Algorithm Engineering -- EXERCISES
 9 February 2024-1 hour

Name and Surname: \#matricola:

Question \#1 [score 4+3+3] Given the set of strings:
$S=\{A A A A, A A C A, A A C B B, A A C B C, A A C B D A, A A C B D B, B A A, B A B, B B A, B B B\}$,
index them via a two-level indexing scheme with block size of 2 strings, Front-coding compression in the blocks, and a Patricia trie in internal memory.

Then show how to perform:

- A lexicographic search for the position in S of the string: $A B C B D B$
- A prefix search in S for the string: AAC

Question \#2 [score 3+3]. Given the sequence of integers (4, 5, 7), compress it via:

- Interpolative Coding
- Rice coding with $\mathrm{k}=2$

Question \#3 [rank 6]. Given the sequence (0 302030) which is the result of the pipeline BWT+MTF+RLE with Wheeler code and RLE applied to runs of 1 s (as in the class lectures), and given the MTF-list $\{A, B, R\}$ and the $\$$ position $=4$, reconstruct the original string.

Question \#4 [score 3+3]. Given the set of pairs:

$$
\{\langle 3,5\rangle,\langle 9,3\rangle,\langle 13,9\rangle,\langle 5,1\rangle,\langle 10,4\rangle,\langle 4,8\rangle\} .
$$

- Construct a Treap, using a MIN-heap, where the x-coordinate is the key, and the y-coordinate is the priority.
- Show the execution of a split at the key 6.

Question \#5 [score 3] Apply the succinct encoding to the following binary tree: $(a, b)(a, c)(c, d)(c, e)$, where node ' b ' is to the left of node ' c ', and node ' d ' is to the left of node ' e '. Then show how it works the navigation:
root \rightarrow right child \rightarrow left child

Algorithm Engineering -- THEORY

 9 February 2024-45 minutes

 9 February 2024-45 minutes}

Name and Surname:

\#matricola:

Question \#1 [score 5+4]

- State the I/O-complexity of the multi-way mergesort in terms of M, B, and N
- Describe the disk-striping technique and state the I/O-complexity of the multiway mergesort over D disks using Disk Striping

Question \#2 [score 5+4+4].

- Describe why we introduced the Canonical Huffman
- Specify which data structures it keeps in the preamble of its compressed file
- Write its pseudo-code to decompress one symbol

Question \#3 [rank 3 + 5]. Given two sorted lists of integers, say L1 and L2 of lengths n and m , respectively:

- Describe the "two-level memory" algorithm to compute their intersection
- State and prove its time complexity.

