when it is in possession of the token; once the frame has been transmitted, the token is
passed to another entity. A traversal protocol by definition “passes” the token sequentially
though all the entities, and thus solves the access control problem. The only proviso is that,
for the access permission problem, it must be made perennial: once a traversal is terminated,
another must be started by the initiator.

The access permission problem is part of a family of problems commonly called Mutual
Exclusion, which will be discussed in details later in the book.

Traversal as Broadcast

It is not difficult to see that any traversal protocol solves the broadcast problem: the initiator
puts the information in the token message; every entity will be visited by the token and
thus will receive the information. The converse is not necessarily true; for example, Flooding
violates the sequentiality requirement since the message is sent to all (other) neighbours
simultaneously.

The use of traversal to broadcast does not lead to a more efficient broadcasting protocol. In
fact, a comparison of the costs of Flooding and DF* (Theorems ?? and 1.5) shows that Flood-
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ing is more efficient in terms of both messages and ideal time. This is not surprising since a
traversal is constrained to be sequential; flooding, on the other hand, exploits concurrency
at its outmost.

1.3 Practical Implications: Use a Subnet

We have considered two basic problems (broadcast and depth-first traversal) and studied
their complexity, devised solution protocols and analyzed their efficiency. Let us see what
the theoretical results we have obtained tell us about the situation from a practical point of
view.

We have seen that generic protocols for broadcasting require Ω(m) messages (Theorem 1.1).
Indeed, in some special networks, we can sometimes develop topology-dependent solutions
and obtain some improvements.

A similar situation exists for generic traversal protocols: they all require Ω(m) messages
(Theorem 1.3); this cost cannot be reduced (in order of magnitude) unless we make additional
restrictions, for example exploiting some special properties of G of which we have a priori
(i.e., at design time) knowledge.

In any connected undirected graph G, we have

(n2 − n)/2 ≥ m ≥ n − 1,

and, for every value in that range, there are networks with those many links; in particular,
m = (n2 − n)/2 occurs when G is the complete graph, and m = n − 1 when G is a tree.

Summarizing, the cost of broadcasting and traversal depends on the number of links: the
more links the greater the cost; and it can be as bad as O(n2) messages per execution of any
of the solution protocols.

This result is punitive for networks where a large investment has been made in the con-
struction of communication links. Since broadcast is a basic communication tool (in some
systems, it is a primitive) dense networks are penalized continuously. Similarly, larger oper-
ating costs will be incurred by dense networks every time a traversal (fortunately, not such
a common operation) is performed.

The theoretical results, in other words, indicate that investments in communication hardware
will result in higher operating communication costs.

Obviously, this is not an acceptable situation, and it is necessary to employ some “lateral
thinking”.

The strategy to circumvent the obstacle posed by these lower-bounds (Theorems 1.1 and
1.3) without restricting the applicability of the protocol is fortunately simple:

(1) construct a subnet G′ of G;
(2) perform the operations only on the subnet.
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If the subnet G′ we construct is connected and spans G (that is, contains all nodes of G),
then doing broadcast on G′ will solve the broadcasting problem on G: every node (entity)
will receive the information. Similarly, performing a traversal on G′ will solve that problem
on G.

The important consequence is that, if G′ is a proper subnet, it has fewer links than G; thus,
the cost of performing those operations on G′ will be lower than doing it in G.

Which connected spanning subnet of G should we construct ?

If we want to minimize the message costs, we should choose the one with the fewest number
of links; thus, the answer is: a spanning tree of G. So, the strategy for a general graph G
will be

STRATEGY Use-a-Tree
(1) construct a spanning tree of G;
(2) perform the operations only on this spanning tree.

This strategy has two costs.

First, there is the cost of constructing the spanning tree; this task will have to be carried
out only once (if no failures occur).

Then there are the operating costs, that is the costs of performing broadcast and traversal
on the tree. Broadcast will cost exactly n − 1 messages, and the cost of traversal will be
twice that amount. These costs are independent of m and thus do not inhibit investments
in communication links (which might be useful for other reasons).

1.4 Constructing a Spanning Tree with a Single Initiator

1.4.1 Spanning Tree Construction

Spanning tree construction (SPT) is a classical problem in computer science. In a distributed
computing environment, the solution of this problem has, as we have seen, strong practical
motivations. It also has distinct formulation and requirements.

In a distributed computing environment, to construct a spanning tree of G means to move
the system from an initial system configuration where each entity is just aware of its own
neigbours, to a system configuration where
(1) each entity x has selected a subset Tree-neighbours(x) ⊆ N(x), and
(2) the collection of all the corresponding links form a spanning tree of G.

What is wanted is a distributed algorithm (specifying what each node has to do when
receiving a message in a given status) such that, once executed, guarantees that a spanning
tree T (G) of G has been constructed; in the following we will indicate T (G) simply by T , if
no ambiguity arises.

Note that T is not known a priori to the entities, and might not be known after it has been
constructed: an entity needs to know only which of its neighbours are also its neighbours in
the spanning tree T .
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As before, we will restrict ourselves to connected networks with bidirectional links and further
assume that no failure will occur; we will also assume that the construction will be started by
only one entity (i.e., Unique Initiator (UI) restriction); that is we will consider spanning-tree
construction under restrictions RI.

1.4.2 Protocol Shout

Consider the entities; they do not know G, not even its size. The only things an entity is
aware of are the labels on the ports leading to its neighbours (because of the Local Orientation
axiom), and the fact that, if it sends a message to a neighbour, the message will eventually
be received (because of the Finite Communication Delays axiom and the Total Reliability
restriction).

How, using just this information, can a spanning tree be constructed?

The answer is surprisingly simple. Each entity needs to know which of its neighbours are
also neighbours in the spanning tree. The solution strategy is: just “ask”:

STRATEGY Ask-your-Neighbours

(1) The initiator s will “ask” its neighbours; that is, it will sends a message Q = (”Are you
my neighbour in the spanning tree?”) to all its neighbours.

(2) An entity x 6= s will reply “Yes” only the first time it is asked and, in this occasion, it
will ask all its other neighbours; otherwise, it will reply “No”. The initiator s will always
reply “No”.

(3) Each entity terminates when it has received a reply from all neighbours to which it asked
the question.

For an entity x, its neighbours in the spanning tree T are the neighbours that have replied
“Yes” and, if x 6= s , also the neighbour from which the question was first asked.

The corresponding set of rules is depicted in Fig. 9 where in bold are shown the tree links,
in dotted lines the non-tree links. The protocol Shout implementing this strategy is shown
in Figure 10. Initially, all nodes are in status available except the sole initiator.

Before we discuss the correctness and the efficiency of the protocol, consider how it is struc-
tured and operates. First of all observe that, in Shout the question Q is broadcasted through
the network (using flooding). Further observe that, when an entity receives Q, it always
sends a reply (either Yes or No). Summarizing, the structure of this protocol is a flood
where every information message is acknowledged. This type of structure will be called
Flood+Reply.

Correctness

Let us show now that Flood+Reply, as used above, always constructs a spanning tree; that
is, the graph defined by all the Tree-neighbours computed by the entities form a spanning
tree of G; furthermore, this tree is rooted in the initiator s.
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Figure 9: Set of Rules of Shout.

Theorem 1.6 Protocol Shout correctly terminates.

Proof. This protocol consists of the flooding of Q, where every Q message is acknowledged.
Because of the correctness of flooding, we are guaranteed that every entity will receive Q,
and by construction will reply (either Yes or No) to each Q it receives. Termination then
follows.

To prove correctness we must show that the subnet G′ defined by all the Tree-neighbours
is a spanning tree of G. First observe that, if x is in Tree-neighbours of y, then y is in
Tree-neighbours of x (see Exercise 6.18). If an entity x sends a Yes to y, then it is in Tree-
neighbours of y; furthermore, it is connected to s by a path where a Yes is sent on each link
(see Exercise 6.19). Since every x 6= s sends exactly one Yes, the subnet G′ defined by all
the Tree-neighbours contains all the entities (i.e., it spans G), it is connected, and contains
no cycles (see Exercise 6.20). Therefore, it is a spanning tree of G.

Note that G′ is actually a tree rooted in the initiator. Recall that, in a rooted tree, every
node (except the root) has one parent: the neighbour closest to the root; all its other neigh-
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PROTOCOL Shout

• Status: S = {INITIATOR,IDLE,ACTIVE,DONE};
SINIT = {INITIATOR,IDLE};
STERM = {DONE}.

• Restrictions: R ;UI.

INITIATOR
Spontaneously
begin

root:= true;
Tree-neighbours:=∅;
send(Q) to N(x);
counter:=0;
become ACTIVE;

end

IDLE
Receiving(Q)
begin

root:= false;
parent:= sender;
Tree-neighbours:={sender};
send(Yes) to {sender};
counter:=1;
if counter=|N(x)| then

become DONE
else

send(Q) to N(x) − {sender};
become ACTIVE;

endif
end

ACTIVE
Receiving(Q)
begin

send(No) to {sender};
end

Receiving(Yes)
begin

Tree-neighbours:=Tree-neighbours ∪{sender};
counter:=counter+1;
if counter=|N(x)| then become DONE; endif

end

Receiving(No)
begin

counter:=counter+1;
if counter=|N(x)| then become DONE; endif

end

Figure 10: Protocol Shout
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bours are called children. The neighbour to which x sends a Yes is its parent; all neighbours
from which it receives a Yes are its children. This fact can be useful in subsequent operations.

IMPORTANT The execution of protocol Shout ends with local termination: each entity
knows when its own execution is over; this occurs when it enters status done. Notice however
that no entity, including the initiator, is aware of global termination (i.e., that every entity
has locally terminated). This situation is fairly common in distributed computations. Should
we need the initiator to know that the execution has terminated (e.g., to start another task),
Flood+Reply can be easily modified to achieve this goal (Exercise 6.24).

Costs

The message costs of Flood+Reply, and thus of Shout, are simple to analyze. As mentioned
before, Flood+Reply consists of an execution of F looding(Q) with the addition of a reply
(either Yes or No) for every Q. In other words,

M[Flood+Reply] = 2 M[Flooding].

The time costs of Flood+Reply, and thus of Shout, are also simple to determine; in fact
(Exercise 6.21):

T[Flood+Reply] = T[Flooding]+1.

Thus

Theorem 1.7
M[Shout] = 4m − 2n + 2
T[Shout] = r(s⋆) + 1 ≤ d + 1

The efficiency of protocol Shout can be evaluated better taking into account the complexity
of the problem it is solving.

Since every node must be involved, using an argument similar to the proof of Theorem 1.1,
we have:

Theorem 1.8 M(SPT/RI) ≥ m

Proof. Assume that there exists a correct SPT protocol A which, in each execution under
RI on every G, uses fewer than m(G) messages. This means that there is at least one link
in G where no message is transmitted in any direction during an execution of the algorithm.
Consider an execution of the algorithm on G, and let e = (x, y) ∈ E be the link where no
message is transmitted by A. Now construct a new graph G′ from G by removing the edge
e, and adding a new node z and two new edges e1 = (x, z) and e2 = (y, z) (see Fig. 2). Set
z in a non initiator status. Run exactly the same execution of A on the new graph G′: since
no message was sent along (x, y), this is possible. But since no message was sent along (x, y)
in the original execution in G, x and y never send a message to z in the current execution
in G′; and since z is not the initiator and does not receive any message, it will not send any
message. Within finite time, protocol A terminates claiming that a spanning-tree T of G′

has been constructed; however, z is not part of T , and hence T does not span G′.
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and similarly to the broadcast problem we have

Theorem 1.9 T (SPT/RI) ≥ d

This implies that protocol Shout is both time optimal and message optimal with respect to
order of magnitude. In other words,

Property 1.9 The message complexity of spanning-tree construction under RI is Θ(m)

Property 1.10 The ideal time complexity of spanning-tree construction under RI is Θ(d)

In the case of the number of messages some improvement might be possible in terms of the
constant.

Hacking

Let us examine protocol Shout to see if it can be improved and we can save some messages.

Question: Do we have to send No messages?

When constructing the spanning tree, an entity needs to know who its tree- neighbours are;
by construction, they are the ones that reply Yes and, except for the initiator, also the one
that first asked the question. Thus, for this determination, the No messages are not needed.

On the other hand, the No messages are used by the protocol to terminate in finite time.
Consider an entity x that just sent Q to neighbour y; it is now waiting for a reply. If the
reply is Yes, it knows y is in the tree; if the reply is No, it knows y is not. Should we remove
the sending of No, how can x determine that y would have sent No ?

