
˜

Learned data structures
(Seminar for Algorithm Engineering A.Y. 2019/20)

Giorgio VINCIGUERRA
pages.di.unipi.it/vinciguerra/

˜
Outline

1. Background
• Predecessor & range search in external memory

2. Learned structures for pred & range search
• RMI by Google + MIT
• PGM-index by UNIPI

3. Learned structures for approx membership
4. (Extra) tools for writing efficient code

2

Notpart of the syllabus

Background

3

˜
Predecessor search & range queries

4

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑝𝑟𝑒𝑑 36 = 36

𝑝𝑟𝑒𝑑 50 = 48

𝑟𝑎𝑛𝑔𝑒 67,110

˜
Baseline solutions for predecessor search

5

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

𝑀

𝐵 = 4

1 𝑛

Solution RAM model
Worst case time

EM model
Worst case I/Os

EM model
Best case I/Os

Scan Ο 𝑛 Ο(𝑛/𝐵) Ο 1

˜
Baseline solutions for predecessor search

6

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

𝑀

𝐵 = 4

1 𝑛

Solution RAM model
Worst case time

EM model
Worst case I/Os

EM model
Best case I/Os

Scan Ο 𝑛 Ο(𝑛/𝐵) Ο 1

Binary search Ο log 𝑛

˜
Baseline solutions for predecessor search

7

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

𝑀

𝐵 = 4

1 𝑛

Solution RAM model
Worst case time

EM model
Worst case I/Os

EM model
Best case I/Os

Scan Ο 𝑛 Ο(𝑛/𝐵) Ο 1

Binary search Ο log 𝑛 Ο(log(𝑛/𝐵)) Ο(log(𝑛/𝐵))

˜
B+ trees

8

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

12 23 31 122 ∞ ∞55 71 76

31 76 ∞

˜
B+ trees

9

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

12 23 31 122 ∞ ∞

31 76 ∞

55 71 76

48?

˜
B+ trees

10

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

12 23 31 122 ∞ ∞55 71 76

31 76 ∞

Solution Space RAM model
Worst case

time

EM model
Worst case

I/Os
Scan Ο 1 Ο 𝑛 Ο(𝑛/𝐵)

Binary search Ο 1 Ο log 𝑛 Ο(log(𝑛/𝐵))

B+ tree Ο 𝑛 Ο log 𝑛 Ο log; 𝑛

𝐵 + 1

𝐵 = 3

˜
B-trees are everywhere

1. “B-trees have become, de facto, a standard for
file organization” Comer. Ubiquitous B-tree. ACM Computing Surveys. ’79

2. This is still true today

11

˜
A closer look at the data

12

keys
positions

2 4 6 8 10 12 14 16

0 1 2 3 4 5 6 7

𝑝𝑜𝑠 = 0.5 ∗ 𝑘𝑒𝑦 − 1

Indexes an arbitrary number
of keys in Ο(1) space

˜
A closer look at realistic data

13

keys
positions

2 10 11 11 11 18 18 30

0 1 2 3 4 5 6 7

error

˜
B-trees are machine learning models

14

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑘𝑒𝑦

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑒𝑟𝑟, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑒𝑟𝑟

+

“All existing index structures can be replaced with other types of models, including
deep-learning models, which we term learned indexes.” [SIGMOD ’18]

Trained on the dataset
{ 𝑘G, 1 , 𝑘H, 2 , … , (𝑘K, 𝑛)}

˜
B-trees are machine learning models

15

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

2M2G
2^2

2H

𝑘𝑒𝑦

“All existing index structures can be replaced with other types of models, including
deep-learning models, which we term learned indexes.” [SIGMOD ’18]

Trained on the dataset
{ 𝑘G, 1 , 𝑘H, 2 , … , (𝑘K, 𝑛)}

+

˜
The Recursive Model Index (RMI)

16

Model 2.1 Model 2.3

Model 3.1 Model 3.2 Model 3.3 Model 3.4

Stage 1
Stage 2

Stage 3
+

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑘𝑒𝑦

𝑝𝑜𝑠

𝑘𝑒𝑦 ∈ 𝑝𝑜𝑠 − 𝑒𝑟𝑟, 𝑝𝑜𝑠 + 𝑒𝑟𝑟 ?

