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˜
Outline

1. Background
• Predecessor & range search in external memory

2. Learned structures for pred & range search
• RMI by Google + MIT
• PGM-index by UNIPI

3. Learned structures for approx membership
4. (Extra) tools for writing efficient code
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Notpart of the syllabus



Background
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˜
Predecessor search & range queries
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1 𝑛

𝑝𝑟𝑒𝑑 36 = 36

𝑝𝑟𝑒𝑑 50 = 48

𝑟𝑎𝑛𝑔𝑒 67,110



˜
Baseline solutions for predecessor search
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𝐵 = 4

1 𝑛

Solution RAM model
Worst case time

EM model
Worst case I/Os

EM model
Best case I/Os

Scan Ο 𝑛 Ο(𝑛/𝐵) Ο 1
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Baseline solutions for predecessor search
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˜
Baseline solutions for predecessor search
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2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

𝑀

𝐵 = 4

1 𝑛

Solution RAM model
Worst case time

EM model
Worst case I/Os

EM model
Best case I/Os

Scan Ο 𝑛 Ο(𝑛/𝐵) Ο 1

Binary search Ο log 𝑛 Ο(log(𝑛/𝐵)) Ο(log(𝑛/𝐵))



˜
B+ trees
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˜
B+ trees
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1 𝑛

12 23 31 122 ∞ ∞

31 76 ∞

55 71 76

48?



˜
B+ trees
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2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

12 23 31 122 ∞ ∞55 71 76

31 76 ∞

Solution Space RAM model
Worst case 

time

EM model
Worst case 

I/Os
Scan Ο 1 Ο 𝑛 Ο(𝑛/𝐵)

Binary search Ο 1 Ο log 𝑛 Ο(log(𝑛/𝐵))

B+ tree Ο 𝑛 Ο log 𝑛 Ο log; 𝑛

𝐵 + 1

𝐵 = 3



˜
B-trees are everywhere

1. “B-trees have become, de facto, a standard for 
file organization” Comer. Ubiquitous B-tree. ACM Computing Surveys. ’79

2. This is still true today
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˜
A closer look at the data
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keys
positions

2 4 6 8 10 12 14 16

0 1 2 3 4 5 6 7

𝑝𝑜𝑠 = 0.5 ∗ 𝑘𝑒𝑦 − 1

Indexes an arbitrary number
of keys in Ο(1) space



˜
A closer look at realistic data
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keys
positions

2 10 11 11 11 18 18 30

0 1 2 3 4 5 6 7

error



˜
B-trees are machine learning models
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2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑘𝑒𝑦

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑒𝑟𝑟, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑒𝑟𝑟

+

“All existing index structures can be replaced with other types of models, including 
deep-learning models, which we term learned indexes.” [SIGMOD ’18]

Trained on the dataset 
{ 𝑘G, 1 , 𝑘H, 2 , … , (𝑘K, 𝑛)}



˜
B-trees are machine learning models
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2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

2M2G
2^2

2H

𝑘𝑒𝑦

“All existing index structures can be replaced with other types of models, including 
deep-learning models, which we term learned indexes.” [SIGMOD ’18]

Trained on the dataset 
{ 𝑘G, 1 , 𝑘H, 2 , … , (𝑘K, 𝑛)}
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˜
The Recursive Model Index (RMI)
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Model 2.1 Model 2.3

Model 3.1 Model 3.2 Model 3.3 Model 3.4

Stage 1
Stage 2

Stage 3
+

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑘𝑒𝑦

𝑝𝑜𝑠

𝑘𝑒𝑦 ∈ 𝑝𝑜𝑠 − 𝑒𝑟𝑟, 𝑝𝑜𝑠 + 𝑒𝑟𝑟 ?