More clearly: suppose x has been waiting for a reply from y for a (very) long time; it does
not know if y has sent Yes and the delays are very long, or y would have sent No and thus
will send nothing. Because the algorithm must terminate, x cannot wait forever, and has to
make a decision. How can x decide?

The question is relevant because communication delays are finite but unpredictable.

Fortunately, there is a simple answer to the question, that can be derived by examining how
protocol Shout operates.

Focus on a node x that just sent Q to its neighbour y. Why would y reply No ? It would do
so only if it had already said Yes to somebody else; if that happened, y sent at the same time
Q to all its other neighbours, including x. Summarizing, if y replies No to x, it must have
already sent Q to x. We can clearly use this fact to our advantage: after x sent Q to y, if it
receives Yes it knows that y is its neighbour in the tree; if it receives Q, it can deduce that
y will definitely reply No to x’s question. All of this x can deduce without having received
the No.

In other words: a message Q that arrives at a node waiting for a reply can act as an implicit
negative acknowledgment; therefore, we can avoid sending No messages.

Let us now analyze the message complexity of the resulting protocol Shout+.
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Theorem 1.10
M[Shout+] = 2m
T[Shout+] = r(s⋆) + 1 ≤ d + 1

Proof. The time complexity is clearly unchanged. On each link (x, y) ∈ E there will be
exactly a pair of messages: either Q in one direction and Yes in the other, or two Q messages,
one in each direction. Thus the total number of messages sent is 2m.

1.4.3 SPT Construction via Global Protocols

SPT Construction by Traversal

It is well known that a depth-first traversal of a graph G actually constructs a spanning
tree (df-tree) of that graph. The df-tree is obtained by removing from G the back-edges
(i.e., the edges where a Backedge message was sent in DF Traversal). In other words, the
Tree-neighbours of an entity x will be those from which it receives a Return message and, if
x is not the initiator, the one from which x received the first T.

Simple modifications to protocol DF* will ensure that each entity will correctly compute
their neighbours in the df-tree and locally terminate in finite time (Exercise 6.25). Notice
that these modifications involve just local bookkeeping and no additional communication.
Hence the time and message costs are unchanged. Denote by df-SPT the resulting protocol.

Theorem 1.11
M [df-SPT] = 4m − 2n + f∗ + 1
T[df-SPT] = 2n − 2

We can now better characterize the variable f∗ which appears in the cost above. In fact, f∗
is exactly the number of leaves of the df-tree constructed by df-SPT (Exercise 6.26).

The results of Theorem 1.11, when compared with the costs of protocol Shout, indicate
that depth-first traversal is not an efficient tool for constructing a spanning tree; this is
particularly true for its very high time costs.

Notice that, like in protocol Shout, all entities will become aware of their local termination,
but only the initiator will also be aware of global termination, i.e., that the construction of
the spanning tree has been completed (Exercise 6.27).

SPT Construction by Broadcasting

We have just seen how, with simple modifications, the techniques of flooding and of df-
traversal can be used to construct a spanning tree, if there is a unique initiator. This fact is
part of a very interesting and more general phenomenon: under RI,

the execution of any broadcast protocol constructs a spanning-tree.
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Let us examine this statement in more details. Take any broadcast protocol B; by definition
of broadcast, its execution will result in all entities receiving the information initially held
by the initiator. For each entity x different from the initiator, call parent the neighbour from
which x received the information for the first time; clearly, everybody except the initiator
will have only one parent, and the initiator has none. Denote by x ≻ y the fact that x is the
parent of y; then we have the following property whose proof is left as an exercise (Exercise
6.28):

Theorem 1.12 The parent relationship ≻ defines a spanning tree rooted in the initiator.

As a consequence, it would appear that, to solve SPT, we just need to execute a broadcast
algorithm without any real modification, just adding some local variables (Tree-neighbours)
and doing some local bookkeeping.

This is generally not the case; in fact, knowing its parent in the tree is not enough for an
entity. To solve SPT, when an entity x terminates its execution, it must explicitly know
which neighbours are its children as well as which neighbour are not its tree-neighbours.

If not provided already by the protocol, this information can obviously be acquired. For
example, if every entity sends a notification message to its parent, the parents will know
their children. To find out which neighbours are not children is more difficult, and will
depend on the original broadcast protocol.

In protocol Shout this is achieved by adding the “Yes” (I am your child) and “No” (I am
not your child) messages to Flooding. In protocol DF Traversal this is already achieved by
the “Return” (I am your child) and the “Backedge” (I am not your child) messages; so, no
additional communication is required.

This fact establishes a computational relationship between the broadcasting problem and the
spanning-tree construction problem. If I know how to broadcast, (with minor modifications)
I know how to construct a spanning-tree with a unique initiator. The converse is also trivially
true: every protocol that constructs a spanning-tree solves the broadcasting problem. We
shall say that these two problems are computationally equivalent, and denote this fact by

Bcast ≡ SPT(UI) (7)

Since, as we have discussed in section 1.2.4, every traversal protocol performs a broadcast,
it follows that, under RI, the execution of any traversal protocol constructs a spanning-tree.

SPT Construction by Global Protocols

Actually, we can make a much stronger statement. Call a problem global if every entity must
participate in its solution; participation implies the execution of a communication activity:
transmission of a message and/or arrival of a message (even if it triggers only the Null
action, i.e., no action is taken). Both broadcast and traversal are global problems. Now,
every single-initiator protocol that solves a global problem P solves also Bcast; thus, from
Equation 7, it follows that, under RI,

the execution of any solution to a global problem P constructs a spanning-tree.
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1.4.4 Considerations on the Constructed Tree

We have seen how, with few more messages than those required by flooding, and the same
messages as a df-traversal we can actually construct a spanning tree.

As discussed previously, once such a tree is constructed, we can from now on perform broad-
cast and traversal using only O(n) messages (which is optimal) instead of O(m) (which could
be as bad as O(n2)).

IMPORTANT. Different techniques construct different spanning-trees. It is even possible
that the same protocol constructs different spanning trees when executed at different times.

This is for example the case of Shout: since communication delays are unpredictable, subse-
quent executions of this algorithm on the same graph may result in different spanning trees.
In fact,

every possible spanning tree of G could be constructed by Shout.

(See also Exercise 6.23.) Prior to its execution, it is impossible to predict which spanning
tree will be constructed; the only guarantee is that Shout will construct one.

This has implications for the time costs of the strategy Use-a-Tree of broadcasting on the
spanning tree T instead of the entire graph G. In fact, the broadcast time will be d(T )
instead of d(G); but d(T ) could be much greater than d(G).

For example, if G is the complete graph, the df-tree constructed by any depth-first traversal
will have d(T ) = n − 1; but d(G) = 1 !

In general, the trees constructed by depth-fist traversal have usually terrible diameters. The
ones generated by Shout usually perform better, but there is no guarantee on the diameter
of the resulting tree.

This fact poses the problem of constructing spanning-trees which have a good diameter; that
is, to find a a spanning tree T ′ of G such that d(T ′) is not much more than d(G). For obvious
reasons, such a tree is traditionally called a broadcast tree.

To construct a broadcast tree we must first understand the relationship between radius and
diameter. The eccentricity (or radius) of a node x in G is the longest of its distances to the
other nodes:

rG(x) = Max{dG(x, y) : y ∈V }.

A node c with minimum radius (or eccentricity) is called a center; i.e., ∀x ∈ V, rG(c) ≤ rG(x).
There might be more than one center; they all however have the same eccentricity, denoted
by r(G) and called the radius of G:

r(G) = Min{rG(x) : x ∈ V }.

There is a strong relationship between the radius and the diameter of a graph; in fact, in
every graph G,

r(G) ≤ d(G) ≤ 2r(G) (8)
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The other ingredient we need is a breadth-first spanning tree (bf-tree). A breadth-first span-
ning tree of G rooted in a node u, denoted by BFT (u, G), has the following property: the
distance between a node v and the root in the tree is the same as their distance in the original
graph G.

The strategy to construct a broadcast tree with diameter d(T ′) ≤ 2d(G) is then simple to
state:

STRATEGY Broadcast-Tree Construction
(1) determine a center c of G;
(2) construct a breadth-first spanning tree BFT (c, G) rooted in c.

This strategy will construct the desired broadcast tree (Exercise 6.29):

Theorem 1.13 BFT (c, G) is a broadcast tree of G.

To be implemented, this strategy requires that we solve two problems: Center Finding, and
Breadth-First Spanning-Tree Construction. These problems, as we will see, are not simple
to solve efficiently; we will examine them in later chapters.

1.4.5 Application: Better Traversal

In Section 1.3, we have discussed the general strategy Use-a-Tree for problem solving. Now
that we know how to construct a spanning-tree (using a single initiator), let us apply the
strategy to a known problem.

Consider again the traversal problem. Using the Use-a-Tree strategy, we can produce an
efficient traversal protocol that is much simpler than all the algorithms we have considered
before:

Protocol SmartTraversal.

1. Construct, using Shout+, a spanning-tree T rooted in the initiator.
2. Perform a traversal of T , using DF Traversal.

The number of messages of SmartTraversal is easy to compute: Shout+ uses 2m messages
(Theorem 1.10), while DF Traversal on a tree uses exactly 2(n − 1) messages (equation 6).
In other words,

M[SmartTraversal] = 2(m + n − 1). (9)

The problem with DF Traversal was its time complexity: it was to reduce time that we
developed more complex protocols. How about the time costs of this simple new protocol
? The ideal time of Shout+ is exactly d + 1. The ideal time of DF Traversal in a tree is
2(n − 1). Hence the total is
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T[SmartTraversal] ≤ 2n + d − 1. (10)

In other words, SmartTraversal not only is simple but also has optimal time and message
complexity !

2 MULTIPLE-INITIATORS COMPUTATIONS

In the previous section we have assumed restriction UI; that is, there is a single entity that
starts the computation. Indeed, there are some problems (e.g., broadcast and traversal) that
satisfy this restriction in their definition. However, for the majority of problems (including
spanning-tree construction), this assumption is not “natural”, is not part of their definition.
For these problems, since the entities are completely autonomous and are initially unaware of
the status of the others, a computation can be started by any number of them, independently
of each other. In fact, an initiator entity has in general no idea of whether there are other
initiators, and if so how many and where they are located.

In this section we will continue our study of some of the most basic primitive distributed
computations, and examine those that do not have any a priori restriction on the num-
ber of the initiators. We discuss wake up, and continue our examination of spanning-tree
construction in its natural setting (i.e., with multiple initiators).

2.1 Wake-Up

2.1.1 Generic Wake-Up

Very often, in a distributed environment, we are faced with the following situation: a task
must be performed in which all entities must be involved; however only some of them are
independently active (because of a spontaneous event, or have finished a previous computa-
tion) and ready to compute; the others are inactive, not even aware of the computation that
must take place. In these situations, to perform the task we must ensure that all entities
become active. Clearly, this preliminary step can only be started by the entities which are
active already; however, they do not know which other entities (if any) are already active.

This problem is called Wake up (WakeUp): an active entity is usually called awake, a (still)
inactive one is called asleep; the task is to wake all entities up.

It is not difficult to see the relationship between broadcasting and wake-up: broadcast is a
wake up with only one initially awake entity; conversely, wake up is a broadcast with possibly
many initiators (i.e., more than one entity initially has the information). In other words,
broadcast is just a special case of the wake up problem.

Interestingly, but not surprisingly, the flooding strategy used for broadcasting actually solves
the more general WakeUp problem. The modified protocol, called WFlood is described in
Figure 12. Initially all entities are asleep; any asleep entity can become spontaneously awake
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Figure 11: Wake Up Process.

PROTOCOL WFlood .

• Status Values: S = {ASLEEP,AWAKE};
SINIT = {ASLEEP};
STERM = {AWAKE}.

• Restrictions: R.

ASLEEP
Spontaneously
begin

send(W) to N(x);
become AWAKE;

end

Receiving(W)
begin

send(W) to N(x) − {sender};
become AWAKE;

end

Figure 12: Wake-Up by Flooding

and start the protocol.

It is not difficult to verify that the protocol correctly terminates under the standard restric-
tions (Exercise 6.7).