Model 1.1

Model 2.2

˜
Construction of RMI

17

1. Train the root model on the dataset
2. Use it to distribute keys to the next stage
3. Repeat for each model in the next stage (on

smaller datasets)

Model 1.1

Model 2.1 Model 2.2 Model 2.3

Stage 1
Stage 2

key

po
s

+

˜
Performance of RMI

18

+

1. Up to 1.5–3x faster and two orders of
magnitude smaller in space than a B+ tree

2. Unfair? Definitely

3. GPUs/TPUs? Not really…

˜
Limitations of RMI

1. Fixed structure with many hyperparameters
stages, # models in each stage, kinds of regression models

2. Training time
3. No a priori error guarantees

Difficult to predict latencies

4. Models are agnostic to the power of
models below
Can result in underused models (waste of space)

20

Our approach:
The Piecewise Geometric Model Index

21

˜
Main ingredients of the PGM-index

1. Fixed integer error 𝜀 ≥ 1

2. Piecewise linear function: keys → positions
a. Linear models are easy to store (2 floats)
b. Linear models are fast (1 mul + 1 add)

3. Store models in the index nodes, not keys

4. Recursive bottom-up construction

22

˜
PGM-index construction

23

Compute the optimal piecewise linear approx with guaranteed error 𝜀 in Ο(𝑛)

˜
PGM-index construction

24

Save the 𝑚 segments in a vector as triples 𝑠S = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

˜
Memory layout of the PGM-index

25

Input keys

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

Segments

(2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (76, sl, ic) (102, sl, ic)

1 𝑚

˜
PGM-index construction

26

Drop all the points except 𝑠S. 𝑘𝑒𝑦

˜
PGM-index construction

27

… and repeat!

˜
Memory layout of the PGM-index

28

Input keys

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

Level[2]

(2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (76, sl, ic) (102, sl, ic)

1 𝑚

(2, sl, ic) (48, sl, ic) (102, sl, ic)

Level[1]

(2, sl, ic)

Level[0]

˜
Predecessor search in PGM-index w. 𝜀 = 1

29

Input keys

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

Level[2]

(2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (76, sl, ic) (102, sl, ic)

1 𝑚

(2, sl, ic) (48, sl, ic) (102, sl, ic)

Level[1]

(2, sl, ic)

Level[0]
𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 57 ?

˜
Some asymptotic bounds

30

Data Structure Space of index RAM model
Worst case time

EM model
Worst case I/Os

Multiway tree Θ(𝑛) Ο log 𝑛 Ο logf 𝑛

RMI Fixed Ο(?) Ο(?)

PGM-index Θ(𝑚) Ο log𝑚
𝑚 ≤ 𝑛/(2𝜀)

Ο logh 𝑚
𝑐 ≥ 2𝜀 = Ω(𝐵)

𝐵

PGM-index
𝑛 keys𝑚 segments, 𝜀 error

˜
Space-time performance

31

2.3 GHz Intel Xeon Gold and 192 GiB memory

˜
In a nutshell: indexing 95 GiB of data

Fastest CSS-tree
128 B pages (2× cache line)

341 MiB
1.2 s to construct

32

PGM-index with same performance
ε = 128

4 MiB (−85×)
2.1 s to construct

Compression
&

Distribution-awareness

33

˜
Compressed PGM-index: the slopes

34

Slopes

0 0.18079

1 1.04123

˜
Compressed PGM-index: the intercepts

35

˜
Compressed PGM-index: the intercepts

36

˜
Compressed PGM-index: the intercepts

37

Intercepts

4 6.2378

3 4.8932

2 3.0015

1 1.1934

0 0.0169
0.0169

1.1934

4.8932

6.2378

Intercepts

4 6

3 4

2 3

1 1

0 0

3.0015

˜
Compressed PGM-index

Theorem. Let 𝑚 be the number of segments of a
PGM-index indexing 𝑛 keys
1. There exists a lossless compressor which computes the minimum

number of distinct slopes 𝑡 ≤ 𝑚 and stores them in
64𝑡 + 𝑚⌈log 𝑡⌉ bits of space

2. The intercepts can be stored using 𝑚 log(𝑛/𝑚) + 2𝑚 + 𝑜(𝑚) bits
and be randomly accessed in Ο(1) time

38

Elias-Fano compressed index
(§11.6 of the notes)

In practice queries are 14% slower but the space footprint is reduced by 52%

˜
Distribution-aware predecessor problem

Given 𝑛 pairs 𝑘S, 𝑝S where 𝑝S is the probability
of querying 𝑘S, build a data structure that answer

predecessor queries in Ο(log 1/𝑝S)

