Algorithm Engineering - Exercises

11 July 2024

Name and Surname:

\#matricola:

Question \#1 [rank 3] Simulate the Reservoir Sampling algorithm by drawing m=3 items from a sequence of length $n=9:[a, b, c, d, e, f, g, h, i]$, assuming that the random integers extracted by the algorithm are $[2,4,1,2,3,1]$.

Question \#2 [score 4+4+3]. Given the set S of pairs $\{\langle C, 4\rangle,\langle A, 6\rangle,\langle 1,10\rangle,\langle B, 3\rangle$, $\langle H, 7\rangle,\langle F, 2\rangle\}$, where the first component is the key, and the second component is the priority.

- Build a TREAP data structure by inserting the pairs in that order (you can assume that it is a MIN heap).
- Show the execution of the SPLIT operation on the key D.
- Show the execution of the MERGE operation on the two TREAPS formed by the previous SPLIT.

Question \#3 [rank 4+4+4] Given the set of strings $S=\{a b a a, ~ a b c a, ~ a b m a, ~ b a a, ~ b b b\}$, build a Patricia trie and show the steps executed by a lexicographic search for the strings $\mathrm{P} 1=\mathrm{bbc}$, and for the string $\mathrm{P} 2=\mathrm{abb}$.

Question \#4 [rank 4] Given the string T = aba, and the probabilities $P(a)=3 / 4$ and $P(b)=1 / 4$, show the result of the Arithmetic Coding algorithm applied on T.
(hint: Please work with the dyadic fractions, not change them into reals.)

Algorithm Engineering -- THEORY
 11 July 2024

Name and Surname:

\#matricola:

Questions

- [7 points] Given a sequence S of items and an integer $m<n / 2$, show the pseudo-code of the reservoir sampling algorithm.
- [3 points] Prove the correctness of the reservoir sampling algorithm (i.e., prove that it does a uniform sampling).
- [7 points] Describe the LSD algorithm to sort n items of b bits each.
- [7 points] Given two sorted lists of integers, say L1 and L2 of lengths n and m respectively, describe the "mutual-partition" algorithm to compute their intersection.
- [3 points] Write the algorithm to execute Access(i) over an integer sequence encoded via Elias-Fano