Let us concentrate on the cost of protocol WFlood. The number of messages is at least that
of broadcast; actually, it is not much more (see Exercise 6.6):

2m ≥ M[WFlood] ≥ 2m − n + 1 (11)

Since broadcast is a special case of wake-up, no much improvement is possible (except perhaps
in the size of the constant):

M(WakeUp/R) ≥ M(Bcast/RI+) = Ω(m)
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The ideal time will in general be smaller than the one for broadcast:

T (Bcast/RI+) ≥ T (WakeUp/R)

however, in the case of a single initiator, the two cases coincide. Since upper and lower bounds
coincide in order of magnitude, we can conclude that protocol WFlood is both message- and
worst-case time- optimal.

The complexity of WakeUp is summarized by the the following two properties,

Property 2.1 The message complexity of Wake-up under R is Θ(m)

Property 2.2 The worst case ideal time complexity of Wake-up under R is Θ(d)

2.1.2 WakeUp in Special Networks

Trees

The cost of using protocol WFlood for wakeup will depend on the number of initiators. In
fact, if there is only one initiator, then this is just a broadcast and costs only n−1 messages.
On the other hand, if every entity start independently, there will be a total of 2(n − 1)
messages. Let k⋆ denote the number of initiators; note that this number is not a system
parameter like n or m, it is however bounded by a system parameter: k⋆ ≤ n. Then the
total number of messages when executing WFlood in a tree will be exactly

M[WFlood/Tree] = n + k⋆ − 2. (12)

Labelled Hypercubes

In Section 1.1, by exploiting the properties of the hypercube and of the dimensional labelling,
we have been able to construct a broadcast protocol which uses only O(n) messages, instead
of the Ω(n log n) messages required by any generic protocol.

Let us see if we can achieve a similar result also for the wakeup. In other words, can we
exploit the properties of a labelled hypercube to do better than generic protocols ?

The answer is unfortunately: NO !

Lemma 2.1 M(WakeUp/R ; H) = Ω(n log n)

As a consequence, we might as well employ the generic protocol WFlood, which uses O(n logn)
messages. Summarizing,

Property 2.3 The message complexity of wake-up under R in a k-dimensional hypercube
with a dimensional labeling is Θ(n log n)
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Complete Graphs

Let us focus on wakeup in a complete graph. The use of the generic protocolWFlood will
require O(n2) messages. We can obviously use the simplified broadcast protocol KBcast
we developed for complete graphs. The number of messages transmitted will be k⋆(n − 1)
where k⋆ denotes the number of initiators. In the worst case (when every entity is indepen-
dently awake and they all simultaneously start the protocol) O(n2) messages still will be
transmitted.

Let us see if, by exploiting the properties of complete graphs, we we have been able to
construct a wake-up protocol that uses only O(n) messages, instead of the O(n2) we have
achieved so far. (After all, we have been able to do it in the case of the broadcast problem.)

Surprisingly, also in this case, the answer is NO !

Lemma 2.2 M(WakeUp/R ; K) = Ω(n2)

This implies that the use of WFlood for wake up is a message optimal solution. In other
words,

Property 2.4 The message complexity of wake-up under R in a complete network is Θ(n2)

To reduce the number of messages, a more restricted environment is required; that is, we
need to make additional assumptions.

For example, if we add the restriction that the entities have unique names (restriction Initial
Distinct Values (ID)), then there are protocols capable of performing wakeup with O(n log n)
messages in a complete graph; they are not simple and actually solve a much more complex
problem, Election, which we will discuss at great length in the next chapter. Strangely,
nothing than that can be accomplished. In fact, let IR + K = R ∪ K; then the worst-case
message complexity of wake-up in a complete graph under the standard restrictions R plus
ID is:

Property 2.5 M(Elect/R; ID; K) ≥ .5n log n

To see why this is true, we will construct a “bad” but possible case, which any protocol
can encounter, and show that, in such a case, O(nlogn) messages will be exchanged. The
lower bound will hold even if there is Message Ordering. For simplicity of discussion and
calculation, we will assume that n is a power of 2; the results hold also if this is not the case.

To construct the “bad” case for an (arbitrary) solution protocol A, we will consider a game
between the entities on one side, and an adversary on the other: the entities obey the rules
of the protocol; the adversary will try to make the worst possible scenario occur, so to force
the use of as many messages as possible.

The powers of the adversary are four:
(1) it decides the initial values of the entities (they must be distinct);
(2) it decides which entities spontaneously start the execution of A, and when;
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(3) it decides when a transmitted message arrives (it must be within finite time);
(4) more importantly, it decides the matching between links and labels: let e1, e2, . . . , ek be
the links incident on x, and let l1, l2, . . . , lk be the port labels to be used by x for those links;
during the execution, when x performs a “send to l” command, and l has not been assigned
yet, the adversary will choose which of the unused links (i.e., through which no messages
has been sent nor received) the label l will be assigned to.

Note. Sending a message to more than one port, will be treated as sending the message to
each of those ports one at the time (in an arbitrary order).

Whatever the adversary decides, it can happen in a real execution. Let us see how bad a
case can the adversary create for A.

Two sets of entities will be said to be connected at a time t if at least a message has been
transmitted from an entities of one set to an entity of the other.

Adversary’s Strategy.

(1) Initially, the adversary will wake-up only one entity s, which we will call the seed, and
which will start the execution of the protocol. When s decides to send a message to port
number l, the adversary will wake-up another entity y and assign label l to the edge from s
to y. It will then delay the transmission on that link until also y decides to send a message
to some port number l′; the adversary will then assign label l′ to the link from y to s, and
let the two messages arrive to their destination simultaneously. In this way, each message
will reach an awake node, and the two entities are connected.

From now on, the adversary will act in a similar way, always ensure that messages are sent
to already awake nodes, and that the set of awake nodes is connected.

(2) Consider an entity x executing a send operation to an unassigned label a.

1. If x has an unused link (i.e., a link on which no messages have been sent so far)
connecting it to an awake node, the adversary will assign a to that link. In other
words, the adversary will try to make the awake entities to send messages always to
other awake entities.

2. If all links between x and the awake nodes have been used, then the adversary will
create another set of awake nodes and connect the two sets.

(a) Let x0, . . . , xk−1 be the currently awake nodes, ordered according to their wake-up
time (thus, x0 = s is the seed, and x1 = y). The adversary will: choose k inactive
nodes z0, . . . , zk−1; establish a logical correspondence between xj and zj ; assign
to the new entities initial values so that the order among them is the same as
the one among the values of the corresponding entities; wake-up these entities
and force them to have the “same” execution (same scheduling and same delays)
as the corresponding ones already did. (So, z0 will be woken-up first, its first
message will be sent to z1, which will be woken-up next and will send a message
to z0, etc.)

(b) The adversary will then assign label a to the link connecting x to its corresponding
entity z in the new set; the message will be held in transit until z (like x did) will
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need to transmit a message on an unused link (say, with label b) but all the edges
connecting it to its set of awake entities have already been used.

(c) When this happens, the adversary will assign the label b to the link from z to x,
and make the two messages between x and z arrive and be processed.

Let us summarize the strategy of the adversary: the adversary tries to force the protocol to
send messages only to already awake entities, and awakens new entities only when it cannot
do otherwise; the newly awake entities are equal in number to the already awake entities; and
they are forced by the adversary to have the same execution between them as those others
entities before any communication takes place between the two sets. When this happens, we
will say that the adversary has started a new stage.

Let us now examine the situations created by the adversary with this strategy, and analyze
the cost of the protocol in the corresponding executions.

Let Active(i) denote the awake entities in stage i, and New(i) = Active(i) − Active(i − 1)
the entities that the adversary woke-up in this stage; initially, Active(0) is just the seed.
The newly awake entities are equal in number to the already awake entities; i.e., |New(i)| =
|Active(i − 1)|).

Let µ(i − 1) denote the total number of messages which have been exchanged before the
activation of the new entities. The adversary forces the new entities to have the same
execution as the entities in Active(i − 1), thus exchanging µ(i − 1) of messages, before
allowing the two sets to become connected. Thus, the total number of messages until the
communication between the two sets takes place is 2µ(i − 1).

Once the communication takes place, how many messages (including those two) are trans-
mitted before the next stage ?

The exact answer will depend on the protocol A; but regardless of which protocol we are
using, the adversary will not start a new stage i+1 unless it is forced to; this will happen only
if an entity x issues a “send to l” command (where l is an unassigned label) and all the links
connecting x to the other awake entities have already been used. This means that x must
have either sent to or received from all the entities in Active(i) = Active(i − 1) ∪ New(i).
Assume that x ∈ Active(i− 1); then, of all these messages, the ones between x and New(i)
have only occurred in stage i (since those entities where not active before); this means that
at least |New(i)| = |Active(i− 1)| additional messages are sent before stage i+1. If instead
x ∈ New(i), these messages have all been transmitted in this stage (since x was not awake
before); in other words, even in this case, |New(i)| = |Active(i− 1)| additional messages are
sent before stage i + 1.

Summarizing, the total cost µ(i−1) before stage i is thus doubled and at least an additional
|Active(i − 1)| messages are sent before stage i + 1. In other words:

µ(i) ≥ 2 µ(i − 1) + |Active(i − 1)|

Since the awake entities double in each stage, and initially only the seed is active, then
|Active(i)| = 2i. Hence, observing that µ(0) = 0,
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µ(i) ≥ 2 µ(i − 1) + 2i−1 ≥ i 2i−1

The total number of stages is exactly log n since the awake processes double every stage.
Hence, with this strategy, the adversary can force any protocol to transmit at least µ(log n)
messages. Since

µ(log n) ≥ .5 n log n

it follows that any wake-up protocol will transmit Ω(n log n) messages in the worst case even
if the entities have distinct ids !

More efficient wake up protocols can be derived if instead we have in our system a “good”
labeling of the links. We will return on this topic when we will discuss Sense of Direction.

2.2 Spanning-Tree Construction

We have started examining the spanning-tree construction problem in section 1.4 assuming
that there is a unique initiator. This is unfortunately a very strong (and “unnatural”)
assumption to make, as well as difficult and expensive to guarantee.

What happens to the single-initiator protocols Shout and df-SPT if there is more than one
initiator?
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Figure 13: With multiple initiators, Shout creates a forest.

Let us examine first protocol Shout. Consider the very simple case (depicted in Figure 13)
of three entities, x, y, z, connected to each other. Let both x and y be initiators and start
the protocol, and let the Q message from x to z arrive there before the one sent by y.

35



In this case, neither the link (x, y) nor the link (y, z) will be included in the tree; hence, the
algorithm creates not a spanning tree but a spanning forest, which is not connected.

Consider now protocol df-SPT, discussed in Section 1.4.3. Let us examine its execution in
the simple network depicted in Figure 14 composed of a chain of four nodes x, y, z and w.
Let y and z be both initiators, and start the traversal by sending the T message to x and
w, respectively.
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Figure 14: With multiple initiators, df-SPT creates a forest.

Also in this case, the algorithm will create a disconnected spanning forest of the graph. It is
easy to verify that the same situation will occur also with the optimized versions (DF+ and
DF*) of the protocol (Exercise 6.30).

The failure of these algorithms is not surprising, since they were developed specifically for
the restricted environment of a Unique Initiator.

Removing the restriction brings out the true nature of the problem which, as we will now
see, has a formidable obstacle.

2.2.1 Impossibility Result

Our goal is to design a spanning-tree protocol which works solely under the standard as-
sumptions, and thus is independent of the number of initiators. Unfortunately, any design
effort to this end is destined to fail ! In fact
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Theorem 2.1 The SPT problem is deterministically unsolvable under R.

Deterministically unsolvable means that there is no deterministic protocol which always cor-
rectly terminates within finite time.

Proof.

To see why this is the case, consider the simple system composed of three entities, x, y, and z
connected by links labeled as shown in Figure 15. Let the three entities have identical initial
values (the symbols x, y, z are used only for description purposes). If a solution protocol A
exists, it must work under any conditions of message delays (as long as they are finite) and
regardless of the number of initiators. Consider a synchronous schedule (i.e., an execution
where communication delays are unitary) and let all three entities start the execution of A
simultaneously. Since they are identical (same initial status and values, same port labels),
they will execute the same rule, obtain the same results (thus, continuing to have the same
local values), compose and send (if any) the same messages; enter the same (possibly new)
status. In other words, they will remain identical. In the next time unit, all sent messages (if
any) will arrive and be processed. If one entity receives a message, the others will receive the
same message at the same time, perform the same local computation, compose and send (if
any) the same messages; enter the same (possibly new) status. And so on. In other words,
the entities will continue to be identical.