Model 1.1

Model 2.2



˜
Construction of RMI
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1. Train the root model on the dataset
2. Use it to distribute keys to the next stage
3. Repeat for each model in the next stage (on 

smaller datasets)

Model 1.1

Model 2.1 Model 2.2 Model 2.3

Stage 1
Stage 2

key

po
s

+



˜
Performance of RMI
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+

1. Up to 1.5–3x faster and two orders of 
magnitude smaller in space than a B+ tree

2. Unfair? Definitely

3. GPUs/TPUs? Not really…





˜
Limitations of RMI

1. Fixed structure with many hyperparameters
# stages, # models in each stage, kinds of regression models

2. Training time
3. No a priori error guarantees 

Difficult to predict latencies

4. Models are agnostic to the power of
models below
Can result in underused models (waste of space)
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Our approach:
The Piecewise Geometric Model Index
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˜
Main ingredients of the PGM-index

1. Fixed integer error 𝜀 ≥ 1

2. Piecewise linear function: keys → positions
a. Linear models are easy to store (2 floats)
b. Linear models are fast (1 mul + 1 add)

3. Store models in the index nodes, not keys

4. Recursive bottom-up construction
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˜
PGM-index construction
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Compute the optimal piecewise linear approx with guaranteed error 𝜀 in Ο(𝑛)



˜
PGM-index construction
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Save the 𝑚 segments in a vector as triples 𝑠S = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡



˜
Memory layout of the PGM-index
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Input keys

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

Segments

(2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (76, sl, ic) (102, sl, ic)

1 𝑚



˜
PGM-index construction

26

Drop all the points except 𝑠S. 𝑘𝑒𝑦



˜
PGM-index construction
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… and repeat!



˜
Memory layout of the PGM-index
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Input keys

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

Level[2]

(2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (76, sl, ic) (102, sl, ic)

1 𝑚

(2, sl, ic) (48, sl, ic) (102, sl, ic)

Level[1]

(2, sl, ic)

Level[0]



˜
Predecessor search in PGM-index w. 𝜀 = 1
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Input keys

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

Level[2]

(2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (76, sl, ic) (102, sl, ic)

1 𝑚

(2, sl, ic) (48, sl, ic) (102, sl, ic)

Level[1]

(2, sl, ic)

Level[0]
𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 57 ?



˜
Some asymptotic bounds
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Data Structure Space of index RAM model
Worst case time

EM model
Worst case I/Os

Multiway tree Θ(𝑛) Ο log 𝑛 Ο logf 𝑛

RMI Fixed Ο(?) Ο(?)

PGM-index Θ(𝑚) Ο log𝑚
𝑚 ≤ 𝑛/(2𝜀)

Ο logh 𝑚
𝑐 ≥ 2𝜀 = Ω(𝐵)

𝐵

PGM-index
𝑛 keys𝑚 segments, 𝜀 error



˜
Space-time performance
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2.3 GHz Intel Xeon Gold and 192 GiB memory 



˜
In a nutshell: indexing 95 GiB of data

Fastest CSS-tree
128 B pages (2× cache line)

341 MiB
1.2 s to construct
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PGM-index with same performance
ε = 128

4 MiB (−85×)
2.1 s to construct



Compression
&

Distribution-awareness
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˜
Compressed PGM-index: the slopes
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Slopes

0 0.18079

1 1.04123



˜
Compressed PGM-index: the intercepts
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˜
Compressed PGM-index: the intercepts
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˜
Compressed PGM-index: the intercepts
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Intercepts

4 6.2378

3 4.8932

2 3.0015

1 1.1934

0 0.0169
0.0169

1.1934

4.8932

6.2378

Intercepts

4 6

3 4

2 3

1 1

0 0

3.0015



˜
Compressed PGM-index

Theorem. Let 𝑚 be the number of segments of a
PGM-index indexing 𝑛 keys
1. There exists a lossless compressor which computes the minimum 

number of distinct slopes 𝑡 ≤ 𝑚 and stores them in
64𝑡 + 𝑚⌈log 𝑡⌉ bits of space

2. The intercepts can be stored using 𝑚 log(𝑛/𝑚) + 2𝑚 + 𝑜(𝑚) bits 
and be randomly accessed in Ο(1) time 
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Elias-Fano compressed index
(§11.6 of the notes)

