
A warm up!

Chapter 2 of the notes

Maximum	Sub-array	Sum	
Problem: given an array of n integers (positive and
negative) find the sub-array of maximum sum.

Input: array A[1,n] of positive and negative integers
Output: l, r where A’[l, r] is the sub-array
Output: The value of the sum
Example:
 Input -1 5 8 -9 1 1

 Output 13
	

Solu/on	1	
max=a[0];
for(i=0; i<n; i++)
{

 for(j=i; j<n; j++)
 {
 sum=0;
 for(k=i; k<=j; k++)
 {
 sum+=a[k];
 }
 if (sum> max) max=sum;
}

}

max=a[0];
for(i=0; i<n; i++)
{

 for(j=i; j<n; j++)
 {
 sum=0;
 for(k=i; k<=j; k++)
 {
 sum+=a[k];
 }
 if (sum > max) max=sum;
}

} i j
	 	 	 	Input			-1	5	8	-9	1	1	

Solu/on	1	
max=a[0];
for(i=0; i<n; i++)
{ O(n3)

 for(j=i; j<n; j++)
 {
 sum=0; O(n2)
 for(k=i; k<=j; k++)
 { O(n)
 sum+=a[k]; O(1)
 }
 if (sum > max) max=sum;
}

}
																																																									Time	complexity		O(n3)	

Lower Bound for Solution 1

Instruction somma+=a[k];
(on sub-arrays of length j-i+1) is executed

 Σi=0,n-1Σj=i,n-1(j-i+1) times, or

 Σi=0,n-1Σj=1,n-i j ≥Σi=0,n-1 (n-i)
2/2≥Σj=1,n+1 j

2/2︎
︎

 Ω(n3)

Solu/on	2	
max=a[0];
for(i=0; i<n; i++)
{

 sum=0;
 for(j=i; j<n; j++)
 {
 sum+=a[j];
 if(sum > max) max=sum;
 } i j

} Input -1 5 8 -9 1 1

Solution2
max=a[0];
for(i=0; i<n; i++)
{

 sum=0; O(n2)
 for(j=i; j<n; j++)
 { O(n)
 sum+=a[j]; O(1)
 if(sum > max) max=sum;
 }

} Time complexity: O(n2) 	

How	to	do	beCer	
Observe	2	proper/es	of	the	maximum	sum	sub-
array:	
1)  The	sum	of	the	values	in	each	prefix	of	the	maximum	sum	

sub-array	is	posi/ve,	otherwise	we	could	remove	this	prefix	
obtaining	a	sub-array	with	greater	sum	(contradic/on).	

2)  The	value	of	the	element	previous	than	the	first	element	of	
the	maximum	sum	sub-array	is	nega/ve,	otherwise		it	could	
be	added	to	the	sub-array	obtaining	a	sub-array	with	greater	
sum	(contradic/on).	

						
	 	 	-3	2	3	-1	8	1	

Solution 3
max = A[0]; sum = 0;
for(i=0; i<n; i++)

 {
 if(sum > 0) sum+=a[i]; extend the segment

 else sum=a[i]; start a new segment

 if(sum > max) max=sum;
 }

 Time complexity: O(n)
 Optimal Algorithm ! Why?

Example	linear	solu/on	
																																																						 	 	 		SUM																				 			MAX	
1 2 -4 1 3 2 -2 1 1 1
1 2 -4 1 3 2 -2 1 3 3
1 2 -4 1 3 2 -2 1 -1 3
1 2 -4 1 3 2 -2 1 1 3
1 2 -4 1 3 2 -2 1 4 4
1 2 -4 1 3 2 -2 1 6 6
1 2 -4 1 3 2 -2 1 4 6
1 2 -4 1 3 2 -2 1 5 6

2-level memory model

•  B= block (page) size
•  M= internal memory size

How to evaluate the complexity of an algorithm?

 number of I/Os operations

•  In this model Solution3 takes n/B I/Os operations is

optimal.
•  It is independent from the block size. Very important

feature for an algorithm. Cache-oblivious.

Another linear time algorithm
•  Let SumD [x,s] the sum of items in positions from x to s
 SumD [x,s] = SumD [1,s] -SumD [1,x-1]

 prefix sums prefix sums O(n)
 until s until x-1
New algorithm:
 max(max SumD [b,s])
 s b≤s

 max(max SumD [1,s] -SumD [1,b-1])
 s b≤s

Another linear time algorithm
Find the positions <l,r> of the subarray.
Compute prefix sums of D in array P.

D

P

Note that P[i] =P[i-1] + D[i] pose P[0] =0

Write the sum in terms of P:

 max(max SumD (1,s) -SumD (1,b-1))
 s b≤s
 max(max (P[s] -P [b-1])
 s b≤s

Decompose max computation in max-min computation:

max(max (P[s] -P [b-1]) = max((P[s] – min P [b-1])
 s b≤s s b≤s

 independent from b can be precomputed in M

4	 -2	 	1	 	2	 5	 	3	 6	 	2	 	3	 -6	 	0	

4	 -6	 3	 1	 3	 -2	 3	 -4	 1	 -9	 6	

Another linear time algorithm

 D

 P
 M[i] = min (M[i-1], P[i]) M[0] = 0 M[0, 10]
 M

P[s]- M[s-1]
P’

Max value is 8 for s=7,
Left extreme is computed as position where P’ is min, l=2,
+1 : Return <3, 7>

0	 4	 -2	 	1	 2	 5	 3	 6	 2	 3	 -6				|			0		

4	 -6	 3	 1	 3	 -2	 3	 -4	 1	 -9	 6	

0	 	0	 	-2	 	-2	 -2	 -2	 -2	 -2	 -2	 -2	 -6	

min P [b-1])
b≤s 	

4	 -2	 	3	 	4	 7	 5	 8	 	4	 	5	 -4	 	6	

Another linear time algorithm

The discussed algorithm takes three scans over D, in fact can be organized
in a single pass and no memory.
Keep the values of P[s] and of M[s-1] (max and min) in 2 variables Tmpsum
and MinTmpSum scanning the array and compute formula P[s]- M[s-1]
incrementally.