If A is a solution protocol, it must terminate within finite time. A spanning-tree of our
simple system is obtained by removing one of the three links, let us say (x, y). In this case,
Tree-neigbours will be the port label 2 for entity x and the port label 1 for entity y; instead,
z has in Tree-neighbours both port numbers. In other words, when they all terminate, they
have distinct values for their local variable Tree-neighbours. But this is impossible, since we
just said that the entities will always be identical.

Thus, no such a solution algorithm A exists.
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Figure 15: Proof of Theorem 2.1.

A consequence of this very negative result is that, to construct a spanning-tree without con-
straints on the number of initiators, we need to impose additional restrictions. To determine
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the “minimal” restrictions which, added to R, will enable us to solve SPT is an interesting
research problem still open. The restriction that is commonly used is a very powerful one,
Initial Distinct Values, and we will discuss it next.

2.2.2 SPT with Initial Distinct Values

The impossibility result we just witnessed implies that, to solve the SPT problem we need
an additional restriction. The one commonly used is Initial Distinct Values (ID): each entity
has a distinct initial value. Distinct initial values are sometimes called identifiers or ids or
global names.

We will now examine some ways in which SPT can be solved under RD = R ∪{ID}.

Multiple spanning trees

As in most software design situations, once we have a solution for a problem and are faced
with a more general one, an approach is to try to find ways to re-use and re-apply the already
existing solution. The solutions we have already are unique-initiator ones and, as we know,
they fail in presence of multiple initiators. Let us see how can we mend their shortcomings
using distinct values.

Consider the execution of Shout in the example of Figure 13. In this case, the reason why
the protocol fails is because the entities do not realize that there are two different requests
(e.g., when x receives Q from y) for spanning tree construction.

But we can now use the entities’ ids to distinguish between requests originating from different
initiators.

The simplest and most immediate application of this approach is to have each initiator con-
struct “its own” spanning tree with a single-initiator protocol, and to use the ids of the ini-
tiators to distinguish among different constructions. So, instead of cooperating to construct
a single spanning tree, we will have several spanning trees concurrently and independently
built.

This implies that all the protocol messages (e.g., Q and Y es in Shout+) must contain also
the id of the initiator. It also requires additional variables and bookkeeping; for example,
at each entity, there will be several instances of the variable Tree-Neighbours, one for each
spanning-tree being constructed (i.e., one for each initiator). Furthermore, each entity will
be in possibly different status values for each of these independent spt-constructions. Recall
that the number k⋆ of initiators is not known a priori, and can change at every execution.

The message cost of this approach depends solely on the number of initiators and on the type
of unique-initiator protocol used. But it is in any case very expensive. In fact, if we employ
the most efficient spt-construction protocol we know, Shout+, we will use 2mk⋆ messages
which could be as bad as O(n3).

Selective construction

The large message cost derives from the fact that we construct not one but k⋆ spanning trees.
Since our goal is just to construct one, there is clearly a needless amount of communication
and computation being performed.
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A better approach consists of letting every initiator start the construction of its own uniquely
identified spanning-tree (as before), but then suppressing some of these constructions, al-
lowing only one to complete. In this approach, an entity faced with two different spt-
constructions, will select and act on only one, “killing” the other; the entity continues this
selection process as long as it receives conflicting requests.

The criterion an entity uses to decide which spt-construction to follow and which one to
terminate must be chosen very carefully. In fact, the danger is to “kill” all constructions !

The criterion commonly used is based on min-id: since each spt-construction has a unique
id (that of its initiator), when faced with different spt-constructions an entity will choose
the one with the smallest id, and terminate all the others. (An alternative criterion would
be the one based on max-id.)

The solution obtained with this approach has some very clear advantages over the previous
solution. First of all, each entity is at any time involved only in one spt-construction; this
fact greatly simplifies the internal organization of the protocol (i.e., the set of rules), as well
as the local storage and bookkeeping of each entity. Secondly, upon termination, all entities
have a single shared spanning-tree for subsequent uses.

However, there is still competitive concurrency: an entity involved in one spt-construction
might receive messages from another construction; in our approach, it will make a choice
between the two constructions. If the entity chooses the new one, it will give up all the
knowledge (variables, etc) acquired so far, and start from scratch. The message cost of this
approach depends again on the number of initiators and on the unique-initiator protocol
used.

Consider a protocol developed using this approach using Shout+ as the basic tool.

Informally, an entity u, at any time, participates in the construction of just one spanning-
tree rooted in some initiator, x. It will ignore all messages referring to the construction
of other spanning trees where the initiators have larger ids than x. If instead u receives a
message referring to the construction of a spanning-tree rooted in an initiator y with an id
smaller than x’s, then u will stop working for x and start working for y. As we will see,
this techniques will construct a spanning-tree rooted in the initiator with the smallest initial
value.

IMPORTANT. It is possible that an entity has already terminated its part of the con-
struction of a spanning tree when it receives a message from another initiator (possibly, with
a smaller id).

In other words, when an entity has terminated a construction, it does not know whether it
might have to restart again. Thus, it is necessary to include in the protocol a mechanism
that ensures an effective local termination for each entity.

This can be achieved by ensuring that we use, as a building block, a unique-initiator spt-
protocol in which the initiator will know when the spanning tree has been completely con-
structed (see Exercise 6.24). In this way, when the spanning tree rooted in the initiator s
with the smallest initial value has been constructed, s will become aware of this fact (as well
as that all other constructions, if any, have been “killed”). It can then notify all other entities
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PROTOCOL MultiShout

• Status: S = {IDLE, ACTIVE, DONE}; SINIT = {IDLE}; STERM = {DONE}.

• Restrictions: R ;ID.

IDLE
Spontaneously
begin

root:= true;
root id:=v(x);
Tree neighbours:=∅;
send(Q, root id) to N(x);
counter:=0;
check counter:=0;
become ACTIVE;

end

Receiving(Q,id)
begin

CONSTRUCT;
end

ACTIVE
Receiving(Q,id)
begin

if root id = id then
counter:=counter+1;
if counter=|N(x)| then done:= true; CHECK; endif

else
if root id > id then CONSTRUCT;

endif
end

Receiving(Yes, id)
begin

if root id = id then
Tree-neighbours:=Tree-neighbours ∪{sender};
counter:=counter+1;
if counter=|N(x)| then done:= true; CHECK; endif

endif
end

Receiving(Check, id)
begin

if root id = id then
check counter:=check counter+1;
if (done ∧ check counter=|Children|) then TERM; endif

endif
end

Receiving(Terminate)
begin

send(Terminate) to Children;
become DONE;

end

Figure 16: Protocol MultiShout
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so they can enter a terminal status. The notification is just a broadcast; it is appropriate
to perform it on the newly constructed spanning-tree (so we start taking advantage of its
existence).

Protocol MultiShout, depicted in Figures 16 and 17, uses Shout+ appropriately modified so
to ensure that the root of a constructed tree becomes aware of termination, and includes
a final broadcast (on the spanning tree) to notify all entities that the task has been in-
deed completed. We denote by v(x) the id of x; initially all entities are idle and any can
spontaneously start the algorithm.

Theorem 2.2 Protocol MultiShout constructs a spanning tree rooted in the initiator with
the smallest initial value.

Proof. Let s be the initiator with the smallest initial value. Focus on an initiator x 6= s;
its initial execution of the protocol will start the construction a spanning-tree Tx rooted in
x. We will first show that the construction of Tx will not be completed. To see this, observe
that Tx must include every node, including s; but when s receives a message relating to the
construction of somebody’s else tree (such as Tx), it will ignore it, killing the construction of
that tree. Let us now show that Ts will instead be constructed. Since the id of s is smaller
than all other ids, no entity will ignore the messages related to the construction of Ts started
by s; thus, the construction will be completed.

Let us now consider the message costs of protocol MultiShout. It is clearly more efficient
than protocols obtained with the previous approach. However, in the worst case, it is not
much better in order of magnitude. In fact, it can be as bad as O(n3).

Consider for example the graph, shown in Fig. 18, where n−k of the nodes are fully connected
among themselves (the subgraph Kn−k), and each of the other k (nodes x1, x2, . . . , xk) is
connected only to a node in Kn−k. Suppose that these k “external” nodes are the initiators
and that v(x1) > v(x2) > . . . > v(xk),

Consider now an execution where the Q messages from the external entities arrive to Kn−k

in order, according to the indices (i.e., the one from x1 arrives first).

When the Q message from x1 arrives to Kn−k it will trigger the spt-construction there.
Notice that the Shout+ component of our protocol with a unique initiator will use O((n −
k)2) messages inside the subgraph Kn−k. Assume that the entire computation inside Kn−k

triggered by x1 is practically completed (costing O((n − k)2) messages) by the time the Q
message from x2 arrives to Kn−k. Since v(x1) > v(x2), all the work done in Kn−k has been
wasted and every entity there must start the construction of the spanning tree rooted in x2.

In the same way, assume that the time delays are such that the Q message from xi arrives
to Kn−k only when the computation inside Kn−k triggered by xi−1 is practically completed
(costing O((n − k)2) messages).

Then, in this case (which is possible), work costing O((n − k)2) messages will be repeated
k times, for a total of O(k(n − k)2) messages. If k is a linear fraction of n (e.g., k = n/2),
then the cost will be O(n3).
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Procedure CONSTRUCT
begin

root:= false;
root id:= id;
Tree neighbours:={sender};
parent:= sender;
send(Yes,root id) to {sender};
counter:=1;
check counter:=0;
if counter=|N(x)| then

done:= true;
CHECK;

else
send(Q,root-id) to N(x) − {sender};

endif
become ACTIVE;

end

Procedure CHECK
begin

Children:= Tree neighbours-{parent};
if Children = ∅ then
send(Check,root id) to parent;

endif
end

Procedure TERM
begin

if root then
send(Terminate) to Tree-neighbours;
become DONE;

else
send(Check,root-id) to parent;

endif
end

Figure 17: Routines of MultiShout
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Figure 18: The execution of MultiShout can cost O(k(n − k)2) messages.

The fact that this solution is not very efficient does not imply that the approach of selective
construction it uses is not effective. On the contrary, it can be made efficient at the expenses
of simplicity. We will examine it in great details later in the book when studying the leader
election problem.

3 SATURATION AND COMPUTATIONS IN TREES

In this section, we consider computations in tree networks under the standard restrictions
R, plus clearly the common knowledge (T) that the network is tree.

Note that the knowledge of being in a tree implies that each entity can determine whether
it is a leaf (i.e., it has only one neighbour) or an internal node (i.e., it has more than one
neighbour).

We have already seen how to solve the Broadcast, the Wake-Up and the Traversal problems
in a tree network. The first two are optimally solved by protocol Flooding, the latter by
protocol DF Traversal. These techniques constitute the first set of algorithmic tools for
computing in trees with multiple initiators. We will now introduce another very basic and
useful technique, saturation, and show how it can be employed to efficiently solve many
different problems in trees regardless of the number of initiators and of their location.

Before doing so, we need to introduce some basic concepts and terminology about trees. In
a tree T , the removal of a link (x, y) will disconnect T into two trees, one containing x (but
not y), the other containing y (but not x); we shall denote them by T [x − y] and T [y − x],
respectively. Let d[x, y] = Max{d(x, z) : z ∈ T [y − x]} be the longest distance between x
and the nodes in T [y − x]. Recall that the longest distance between any two nodes is called
diameter, and it is denoted by d. If d[x, y] = d, the path between x and y is said to be
diametral.
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3.1 Saturation: A Basic Technique

The technique, which we shall call Full Saturation, is very simple and can be autonomously
and independently started by any number of initiators.

It is composed of three stages:
(1) the activation stage, started by the initiators, in which all nodes are activated;
(2) the saturation stage, started by the leaf nodes, in which a unique couple of neighbouring
nodes is selected; and
(3) the resolution stage, started by the selected pair.

The activation stage is just a wakeup: each initiator sends an activation (i.e., wake-up)
message to all its neighbours and becomes active; any non-initiator, upon receiving the
activation message from a neighbour, sends it to all its other neighbours, and becomes
active; active nodes ignore all received activation messages. Within finite time, all nodes
become active, including the leaves. The leaves will start the second stage.

Each active leaf starts the saturation stage by sending a message (call it M) to its only
neighbour, referred now as its “parent”, and becomes processing. (note: M messages will
start arriving within finite time to the internal nodes). An internal node waits until it has
received an M message from all its neighbours but one, sends a M message to that neighbour
that will now be considered its “parent”, and becomes processing. If a processing node
receives a message from its parent, it becomes saturated.