In practice queries are 14% slower but the space footprint is reduced by 52%



˜
Distribution-aware predecessor problem

Given 𝑛 pairs 𝑘S, 𝑝S where 𝑝S is the probability 
of querying 𝑘S, build a data structure that answer 

predecessor queries in Ο(log 1/𝑝S)

Theorem. The Distribution-Aware PGM-index achieves that query
time in Ο 𝑚 space, where 𝑚 is the number of segments in the
PGM-index
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˜
Distribution-aware PGM-index
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Proof idea: define for the key 𝑘S a range of size min{1/𝑝S , 𝜀}



Learned approximate 
membership structures
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˜
Recap: the Bloom filter

• Bit vector of length 𝑚
representing a set

𝑆 = 𝑥G, 𝑥H, … , 𝑥K
• 𝑟 random independent hash 

functions ℎG,… , ℎs
• Initialise by setting 𝐵 ℎS 𝑥 = 1

for any 𝑥 ∈ 𝑆, 𝑖 ∈ [1, 𝑟]
• Return that 𝑞 is not in 𝑆 when 
𝐵[ℎS(𝑞)] = 0 for at least one 𝑖, 
otherwise return “maybe yes”
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˜
Ubiquitous Bloom filters

1. Google Chrome: identify malicious URLs. 

2. Akamai Technologies: prevent "one-hit-wonders" from 
being stored in its disk caches. 

3. Google Bigtable, Apache HBase and Apache Cassandra 
and PostgreSQL: reduce the disk lookups for non-
existent rows or cols

4. Medium: avoid recommending articles a user has 
previously read

https://en.wikipedia.org/wiki/Bloom_filter#Examples
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˜
Bloom filter at a high level 

44

Is 𝑞 in the set?

NoMaybe yes

+



˜
Bloom filter at a high level 
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Is 𝑞 in the set?

NoMaybe yes

Is 𝑞 in the set?

NoMaybe yes

Trained on the dataset 
{ 𝑘G, 𝑌𝐸𝑆 , 𝑘H, 𝑁𝑂 ,

𝑘y, 𝑁𝑂 ,… }

𝑓

+



˜
Bloom filter at a high level 
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Is 𝑞 in the set?

NoMaybe yes

Is 𝑞 in the set?

Maybe noMaybe yes

Trained on the dataset 
{ 𝑘G, 𝑌𝐸𝑆 , 𝑘H, 𝑁𝑂 ,

𝑘y, 𝑁𝑂 ,… }

𝑓

+



˜
Bloom filter at a high level 
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Is 𝑞 in the set?

NoMaybe yes

Is 𝑞 in the set?

Maybe noMaybe yes

𝑓

NoMaybe yes

+



˜
Learned vs classic Bloom filter

+ Reduces memory 
(~30%)

– Memory = MBs

+ No training
+ Fast evaluation
+ FPR on any non-set 

item
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˜
False positives != false positives

1. Bloom filter: the probability that any non-set item 
yields a false positive

Pr(all 𝑟 bits checked for a key not in S are 1) ≈ 1 − 𝑒sK/� s

2. Learned Bloom filter: measure the false positive rate 
(FPR) over a test set and hope that future data looks
like training data
• Universe of elements is 𝒰 = [0, 1 000 000) 
• Store 500 elements randomly chosen from 𝑅 = [1000, 2000]
• Learned bloom filter might accept all keys from 𝑅 and reject 𝒰 ∖ 𝑅
• If test set (or future queries) is uniform over 𝒰, then FPR will be low
• If test set consists of elements in [1, 10 000], then FPR will be high
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˜
Many more learned algorithms and data structures

1. Learned hash tables

2. Learned sorting

3. Learned scheduler

4. Cardinality estimation of SQL queries

5. Frequency estimation for streams

6. ... 
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Conclusions
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˜
To sum up
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1. Thinking of classic data structure as ML 
models can bring several advantages
a. Adaptation to the data distribution
b. Better space-time performance

2. But those learned structures lose all the 
worst-case guarantees
a. Unless you can prove they don’t (PGM-index)
b. Unless you just use them to augment, and not 

replace, classic structures



˜
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Extra slides
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3× faster than py_distance
117× faster than scipy.spatial.distance.euclidean