Interesting variants with application to the Bio-
informatics

 Sub-array Segment
 Maximum-sum segment problem
 DNA sequence is a string on 4 letters (A,T, C, G)

 AGATA
 TAGATÀ
 GATTA
 GATTACCA
 ATTACCA
 ACCATTA
 TACATACA

.

Interesting variants with application to the Bio-
informatics

 Sub-array Segment
 Maximum-sum segment problem
 DNA sequence is a string on 4 letters (A,T, C, G)

Problem: Identify segments rich of C and G nucleotides
(biologically significant).

Is it possible to exploit our algorithm?
Input: from DNA sequences to arrays of numbers.

Two ways

1.  Assign penalty -p to A and T and a reward 1-p to C and
 G. In this way the sum of the values of a segment of
 length l containing x C or G is x-pl.

 x(1-p)-(l-x) p =x-xp –xl+xp =x-pl

Our linear algorithm can be used to solve this problem
 with this objective function.

Another way

2.  Assign value 0 to A and T and 1 to C and G.
 Compute the density of a segment l, containing x
 occurrences of C and G as x/l.

 Segments of length 1 containing C or G have max
 density, but they are not very interesting!

 Often biologists prefer to put limits on the length of
 the segments, to avoid extremely short or long
 segments. Now the algorithm cannot be applied!!!
 Another linear solution, however, is possible.

Small changes in the problem:: Big Jump in the
complexity

The trap is: no limits to the segment length implies only
trivial solutions of length 1.
Circumvent the single output searching:
Problem: Maximize the sum provided that its length is
within a given range.

Complementary problem : Given an array D[1,n] of
positive and negative integers , find the longest segment
in D whose sum is largest of a fixed threshold t.

The structure of the algorithmic solution is the same!

The two problem can be reduced one into the other

 SumD(x,y) = Σk=x,y D[k] ≥ t Σk=x,y (D[k] –t) ≥ 0
 y-x+1 y-x+1
Subtracting t to all elements in D, the problem of bounded density
becomes equivalent to find the longest segment with sum larger or
equal to 0.
A sum based problem is equivalent to a density based problem!
Reduction is very important technique to reuse solutions.

Go back to the problem:

Given an array D[1,n] of positive and negative integers , find the
longest segment in D whose sum is larger than a fixed threshold s.

Property
Inductively: consider D[1, i-1] and let D[li-1, ri-1] the longest segment
with sum ≥t already computed for i=1, …, i-1.
Consider D[1, i] : from the solution D[li-1, ri-1]. 2 possibilities:

 1. ri < i the solution does not change
 2. ri = i D[li, ri] is longer than D[li-1, ri-1].
Observe: li occurs to the left of position Li= i- (ri-1-li-1)

 é é é é

   li-1 ri-1 Li i
We can discard for li all positions between Li and i since they
generate solutions shorter than D[li-1, ri-1].
Reformulated problem. Given D[1, n] of positive and negative numbers
we want to find at every step the smallest index li such that
SumD [li, i] ≥ t. (li in the interval [1, Li)).

Algorithm
Recall to compute the sum compute the prefix sums as before so
that SumD[1, i]- SumD[1,li-1] = P[i]-P[li-1].

We look for the smallest index li in [1, Li] such that P[i]-P[li-1] ≥ t.
Array P is pre-computed in linear time and space.
We have to find a minimum for all values of i, that means O(n2).
Instead, we identify a set of candidate positions for iteration i: Ci,j
is the position of the leftmost minimum of the sub-array P[1, Ci,j-1 -1].
Ci0=Li.
 P Li

 Ci3 Ci2 Ci1 Ci0
Properties: Ci3 < Ci2 < Ci1 < Ci0=Li
 P[Ci3] > P[Ci2]> P[Ci1]
 P[Cij] is the leftmost minimum of prefix P[1, Ci,j-1 -1]
hence is smaller than any other values on its left.

	4	 	7	 	3	 	8	 	3	 		1														6	 			2	 			3	 			2	

Algorithm

P Li

 Ci3 Ci2 Ci1 Ci0
Properties: Ci3 < Ci2 < Ci1 < Ci0=Li
 P[Ci3] > P[Ci2]> P[Ci1]
 P[Cij] is the leftmost minimum of prefix P[1, Ci,j-1 -1]

 hence is smaller than any other values on its left.

SumD[Ci,j+1 , i] can be computed as P[i] - P[Cij].

	4	 	7	 	3	 	8	 	3	 		1														6	 			2	 			3	 			2	

Algorithm

Fact: At each iteration i, the largest index j* such that
SumD [Ci,j*+1, i] ≥t, if any, is the longest segment we are
searching for.
Proof: in the lecture notes.

The computation of all candidate positions takes O(n)
time. See also lecture notes.

Computing j* does not require constant time at each
iteration, but… if at iteration i, we perform Θ(si) steps
we extend the solution by Θ(si) units. Hence the sum of
the extra cost cannot be larger than n.

Algorithm

Amortized complexity:
O(n), since le length of the solution is at most n.