The resolution stage is started by the saturated nodes; the nature of this stage depends on
the application. Commonly, this stage is used as a notification for all entities (e.g., to achieve
local termination).

Since the nature of the final stage will depend on the application, we will only describe the
set of rules implementing the first two stages of Full Saturation.

IMPORTANT. A “truncated” protocol like this will be called a plug-in. In its execution,
not all entities will enter a terminal status. To transform it into a full protocol, some other
action (e.g., the resolution stage) must be performed so that eventually all entities enter a
terminal status.

It is assumed that, initially all entities are in the same status available.

Let us now discuss some properties of this basic technique.

Lemma 3.1 Exactly two processing nodes will become saturated; furthermore, these two
nodes are neighbours and are each other’s parent.

Proof. From the algorithm, it follows that an entity sends a message M only to its parent,
and becomes saturated only upon receiving an M message from its parent. Choose an
arbitrary node x, and traverse the ”up” edge of x (i.e. the edge along which the M message
was sent from x to its parent). By moving along ”up” edges, we must meet a saturated node
s1 since there are no cycles in the graph. This node has become saturated when receiving
an M message from its parent s2. Since s2 has sent an M message to s1, this implies that
s2 must have been processing and must have considered s1 its parent; thus, when the M
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PLUG-IN Full-Saturation .

• Status: S = {AVAILABLE, ACTIVE, PROCESSING, SATURATED};
SINIT = {AVAILABLE};

• Restrictions: R ∪ T.

AVAILABLE
Spontaneously
begin

send(Activate) to N(x);
Initialize;
Neighbours:= N(x);
if|Neighbours|=1 then
Prepare Message;
parent ⇐ Neighbours;
send(M) to parent;
become PROCESSING;

else become ACTIVE;
endif

end

Receiving(Activate)
begin

send(Activate) to N(x) − {sender};
Initialize;
Neighbours:= N(x);
if|Neighbours|=1 then
Prepare Message;
parent ⇐ Neighbours;
send(M) to parent;
become PROCESSING;

else become ACTIVE;
endif

end

ACTIVE
Receiving(M)
begin

Process Message;
Neighbours:= Neighbours−{sender};
if|Neighbours|=1 then
Prepare Message;
parent ⇐ Neighbours;
send(M) to parent;
become PROCESSING;

endif
end

PROCESSING
Receiving(M)
begin

Process Message;
Resolve;

end

Figure 19: Full Saturation
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Procedure Initialize
begin

nil;
end

Procedure Prepare Message
begin

M:=("Saturation");
end

Procedure Process Message
begin

nil;
end

Procedure Resolve
begin

become SATURATED;
Start Resolution stage;

end

Figure 20: Procedures used by Full Saturation

message from s1 will arrive at s2, also s2 will become saturated. Thus, there exist at least
two nodes which become saturated; furthermore these two nodes are each other’s parent.
Assume that there are more than two saturated nodes; then there exist two saturated nodes,
x and y, such that d(x, y) ≥ 2. Consider a node z on the path from x to y; z could not
send a M message towards both x and y; therefore one of them nodes cannot be saturated.
Therefore, the lemma holds.

IMPORTANT. Which entities will become saturated depends on the communication delays
and, it is therefore totally unpredictable. Subsequent executions with the same initiators
might generate different results. In fact

any pair of neighbours could become saturated.

The only guarantee is that a pair of neighbours will be selected; since a pair of neighbours
uniquely identifies an edge, the one connecting them, this result is also called edge election.

To determine the number of message exchanges, observe that the activation stage is a wake-
up in a tree and hence it will use n + k⋆ − 2 messages (Equation 12), where k⋆ denotes the
number of initiators. During the saturation stage, exactly one message is transmitted on
each edge, except the edge connecting the two saturated nodes on which two M messages
are transmitted, for a total of n − 1 + 1 = n messages. Thus,

M[FullSaturation] = 2n + k⋆ − 2 (13)

Notice that only n of those messages are due to the saturation stage.
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To determine the ideal time complexity, let I ⊆ V denote the set of initiator nodes, L ⊆ V
denote the set of leaf nodes; t(x) the time delay, from the initiation of the algorithm, until
node x becomes active. To become saturated, node s must have waited until all the leafs
have become active and the M messages originated from them have reached s; that is, it
must have waited Max{t(l)+d(l, s) : l ∈ L}. To become active, a non-initiator node x must
have waited for an (”Activation”) message to reach it, while there is no additional waiting
time for an initiator node; thus, t(x) = Min{d(x, y) + t(y) : y ∈ I}. Therefore, the total
delay, from the initiation of the algorithm, until s becomes saturated (and, thus, the ideal
execution delay of the algorithm) is

T[FullSaturation] = Max{Min{d(l, y) + t(y)} + d(l, y) : y ∈ I, l ∈ L}. (14)

We will now discuss how to apply the saturation technique to solve different problems.

3.2 Minimum Finding

Let us see how the saturation technique can be used to compute the smallest among a set of
values distributed among the nodes of the network. Every entity x has an input value v(x),
and is initially in the same status; the task is to determine the minimum among those input
values. That is, in the end, each entity must know whether or not its value is the smallest,
and enter the appropriate status, minimum or large, respectively.

IMPORTANT. Notice that these values are not necessarily distinct ! So, more than one
entity can have the minimum value; all of them must become minimum.

This problem is called Minimum Finding (MinFind) and is the simplest among the class of
Distributed Query Processing problems that we will examine in later chapters: a set of data
(e.g., a file) is distributed among the sites of a communication network; queries (i.e., external
requests for information about the set) can arrive at any time at any site (which becomes
an initiator of the processing), triggering computation and communication activities. A
stronger version of this problem requires all entities to know the minimum value when they
enter the final status.

Let us see how to solve this problem in a tree network. If the tree was rooted, then this
task can be trivially performed. In fact, in a rooted tree not only is there a special node,
the root, but also a logical orientation of the links: “up” towards the root and “down” away
from the root; this correspond to the “parent” and “children” relationship, respectively. In
a rooted tree, to find the minimum, the root would broadcast down the request to compute
the minimum value; exploiting the orientation of the links, the entities will then perform a
convergecast (described in more details in Section 3.7.2): starting from the leaves, the nodes
determine the smallest value among the values “down”, and send it “up”. As a result of this
process, the minimum value is then determined at the root, which will then broadcast it to
all nodes.

Notice that convergecast can be used only in rooted trees. The existence of a root (and the
additional information existing in a rooted tree) is however a very strong assumption; in
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fact, it is equivalent to assuming the existence of a leader (which, as we will see, might not
be computable).

Full saturation allows to achieve the same goals without a root or any additional information.
This is achieved simply by including in the M message the smallest value known to the sender.
Namely, in the saturation stage the leaves will send their value with the M message, and
each internal node sends the smallest among its own value and all the received ones.

In other words, MinF-Tree is just protocol Full-Saturation where the procedures Initialize,
Prepare Message, and Process Message are as shown in Fig. 21, and where the resolution
stage is just a notification started by the two saturated nodes, of the minimum value they
have computed. This is obtained by simply modifying procedure Resolve accordingly and
adding the rule for handling the reception of the notification.

The correctness follows from the fact that both saturated nodes know the minimum value
(Exercise 6.31).

The number of message transmission for the minimum-finding algorithm MinF-Tree will be
exactly the same as the one experienced by Full Saturation plus the ones performed during
the notification. Since a notification message is sent on every link except the one connecting
the two saturated nodes, there will be exactly n − 2 such messages. Hence

M[MinF − Tree] = 3n + k⋆ − 4. (15)

The time costs will be the one experienced by Full Saturation plus the ones required by the
notification. Let Sat denote the set of the two saturated nodes; then

T[MinF − Tree] = T[FullSaturation] + Max{d(s, x) : s ∈ Sat, x ∈ V } (16)

3.3 Distributed Function Evaluation

An important class of problems are those of Distributed Function Evaluation; that is, where
the task is to compute a function whose arguments are distributed among the processors of a
distributed memory system (e.g., the sites of a network). An instance of this problem is the
the one we just solved: minimum finding. We will now discuss how the saturation technique
can be used to evaluate a large class of functions.

3.3.1 Semigroup Operations

Let f be an associative and commutative function defined over all subsets of the input values.
Examples of this type of functions are: minimum, maximum, sum, product, etc, as well as
logical predicates. Because of their algebraic properties, these functions are called semigroup
operations.

IMPORTANT. It is possible that some entities do not have an argument (i.e. initial value)
or that the function must only be evaluated on a subset of the arguments. We shall denote
the fact that x does not have an argument by v(x) =nil.
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PROCESSING
Receiving(Notification)
begin

send(Notification) to N(x)−parent;
if v(x) =Received Value then

become MINIMUM;
else

become LARGE;
endif

end

Procedure Initialize
begin

min:=v(x);
end

Procedure Prepare Message
begin

M:=("Saturation", min);
end

Procedure Process Message
begin

min:= MIN{min, Received Value};
end

Procedure Resolve
begin

Notification:= (‘‘Resolution’’, min);
send(Notification) to N(x)−parent;
if v(x) =min then

become MINIMUM;
else

become LARGE;
endif

end

Figure 21: New Rule and Procedures used for Minimum Finding
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PROCESSING
Receiving(Notification)
begin

result:= received value;
send(Notification) to N(x)−parent;
become DONE;

end

Procedure Initialize
begin

if v(x) 6= nil then
result:=f(v(x));

else
result:=nil;

end

Procedure Prepare Message
begin

M:=("Saturation", result);
end

Procedure Process Message
begin

if received value 6= nil then
if result 6= nil then

result:= f(result, received value);
else

result:= f(received value);
endif

endif
end

Procedure Resolve
begin

Notification:= ("Resolution", result);
send(Notification) to N(x)−parent;
become DONE;

end

Figure 22: New Rule and Procedures used for Function-Tree
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The same approach that has led us to solve Minimum Finding can be used to evaluate f .

The protocol Function-Tree is just protocol Full-Saturation where the procedures Initialize,
Prepare Message, and Process Message are as shown in Fig. 22, and where the resolution
stage is just a notification started by the two saturated nodes, of the final result of the
function they have computed. This is obtained by simply modifying procedure Resolve
accordingly and adding the rule for handling the reception of the notification.

The correctness follows from the fact that both saturated nodes know the result of the
function (Exercise 6.32). For particular types of functions, see Exercises 6.33, 6.34, and 6.35.

The time and message costs of the protocol are exactly the same as the one for minimum-
finding. Thus, semigroup operations can be performed optimally on a tree with any number
of initiators and without a root or additional information.

3.3.2 Cardinal Statistics

A useful class of functions are statistical ones, such as average, standard deviation, etc. These
functions are not semigroup operation but can nevertheless be optimally solved using the
saturation technique.

We will just examine, as an example, the computation of Ave, the average of the (relevant)
entities’ values. Observe that Ave ≡ Sum/Size where Sum is the the sum of all (relevant)
values, and Size is the number of those values. Since Sum is a semigroup operation, we
already know how to compute it. Also Size is trivially computed using saturation (Exercises
6.36 and 6.37).

We can collect at the two saturated nodes Sum and Size with a single execution of Satu-
ration: the M message will contain two data fields M=(“Saturation”, sum,size), which are
initialized by a each leaf node and updated by the internal ones. The resolution stage is just
a notification started by the two saturated nodes, of the average they can have computed.

Similarly, a single execution of Full Saturation with a final notification of the result will allow
the entities to compute cardinal statistics on the input values.

Notice that ordinal statistics (e.g., median) are in general more difficult to resolve. We will
discuss them in the chapter on selection and sorting of distributed data.

3.4 Finding Eccentricities

The basic technique has been so far used to solve single-valued problems; that is, problems
whose solution requires the identification of a single value). It can also be used to solve
multi-valued problems such as the problem of determining the eccentricities of all the nodes.

The eccentricity of a node x, denoted by r(x), is the largest distance between x and any
other node in the tree: r(x) = Max{d(x, y) : y ∈ V }; note that a center is a node with
smallest eccentricity. (We briefly discussed center and eccentricity already in Section 1.4.4.)