Theorem. The Distribution-Aware PGM-index achieves that query
time in Ο 𝑚 space, where 𝑚 is the number of segments in the
PGM-index

39

˜
Distribution-aware PGM-index

40

Proof idea: define for the key 𝑘S a range of size min{1/𝑝S , 𝜀}

Learned approximate
membership structures

41

˜
Recap: the Bloom filter

• Bit vector of length 𝑚
representing a set

𝑆 = 𝑥G, 𝑥H, … , 𝑥K
• 𝑟 random independent hash

functions ℎG,… , ℎs
• Initialise by setting 𝐵 ℎS 𝑥 = 1

for any 𝑥 ∈ 𝑆, 𝑖 ∈ [1, 𝑟]
• Return that 𝑞 is not in 𝑆 when
𝐵[ℎS(𝑞)] = 0 for at least one 𝑖,
otherwise return “maybe yes”

42

˜
Ubiquitous Bloom filters

1. Google Chrome: identify malicious URLs.

2. Akamai Technologies: prevent "one-hit-wonders" from
being stored in its disk caches.

3. Google Bigtable, Apache HBase and Apache Cassandra
and PostgreSQL: reduce the disk lookups for non-
existent rows or cols

4. Medium: avoid recommending articles a user has
previously read

https://en.wikipedia.org/wiki/Bloom_filter#Examples

43

˜
Bloom filter at a high level

44

Is 𝑞 in the set?

NoMaybe yes

+

˜
Bloom filter at a high level

45

Is 𝑞 in the set?

NoMaybe yes

Is 𝑞 in the set?

NoMaybe yes

Trained on the dataset
{ 𝑘G, 𝑌𝐸𝑆 , 𝑘H, 𝑁𝑂 ,

𝑘y, 𝑁𝑂 ,… }

𝑓

+

˜
Bloom filter at a high level

46

Is 𝑞 in the set?

NoMaybe yes

Is 𝑞 in the set?

Maybe noMaybe yes

Trained on the dataset
{ 𝑘G, 𝑌𝐸𝑆 , 𝑘H, 𝑁𝑂 ,

𝑘y, 𝑁𝑂 ,… }

𝑓

+

˜
Bloom filter at a high level

47

Is 𝑞 in the set?

NoMaybe yes

Is 𝑞 in the set?

Maybe noMaybe yes

𝑓

NoMaybe yes

+

˜
Learned vs classic Bloom filter

+ Reduces memory
(~30%)

– Memory = MBs

+ No training
+ Fast evaluation
+ FPR on any non-set

item

48

˜
False positives != false positives

1. Bloom filter: the probability that any non-set item
yields a false positive

Pr(all 𝑟 bits checked for a key not in S are 1) ≈ 1 − 𝑒sK/� s

2. Learned Bloom filter: measure the false positive rate
(FPR) over a test set and hope that future data looks
like training data
• Universe of elements is 𝒰 = [0, 1 000 000)
• Store 500 elements randomly chosen from 𝑅 = [1000, 2000]
• Learned bloom filter might accept all keys from 𝑅 and reject 𝒰 ∖ 𝑅
• If test set (or future queries) is uniform over 𝒰, then FPR will be low
• If test set consists of elements in [1, 10 000], then FPR will be high

49

˜
Many more learned algorithms and data structures

1. Learned hash tables

2. Learned sorting

3. Learned scheduler

4. Cardinality estimation of SQL queries

5. Frequency estimation for streams

6. ...

50

Conclusions

51

˜
To sum up

52

1. Thinking of classic data structure as ML
models can bring several advantages
a. Adaptation to the data distribution
b. Better space-time performance

2. But those learned structures lose all the
worst-case guarantees
a. Unless you can prove they don’t (PGM-index)
b. Unless you just use them to augment, and not

replace, classic structures

˜

53

˜
Reference

1. T. Kraska, A. Beutel, E.H. Chi, J. Dean, and N. Polyzotis.
The Case for Learned Index Structures. In SIGMOD 2018.

2. M. Mitzenmacher. A Model for Learned Bloom Filters, and
Optimizing by Sandwiching. In NeurIPS 2018.

3. P. Ferragina and G. Vinciguerra. The PGM-index: a multicriteria,
compressed and learned approach to data indexing.
Oct. 2019. arXiv: 1910.06169.

54

https://arxiv.org/abs/1910.06169

Extra slides

55

3× faster than py_distance
117× faster than scipy.spatial.distance.euclidean