To compute its own eccentricity, a node x needs to determine the maximum distance from
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PROCESSING
Receiving(Notification)
begin

result:= received value;
send(Notification) to N(x)−parent;
become DONE;

end

Procedure Initialize
begin

sum:=v(x);
size:=1;

end

Procedure Prepare Message
begin

M:=("Saturation", sum,size);
end

Procedure Process Message
begin

sum:= sum + Received sum;
size:=size + Received size;

end

Procedure Resolve
begin

result := sum / size;
Notification:= (‘‘Resolution’’, result);
send(Notification) to N(x)−parent;
become DONE;

end

Figure 23: New Rule and Procedures used for computing the Average
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all other nodes in the tree. To accomplish this, x needs just to broadcast the request, making
itself the root of the tree, and, using convergecast on this rooted tree, collect the maximum
distance to itself. This approach would require 2(n − 1) messages and it is clearly optimal
with respect to order of magnitude. If we want every entity to compute its eccentricity, this
however would lead to a solution which requires 2(n2 − n) messages.

We will now show that saturation will yield instead a O(n), and thus optimal, solution.

The first step is to use saturation to compute the eccentricity of the two saturated nodes.
Notice that we do not know a priori which pair of neighbours will become saturated. We
can nevertheless ensure that when they become saturated they will know their eccentricity.
To do so, it is enough to include, in the M message sent by an entity x to its neighbour y,
the maximum of distance from x to the nodes in T [x − y], increased by 1. In this way, a
saturated node s will know d[s, y] for each neighbour y; thus, it can determine its eccentricity
(Exercise 6.38).

Our goal is to have all nodes determine their eccentricity, not just the saturated ones. The
interesting thing is that the information available at each entity at the end of the saturation
stage is almost sufficient to make them compute their own eccentricity.

Consider an entity u; it sent the M message to its parent v, after it received one from all its
other neighbours; the message from y 6= v contained d[u, y]. In other words, u knows already
the maximum distance from all the entities except the ones in the tree T [v − u]. Thus, the
only information u is missing is d[u, v] = Max{d(u, y) : y ∈ T [v−u]}. Notice that (Exercise
6.39)

d[u, v] = Max{d(u, y) : y ∈ T [v − u]} = 1 + Max{d[v, z] : z 6= u ∈ N(v)}. (17)

Summarizing, every node, except the saturated ones, are missing one piece of information:
the maximum distance from the nodes on the other side of the link connecting it to its parent.
If the parents could provide this information, the task can be completed. Unfortunately, the
parents are also missing information, unless they are the saturated nodes.

The saturated nodes have all the information they need. They also have the information their
neighbours are missing: let s be a saturated node, and x be an unsaturated neighbour; x is
missing the information d[x, s]; by Equation 17, this is exactly d[x, s] = 1+Max{d[s, z] : x 6=
z ∈ N(s)}, and s knows all the d[s, z] (they were included in the M messages it received.
So, the saturated nodes s can provide the needed information to their neighbours, who
can then compute their eccentricity. The nice property is that now these neighbours have
the information required by their own neighbours (further away from the saturated nodes).
Thus, the Resolution stage of Full Saturation can be used to provide the missing information:
starting from the saturated nodes, once an entity receives the missing information from a
neighbour, it will compute its eccentricity and provide the missing information to all its
other neighbours.

IMPORTANT. Notice that, in the Resolution stage, an entity sends different information
to each of its neighbours ! Thus, unlike the Resolution we used so far, it is not a notification.

The protocol Eccentricities will thus be a Full Saturation where the procedures Initialize,
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Prepare Message and Process Message are as shown in Fig. 24. The rule for handling
the reception of the message, the procedure Resolve, and the procedure to calculate the
eccentricity are also shown in Fig. 24.

Notice that, even though each node receives a different message in the resolution stage, only
one message will be received by each node in that stage, except the saturated nodes which
will receive none. Thus, the message cost of protocol Eccentricities will be exactly as the
one of MinF-Tree, and so will the time cost:

M[Eccentricities] = 3n + k⋆ − 4 ≤ 4n − 4. (18)

T[Eccentricities] = T[MinF − Tree] (19)

3.5 Center Finding

A center is a node from which the maximum distance to all other nodes is minimized. A
network might have more than one center. The Center Finding problem (Center) is to make
each entity aware of whether or not it is a center by entering the appropriate terminal status
center or not-center, respectively.

3.5.1 A Simple Protocol

To solve Center we can use the fact that a center is exactly a node with smallest eccentricity.
Thus a solution protocol consists of finding the minimum among all eccentricities, combining
the protocols we have developed so far:

(1) Execute protocol Eccentricities;
(2) Execute the last two stages (saturation and resolution) of MinF-Tree.

Part (1) will be started by the initiators; part (2) will be started by the leaves once, upon
termination of their execution of Eccentricities, they know their eccentricity; the saturation
stage of MinF-Tree will determine at two new saturated nodes the minimum overall eccen-
tricity, and will be by them broadcasted in the notification stage. At that time, an entity
can determine if it is a center of not.

This approach will cost 3n + k⋆ − 4 messages for part (1) and n + n − 2 = 2n − 2 for part
(2), for a total of 5n + k⋆ − 6 ≤ 6n − 6 messages.

The time costs are no more than: T[Eccentricities] + 2d ≤ 4d.
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PROCESSING
Receiving(“Resolution′′, dist)
begin

Resolve;
end

Procedure Initialize
begin

Distance[x]:= 0;
end

Procedure Prepare Message
begin

maxdist:= 1+ Max{Distance[*]};
M:=("Saturation", maxdist);

end

Procedure Resolve
begin

Process Message;
Calculate Eccentricity;
forall y ∈ N(x) − {parent} do

maxdist:= 1 + Max{Distance[z]: z ∈ N(x) − {parent, y}};
send(‘‘Resolution’’, maxdist) to y;

endfor
become DONE;

end

Procedure Process Message
begin

Distance[sender]:= Received distance;
end

Procedure Calculate Eccentricity
begin

r(x):= Max{Distance[z]: z ∈ N(x)};
end

Figure 24: New Rule and Procedures used for computing the Eccentricities
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3.5.2 A Refined Protocol

An improvement can be derived by exploiting the structure of the problem in more details.
Recall that d[x, y] = Max{d(x, z) : z ∈ T [y − x]} is the longest distance between x and the
nodes in T [y − x]. Let d1[x] and d2[x] be the largest and second-largest of all {d[x, y] : y ∈
N(x)}. The centers of a tree have some very interesting properties. Among them:

Lemma 3.2 In a tree there is either a unique center or there are two centers and they are
neighbours.

Lemma 3.3 In a tree all centers lie on all diametral paths

Lemma 3.4 A node x is a center if and only if d1[x] − d2[x] ≤ 1; if strict inequality holds,
then x is the only center.

Lemma 3.5 Let y and z be neighbours of x such that d1[x] = d[x, y] and d2[x] = d[x, z]. If
d[x, y] − d[x, z] > 1, then all centers are in T [y − x].

Lemma 3.4 gives us the tool we need to devise a solution protocol: an entity x can determine
whether or not it is a center, provided it knows the value d[x, y] for each of its neighbours
y. But this is exactly the information that was provided to x by protocol Eccentricities so
it could compute r(x).

This means that, to solve Center it suffices to execute Eccentricities. Once an entity has
all the information to compute its radius, it will check whether the largest and the second
largest received values differ at most by one; if so, it becomes center, otherwise not-center.
Thus, the solution protocol Center Tree is obtained from Eccentricities adding this test and
some bookkeeping (Exercise 6.40).

The time and message costs of Center Tree will be exactly the same of Eccentricities.

M[Center Tree] = 3n + k⋆ − 4 ≤ 4n − 4. (20)

T[Center Tree] = T[FullSaturation] (21)

3.5.3 An Efficient Plug-In

The solutions we have discussed are a full protocols. In some circumstances however, a
plug-in is sufficient; e.g., when the centers must then start another global task. In these
circumstances, the goal is just for the centers to know that they are centers.

In such a case, we can construct a more efficient mechanism, always based on saturation,
using the resolution stage in a different way.

The properties expressed by Lemmas 3.4 and 3.5 give us the tools we need to devise the
plug-in.

56



In fact, by Lemma 3.4, x can determine whether or not it is a center once it knows the value
d[x, y] for each of its neighbours y. Furthermore, if x is not a center, by Lemma 3.5, this
information is sufficient to determine in which subtree T [y − x] a center resides.

Thus, the solution is to collect such values at a node x; determine whether x is a center;
and, if not, move towards a center until it is reached.

In order to collect the information needed, we can use the first two stages (Wakeup and
Saturation) of protocol Eccentricities. Once a node becomes saturated, it can determine
whether it is a center by checking whether the largest and the second largest received values
differ at most by one. If it is not a center, it will know that the center(s) must reside in
the direction from which the largest value has been received. By keeping track at each node
(during the saturation stage) of which neighbour has sent the largest value, the direction of
the center can also be determined. Furthermore, a saturated node can decide whether it or
its parent is closest to a center.

The saturated node, say x, closest to a center will then send a ”Center” message, containing
the second largest received value increased by one, in the direction of the center. explain

Why. A processing node receiving such a message will, in turn, be able to determine
whether it is a center and, if not, the direction towards the center(s).

Once the message arrives at a center c, c will be able to determine if it is the only center or
not (using Lemma 3.4); in case, it will know which neighbour is the other center, and will
notify it.

The Center Finding plug-in will then be the Full Saturation plug-in with the addition of
the “Center” message traveling from the saturated nodes to the centers. In particular, the
routines Initialize, Process Message, Prepare Message, Resolve and the new rule governing
the reception of the “Center” messages is shown in Fig. 25.

The message cost of this plug-in is easily determined by observing that, after the Full Sat-
uration plug-in is applied, a message will travel from the saturated node s (closest to a
center) to its furthermost center c; hence, d(s, c) additional messages are exchanged. Since
d(s, c) ≤ n/2, then the total number of message exchanges performed is

M[Center − Finding] = 2.5n + k⋆ − 2 ≤ 3.5n − 2. (22)

3.6 Other Computations

The simple modifications to the basic technique that we have discussed in the previous
sections can be applied to efficiently solve a variety of other problems.

Following is a sample of them, and the key properties employed towards their solution.
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PROCESSING
Receiving(‘‘Center’’, value)
begin

Process Message;
Resolve;

end

Procedure Initialize
begin

Max Value := 0;
Max2 Value := 0;

end

Procedure Prepare Message
begin

M:=("Saturation", Max Value+1);
end

Procedure Process Message
begin

if Max Counter < Received value then
Max2 Value := Max Value;
Max Value := Received Value;
Max Neighbour := sender;

else
if Max2 Value < Received value then

Max2 Value := Received value;
endif

endif
end

Procedure Resolve
begin

if Max Value - Max2 Value = 1 then
if Max Neighbour 6= parent then

send(Center,Max2 Value) to Max Neighbour;
endif
become CENTER;

else
if Max Value - Max2 Value > 1 then

send(Center,Max2 Value) to Max Neighbour;
else

become CENTER;
endif

endif
end

Figure 25: Transforming Saturation into an efficient Plug-In for Center Finding
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3.6.1 Finding a Median

A median is a node from which the average distance to all nodes in the network is minimized.
Since a median obviously minimizes the sum of the distances to all other nodes, it is also
called a communication center of the network.

In a tree, the key properties are:

Lemma 3.6 In a tree there either is a unique median or there are two medians and they
are neighbours.

Given a node x, and a sub-tree T ′, let g[T, x] = Σy∈T d(x, y) denote the sum of all distances
between x and the nodes in T , and let G[x, y] = g[T, x]−g[T, y] = n+2−2∗ |T [y−x]|; then

Lemma 3.7 Entity x is a median if and only if G[x, y] >= 0 for all neighbours y.

Furthermore,

Lemma 3.8 If x is not the median, there exists a unique neighbour y such that G[y, x] < 0;
such a neighbour lies in the path from x to the median.

Using these properties, it is simple to construct a full protocol as well as an efficient plug-in,
following the same approaches used for center finding. (Exercise 6.41)

3.6.2 Finding Diametral Paths

A diametral path is a path of longest length. In a network there might be more than
one diametral path. The problem we are interested in is to identify all these paths. In
distributed terms, this means that each entity need to know if it is part of a diametral path
or not, entering an appropriate status (e.g., on-path or off-path).

The key property to solve this problem is:

Lemma 3.9 A node x is on a diametral path if and only if d1[x] + d2[x] = d.

Thus, a solution strategy will be to determine d, d1[x] and d2[x] at every x, and then use
Lemma 3.9 to decide the final status. A full protocol efficiently implementing this strategy
can be designed using the tools developed so far (Exercise 6.45)

Consider now designing a plug-in instead of a full protocol; that is, we are only interested
that the entities on diametral paths (and only those) become aware of it.

In this case, the other key property is Lemma 3.4: every center lies on every diametral path.
This gives us a starting point to find the diametral paths: the centers. To continue, we
can then use Lemma 3.9. In other words, we first find the centers (note: they know the
diameter), and then propagate the information along the diametral paths. A center (or for
that matter, a node on a diametral path) does not know a priori which one of its neighbours
is also on a diametral path. It will thus send the needed information to all its neighbours
which, upon receiving it, will determine whether on not they are on such a path; if so, they
continue the execution. (Exercise 6.46)
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Figure 26: (a) A tree T ; (b) the same tree rooted in r T[r].

3.7 Computing in Rooted Trees

3.7.1 Rooted Trees

In some cases, the tree T is actually rooted; that is, there is a distinct node, r, called the
root, and all links are oriented towards r. In this case, the tree T will be denoted by T[r].

If link (x, y) is oriented from y to x, x is called the parent of y, and y is said to be a child of
x. Similarly, a descendant of x is any entity z for which there is a directed path from z to x,
and an ancestor of x is any entity z for which there is a directed path from x to z.

Two important properties of a rooted tree are that the root has no parent, while every other
node has only one parent (see Figure 26).

Before examining how to compute in rooted trees, let us first observe the important fact
that transforming a tree into a rooted one might be an impossible task !

Theorem 3.1 The problem of transforming trees into rooted ones is deterministically un-
solvable under R.

Proof. Recall that deterministically unsolvable means that there is no deterministic pro-
tocol which always correctly terminates within finite time. To see why this is true, consider
the simple tree composed of two entities x and y connected by links labeled as shown in
Figure 27. Let the two entities have identical initial values (the symbols x, y are used only
for description purposes). If a solution protocol A exists, it must work under any conditions
of message delays (as long as they are finite) and regardless of the number of initiators. Con-
sider a synchronous schedule (i.e., an execution where communication delays are unitary)
and let both entities start the execution of A simultaneously. Since they are identical (same
initial status and values, same port labels), they will execute the same rule, obtain the same
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Figure 27: It is impossible to transform this tree into a rooted one.

results (thus, continuing to have the same local values), compose and send (if any) the same
messages; enter the same (possibly new) status. In other words, they will remain identical.
In the next time unit, all sent messages (if any) will arrive and be processed. If one entity
receives a message, the other will receive the same message at the same time, perform the
same local computation, compose and send (if any) the same messages; enter the same (pos-
sibly new) status. And so on. In other words, the two entities will continue to be identical.
If A is a solution protocol, it must terminate within finite time; when this occurs, one entity,
say x, becomes the root. But since both entities will always have the same state in this
execution, also y will become root, contradicting the fact that A is correct. Thus, no such a
solution algorithm A exists.

This means that being in a rooted tree is considerably different from being in a tree. Let us
see how to exploit this difference.

3.7.2 Convergecast

The orientation of the links in a rooted tree is such that each entity has a notion of “up”
(i.e., towards the root) and “down” (i.e., away from the root). If we are in a rooted tree, we
can obviously exploit the availability of this globally consistent orientation. In particular, in
the saturation technique, the process performed in the saturation stage can be simplified as
follows:

Convergecast

1. a leaf sends its message to its parent;

2. each internal node waits until it receives a message from all its children; it then sends
a message to its parent.

In this way, the root (that does not have a parent) will be the sole saturated node, and will
start the resolution stage.

This simplified process is called convergecast. If we are in a rooted tree, we can solve all the
problems we discussed in the previous section (minimum-finding, center finding, etc) using
convergecast in the saturation stage.

In spite of its greater simplicity, the savings in cost due to convergecast is only 1 message
(Exercise 6.47). Clearly, such an amount alone does not justify the difference between general
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trees and rooted ones. There are however other advantages in rooted trees, as we will see
later.

3.7.3 Totally Ordered Trees

In addition to the globally consistent orientation “up and down”, a rooted tree has another
powerful property. In fact, the port numbers at a node are distinct; thus, they can be sorted,
e.g. in increasing order, and the corresponding links can be ordered accordingly. This means
that the entire tree is ordered. As a consequence, also the nodes can be totally ordered e.g.
according to a pre-order traversal (see Figure 28).

Note that a node might not be aware of its order number in the tree, although this information
can be easily acquired in the entire tree (Exercise 6.49). This means that, in a rooted tree
the root assign unique ids to the entities. This fact shows indeed the power of rooted trees.
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Figure 28: A rooted tree is an ordered tree and unique names can be given to the nodes.

The fact that a rooted tree is totally ordered can be exploited also in other computations.
Following are two examples.

Example: Choosing a Random Entity.

In many systems and applications, it is necessary to occasionally select an entity at random.
This occurs for instance in routing systems where, to reduce congestion, a message is first
sent to an intermediate destination chosen at random, and then delivered from there to the
final destination. The same random selection is made e.g., for coordination of a computation,
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for control of a resource, etc. The problem is how to determine an entity at random. Let us
concentrate on uniform choice; that is, every entity must have the same probability, 1

n
, of

being selected.
In a rooted tree, it becomes easy for the root to select uniformly at random an entity. Once
unique names have been assigned in pre-order to the nodes and the root knows the number
n of entities, the root needs only to locally choose a number uniformly at random between
1 and n; the entity with such a name will be the selected one. At this point, the only thing
that the root r still has to do is to efficiently communicate to the selected entity x the result
of the selection.
Actually, it is not necessary to assign unique names to the identities; in fact, it suffices that
each entity knows the number of descendents of each of its children, and the entire process
(from initial notification to all to final notification to x) can be performed with at most
2(n − 1) + dT (s, x) messages and 2r(s) + dT (s, x) ideal time units (Exercise 6.50).

Example: Choosing at Random from a Distributed Set

An interesting computation is the one of choosing at random an element of a set of data
distributed (without replication) among the entities. The setting is that of a set D partitioned
among the entities; that is, each entity x has a subset Dx ⊆ D of the data where ∪xDx = D
and, for x 6= y, Dx ∩ Dy = ∅.
Let us concentrate again on uniform choice; that is, every data item must have the same
probability, 1

|D|
of being selected. How can this be achieved ?

IMPORTANT. Choosing first an entity uniformly at random and then choosing an item
uniformly at random in the set stored there will NOT give a uniformly random choice from
the entire set !! (Exercise 6.51).

Interestingly, this problem can be solved with a technique similar to that used for selecting
an entity at random, and with the same cost (Exercise 6.52).

3.7.4 Application: Termination Detection

Convergecast can be used whenever there is a rooted spanning-tree. We will now see an
application of this fact.

It is a “fact of life” in distributed computing that entities can terminate the execution of
a protocol at different times; furthermore, when an entity terminates is usually unaware of
the status of the other entities. This is why we differentiate between local termination (i.e.
of the entity) and global termination (i.e., of the entire system).

For example, with the broadcast protocol Flooding the initiator of the broadcast does not
know when the broadcast is over. To ensure that the initiator of the broadcast becomes
aware of when global termination occurs, we need to use a different strategy.

To develop this strategy, recall that, if an entity s performs a Flood+Reply (e.g., protocol
Shout) in a tree, the tree will become rooted in s: the initiator is the root; for every other
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node y, the neighbour x from which it receives the first broadcasted message is its parent,
and all the neighbours that send the positive reply (e.g., “YES” in Shout and Shout+) are
its children. This means that convergecast can be “appended” to any Flood+Reply protocol.

Strategy Broadcast with Termination Detection:

1. The initiator s uses any Flood+Reply protocol to broadcast and construct a spanning
tree T[s] of the network;

2. Starting from the leaves of T[s], the entities perform a convergecast on T .

At the end of the convergecast, s becomes aware of the global termination of the broadcast
(Exercise 6.48).

As for the cost, to broadcast with termination detection we need just to add the cost of the
convergecast to the one of the Flood+Reply protocol used. For example, if we use Shout+,
the resulting protocol that we shall call TDCast will then use 2m + n − 1 messages. The
ideal time of Shout+ is exactly r(s)+ 1; the ideal time of convergecast is exactly the hight of
the tree T[s], that is r(s); thus, protocol TDCast has ideal time complexity 2r(s) + 1. This
means that termination detection can be added to broadcast with less than twice the cost
of broadcasting alone.

4 SUMMARY

4.1 Summary of Problems

• Broadcast [Information problem] =⇒ A single entity has special information, that everybody
must know.

– Unique Initiator

– Flooding: Messages= Θ(m); Time=Θ(d)

• Wake Up [Information/Synchronization problem] =⇒ Some entities are awake; everybody
must wake-up.

– WakeUp ≡ (Broadcast with multiple initiators)

– WFlood: Messages= Θ(m); Time=Θ(d)

• Traversal [Network problem] =⇒ Starting form the initiator, each entity is visited sequen-
tially.

– Unique Initiator

– DF-Traversal: Messages= Θ(m); Time=Θ(n)

• Spanning-Tree Construction [Network problem]=⇒ Each entity identifies the subset of
neighbours in the spanning tree.

– SPT with unique initiator ≡ Broadcast

– Unique initiator: Shout: Messages= Θ(m); Time=Θ(d)
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– Multiple-Initiators: assume Distinct Initial Values

• Election [Control problem] =⇒ One entity becomes leader, all others enter different special
status.

– Distinct Initial Values

• Minimum Finding [Data problem] =⇒ Each entity must know whether its initial value is
minimum or not.

• Center Finding [Network problem] =⇒ Each entity must know whether or not it is a center
of the network.

4.2 Summary of Techniques

• flooding: with single initiator = broadcast; with multiple initiators = wake-up.

• flooding with reply (Shout ): with single initiator, it creates a spanning-tree rooted in the
initiator.

• convergecast: in rooted trees only !

• flooding with replies plus convergecast (TDCast): single initiator only !
initiator finds out that the broadcast has globally terminated.

• saturation: in trees only !

• depth-first traversal: single initiator only !

5 Bibliographical Notes

Of the basic techniques, flooding is the oldest one, still currently and frequently used. The
more sophisticated refinements of adding reply and a converge-cast were discussed and em-
ployed independently by Adrian Segall [11] and Ephraim Korach, Doron Rotem and Nicola
Santoro [8]. Broadcasting in a linear number of messages in unoriented hypercubes is due
to Stefan Dobrev and Peter Ruzicka [5]. The use of broadcast trees was first discussed by
David Wall [12].
The depth-first traversal protocol was first described by Ernie Chang [3]; the first hacking
improvement is due to Baruch Awerbuch [2]; the subsequent improvements were obtained
by K.B. Lakshmanan, N. Meenakshi and K. Thulasiraman [9] and independently by Israel
Cidon [4].
The difficulty of performing a wake-up in labelled hypercubes and in complete graphs (the
latter even with unique ids) has been proved by Stefan Dobrev and Nicola Santoro [6].

The first formal argument on the impossibility of some global computations under R (e.g.,
the impossibility result for spanning-tree construction with multiple initiators) is due to
Dana Angluin [1].

The saturation technique is originally due to Nicola Santoro [10]; its application to center
and median finding, as well as to to rank finding (Exercise 6.43) was developed by Ephraim
Korach, Doron Rotem and Nicola Santoro [7, 8].
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6 Exercises, Problems, and Answers

6.1 Exercises

Exercise 6.1 Show that protocol Flooding uses exactly 2m − n + 1 messages.

Exercise 6.2 Design a protocol to broadcast without the restriction that the unique initiator
must be the entity with the initial information. Write the new problem definition. Discuss
the correctness of your protocol. Analyze its efficiency.

Exercise 6.3 Modify Flooding so to broadcast under the restriction that the unique initiator
must be an entity without the initial information. Write the new problem definition. Discuss
the correctness of your protocol. Analyze its efficiency.

Exercise 6.4 We want to move the system from an initial configuration where every entity is
in the same status ignorant except one which is knowledgeable, to a final configuration where
every entity is in the same status. Consider this problem under the standard assumptions
plus Unique Initiator.
(a) Prove that, if the unique initiator is restricted to be one of the ignorant entities, this
problem is the same as broadcasting (same solution, same costs).
(b) Show how, if the unique initiator is restricted to be the knowledgeable entity, the problem
can be solved without any communication.

Exercise 6.5 Design a protocol to broadcast without the Bidirectional Link restriction. Dis-
cuss its correctness. Analyze its efficiency.

Exercise 6.6 Prove that, in the worst case, the number of messages used by protocol WFlood
is at most 2m. Show under what conditions will such a bound be achieved. Under what
conditions will the protocol use only 2m − n + 1 messages ?

Exercise 6.7 Prove that protocol WFlood correctly terminates under the usual restrictions
BL,C, and TR.

Exercise 6.8 Write the protocol that implements strategy HyperFlood.

Exercise 6.9 Show that the subgraph Hk(x), induced by the messages sent when using Hy-
perFlood on the k-dimensional hypercube Hk with x as the initiator, contains no cycles.

Exercise 6.10 Show that for every x, the eccentricity of x in Hk(x) is k.

Exercise 6.11 Prove that the message complexity of traversal under R is at least m. (Hint:
use the same technique employed in the proof of Theorem 1.1).

Exercise 6.12 Let G be a tree. Show that, in this case, no Backedge messages will be sent
in any execution of DF Traversal.
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Exercise 6.13 Characterize the virtual ring formed by an execution of DF Traversal in a
tree network. Show that the ring has 2n − 2 virtual nodes.

Exercise 6.14 Write the protocol DF++.

Exercise 6.15 Prove that protocol DF++ correctly performs a depth-first traversal.

Exercise 6.16 Show that, in the execution of DF++, on some back-edges there might be
two “mistakes”.

Exercise 6.17 Determine the exact number of messages transmitted in the worst case when
executing DF* in a complete graph.

Exercise 6.18 Prove that in protocol Shout, if an entity x is in Tree-neighbours of y, then
y is in Tree-neighbours of x.

Exercise 6.19 Prove that in protocol Shout, if an entity sends Yes, then it is connected to
the initiator by a path where on every link a Yes has been transmitted. (Hint: use induction)

Exercise 6.20 Prove that the subnet constructed by protocol Shout contains no cycles.

Exercise 6.21 Prove that T[Flood+Reply] = T[Flooding]+1.

Exercise 6.22 Write the set of rules for protocol Shout+.

Exercise 6.23 Determine under what conditions on the communication delays, protocol
Shout will construct a breadth-first spanning tree.

Exercise 6.24 Modify protocol Shout so that the initiator can determine when the broadcast
is globally terminated. (Hint: integrate in the protocol the convergecast operation for rooted
trees)

Exercise 6.25 Modify protocol DF* so that every entity determines its neighbours in the
df-tree it constructs.

Exercise 6.26 Prove that f∗ is exactly the number of leaves of the df-tree constructed by
df-SPT.

Exercise 6.27 Prove that, in the execution of df-SPT, when the initiator becomes done, a
df-tree of the network has already been constructed.

Exercise 6.28 Prove that, for any broadcast protocol, the graph induced by relationship
“parent” is a spanning tree of the network.

Exercise 6.29 Prove that the bf-tree of G rooted in a center is a broadcast tree of G.
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Exercise 6.30 Verify that, with multiple initiators, the optimized version DF+ and DF* of
protocol df-SPT will always create a spanning forest of the graph depicted in Figure 14.

Exercise 6.31 Prove that when a node becomes saturated in the execution of protocol MinF-
Tree, it knows the minimum value in the network.

Exercise 6.32 Prove that when a node becomes saturated in the execution of protocol Funct-
Tree, it knows the value of f .

Exercise 6.33 Design a protocol to determine if all the entities of a tree network have
positive initial values. Any number of entities can independently start.

Exercise 6.34 Consider a tree system where each entity has a salary and a gender. Some
external investigators want to know if all entities with a salary below $50, 000 are female.
Design a solution protocol which can be started by any number of entities independently.

Exercise 6.35 Consider the same tree system of Question 6.34. The investigators now want
to know if there is at least one female with a salary above $50, 000. Design a solution protocol
which can be started by any number of entities independently.

Exercise 6.36 Design an efficient protocol to compute the number of entities in a tree net-
work. Any number of entities can independently start the protocol.

Exercise 6.37 Consider the same tree system of Question 6.34. The investigators now want
to know how many female entities are in the system. Design a solution protocol which can
be started by any number of entities independently.

Exercise 6.38 Consider the following use of the M message: a leaf will include a value
v = 1; an internal node will include one plus the maximum of all received values. Prove that
the saturated nodes will compute their maximum distance from all other nodes.

Exercise 6.39 Prove that for any link (u, v), d[u, v] = Max{d(u, y) : y ∈ T [v − u]} =
1 + Max{d(v, y) : y ∈ T [u − v]} = Max{d[v, z] : z 6= u ∈ N(v)}.

Exercise 6.40 Modify protocol Eccentricities so it can solve Center, as discussed in Section
3.5.

Exercise 6.41 Median Finding. Construct an efficient plug-in so that the median nodes
know that they are such.

Exercise 6.42 Diameter Finding. Design an efficient protocol to determine the diameter
of the tree. (Hint: use Lemma 3.2.)

Exercise 6.43 Rank Finding in Tree. Consider a tree where each entity x has an initial
value v(x); these values are not necessarily distinct. The rank of an entity x will be the rank
of its value; that is, rank(x) = 1 + |{y ∈ V : v(y) < v(x)}. So, whoever has the smallest
value, has rank 1. Design an efficient protocol to determine the rank of a unique initiator
(i.e., under the additional restriction UI).
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Exercise 6.44 Generic Rank Finding. Consider the ranking problem described in Ex-
ercise 6.43. Design an efficient solution protocol which is generic, that is it works in an
arbitrary connected graph.

Exercise 6.45 Diametral Paths. A path whose length is d is called diametral. Design an
efficient protocol so that each entity can determine whether or not it lies on a diametral path
of the tree.

Exercise 6.46 A path whose length is d is called diametral. Design an efficient plug-in so
that all and only the entities on a diametral path of the tree become aware of this fact.

Exercise 6.47 Show that convergecast uses only 1 (one) message less than the saturation
stage in general trees.

Exercise 6.48 Prove that, when a initiator of a TDCast protocol receives the convergecast
message from all its children, the initial broadcast is globally terminated.

Exercise 6.49 Show how to efficiently assign a unique id to the entities in a rooted tree.

Exercise 6.50 Random Entity Selection ⋆ Consider the task of selecting uniformly at
random an entity in a tree rooted at s. Show how to perform this task, started by the root,
with at most 2(n − 1) + dT (s, x) messages and 2r(s) + dT (s, x) ideal time units. Prove both
correctness and complexity.

Exercise 6.51 Show why choosing uniformly at random a site and then choosing uniformly
at random an element from that site from that site is not the same as choosing uniformly at
random an element from the entire set.

Exercise 6.52 Random Item Selection ⋆⋆ Consider the task of selecting uniformly at
random an item from a set of data partitioned among the nodes of a tree rooted at s. Show
how to perform this task, started by the root, with at most 2(n − 1) + dT (s, x) messages and
2r(s) + dT (s, x) ideal time units. Prove both correctness and complexity.

6.2 Problems

Problem 6.1 Develop an efficient solution to the Traversal problem without the Bidirec-
tional Links assumption.

Problem 6.2 Develop an efficient solution to the Minimum Finding problem in a hypercube
with a unique initiator (i.e., under the additional restriction UI). Note that the values might
not be distinct.

Problem 6.3 Solve the Minimum Finding problem is a system where there is already a
leader; that is, under restrictions R∪UI. Note that the values might not be distinct. Prove
the correctness of your solution, and analyze its efficiency.
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6.3 Answers to Exercises

Answer to Exercise 6.13
A node appears several times in the virtual ring; more precisely, there is an instance of node
z in R for each time z has received a Token or a Finished message. Let x be the initiator;
node x sends a token to each of its neighbours sequentially and receive a Finished message
from each. Every node y 6= x receives exactly one Token (from its parent), and will send one
to all its other neighbours (its children); it will also receive a Finished message from all its
children and send one to its parent. In other words every node z, including the initiator x,
will appear n(z) = |N(z)| times in the virtual ring. The total number of (virtual) nodes in
the virtual ring is therefore

∑
z∈V |N(z)| = 2m = 2(n − 1).

Answer to Exercise 6.16
Consider a Ring network with the three nodes x, y, z. Assume that entity x holds the Token
initially. Consider the following sequence of events that take place successively in time as a
result of the execution of the DF++ protocol: x sends Visited messages to y and z, sends
the Token to y and waits for a (Visited or Return) reply from y. Assume that the link (x, z)
is very very slow.
When y receives the Token from x, it sends to z a Visited message and then the Token.
Assume that when z receives the Token, the Visited message from x has not arrived yet;
hence z sends Visited to x followed by the Token. This is the first mistake: Token is sent on
a backedge to x which has already been visited.
When z finally receives the Visited message from x, it realizes the Token it sent to x was
a mistake. Since it has no other unvisited neighbours, z sends a Return message back to
y. Since y has no other unvisited neighbours, it will then send a Return message back to
x. Assume that when x receives the Return message from y, x has not received yet neither
the Visited nor the Return messages sent by z. Hence, x considers z as an unvisited neigh-
bour, and sends the Token to z. This is the second mistake on the backedge between x and z.

Answer to Exercise 6.19
Suppose some node x is not reachable from s in the graph T induced by the “parent” rela-
tionship; This means that x never sent the Yes messages; this implies that x never received
the question Q. This is impossible because, since flooding is correct, every entity will receive
Q; thus, so such x exists.

Answer to Exercise 6.20
Suppose the graph T induced by the “parent” relationship (i.e., the Yes messages) contains
a directed cycle x0, x1, . . . xk−1; that is, xi is the parent of xi+1 (operations on the indices are
modulo k). This cycle cannot contain the initiator s (because it does not sends any Yes).
We know (Exercise 6.19) that in T there is a path from s to each node, including those in
the cycle. This means that there will be in T a node y not in the cycle which is connected
to a node xi in the cycle. This means that xi sent a Yes message to y; but since it is in the
cycle, it also sent a Yes message to xi−1 (operations on the indices are modulo k). This is
impossible because an entity sends no more than one Yes message.
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Answer to Exercise 6.31
First show that if a node x sends M to neighbour y, N contains the smallest value in T [x−y];
then, since a saturated node receives by definition a M message from all neighbours, it knows
the minimum value in the network. Prove that value sent by x to y in M is the minimum
value in T [x − y] by induction on the height h of T [x − y]. Trivially true if h = 1, i.e.,
x is a leaf. Let it be true up to k ≥ 1; we will now show it is true for h = k + 1. x
sends M to y because it has received a value from all its other neighbours y1, y2, . . .; Since
the height of (T [yi − x]) is less than h, then by inductive hypothesis the value sent by yi

to x is the minimum value in (T [yi − x]). This means that the smallest among v(x) and
all the values received by x is the minimum value in T [x−y]; this is exactly what x sends to y.

Answer to Exercise 6.41
It is clear that, if node x knows |T [y − x]| for all neighbours y, it can compute G[y, x]
and decide whether x is itself a median and, if not, determine the direction of the median.
Thus, to find a median, is sufficient to modify the basic technique to supply this information
to the elected node from which the median is approached. This is done by providing two
counters, m1 and m2, with each M message: when a node x sends a M message to y, then
m1 = g[T [y − x], y] − 1 and m2 = |T [y − x]| − 1. An active node x processes all received
M messages so that, before it sends M to the last neighbour y, it knows G[T [x − z], x] and
|T [z − x]| for all other neighbours z. In particular, the elected node can determine whether
it is the median and, if not, can send a message towards it; a node receiving such a message
will, in turn, perform the same operations until a median is located. Once again, the to-
tal number of exchanged messages is the ones of the Full saturation plug-in plus d(s, med),
where s is the saturated closer to the medians, and med is the median furthermost from x.

Partial Answer to Exercise 6.48
By induction on the hight of the rooted tree, prove that, in a TDCast protocol, when an en-
tity x receives the convergecast message from all its children, all its descendants have locally
terminated the broadcast.

Partial Answer to Exercise 6.49
Perform first (1) a broadcast from the root to notify all entities of the start of the protocol,
and (2) a convergecast, to collect at each entity the number of its descendents. Use then
this information to assign distinct values to the entities according to a pre-order traversal of
the tree.

Partial Answer to Exercise 6.51.
Show that data items from smaller sets will be chosen with higher probabbility than that of
items from larger sets.
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