
A warm up! 

Chapter 2 of the notes 



Maximum	Sub-array	Sum	
Problem: given an array of  n integers (positive and 
negative) find the sub-array of maximum sum. 
 
Input: array A[1,n] of positive and negative integers 
Output: l, r where A’[l, r] is the sub-array  
Output: The value of the sum 
Example:     
                 Input    -1 5 8 -9 1 1 
 
                 Output       13 
	



Solu/on	1	
max=a[0]; 
for(i=0; i<n; i++) 
{ 

 for(j=i; j<n; j++) 
 { 
  sum=0; 
  for(k=i; k<=j; k++) 
  { 
  sum+=a[k]; 
  } 
  if (sum> max) max=sum; 
} 

} 
 



max=a[0]; 
for(i=0; i<n; i++) 
{ 

 for(j=i; j<n; j++) 
 { 
  sum=0; 
  for(k=i; k<=j; k++) 
  { 
  sum+=a[k]; 
  } 
  if (sum > max) max=sum; 
} 

}          i       j 
	 	 	 	Input			-1	5	8	-9	1	1	



Solu/on	1	
max=a[0]; 
for(i=0; i<n; i++) 
{                                                                              O(n3) 

 for(j=i; j<n; j++) 
 { 
  sum=0;                                              O(n2) 
  for(k=i; k<=j; k++) 
  {                                           O(n) 
  sum+=a[k];               O(1) 
  } 
  if (sum > max) max=sum; 
} 

} 
																																																									Time	complexity		O(n3)	



Lower Bound for Solution 1 

Instruction      somma+=a[k];  
(on sub-arrays of length j-i+1) is executed 

   Σi=0,n-1Σj=i,n-1(j-i+1) times,    or 

 Σi=0,n-1Σj=1,n-i j ≥Σi=0,n-1 (n-i)
2/2≥Σj=1,n+1 j

2/2︎
︎

                                    Ω(n3) 



Solu/on	2	
max=a[0]; 
for(i=0; i<n; i++) 
{ 

 sum=0; 
 for(j=i; j<n; j++) 
 { 
  sum+=a[j]; 
  if(sum > max) max=sum; 
 }                              i         j 

}                      Input -1 5 8 -9 1 1  
 



Solution2 
max=a[0]; 
for(i=0; i<n; i++) 
{ 

 sum=0;                                                  O(n2)  
 for(j=i; j<n; j++) 
 {                                                    O(n) 
  sum+=a[j];                    O(1)  
  if(sum > max) max=sum; 
 } 

}                               Time complexity: O(n2) 	



How	to	do	beCer	
Observe	2	proper/es	of	the	maximum	sum	sub-
array:	
1)  The	sum	of	the	values	in	each	prefix	of	the	maximum	sum	

sub-array	is	posi/ve,	otherwise	we	could	remove	this	prefix	
obtaining	a	sub-array	with	greater	sum	(contradic/on).	

2)  The	value	of	the	element	previous	than	the	first	element	of	
the	maximum	sum	sub-array	is	nega/ve,	otherwise		it	could	
be	added	to	the	sub-array	obtaining	a	sub-array	with	greater	
sum	(contradic/on).	

						
	 	 	-3	2	3	-1	8	1	



Solution 3 
max = A[0]; sum = 0; 
for(i=0; i<n; i++) 

 { 
 if(sum > 0) sum+=a[i];   extend the segment 

      else sum=a[i];          start a new segment 

 if(sum > max) max=sum; 
 }  

               Time complexity:    O(n) 
              Optimal Algorithm !  Why? 



Example	linear	solu/on	
																																																						 	 	 		SUM																				 			MAX	
1 2 -4 1 3 2 -2 1                        1         1 
1 2 -4 1 3 2 -2 1         3      3 
1 2 -4 1 3 2 -2 1        -1      3 
1 2 -4 1 3 2 -2 1         1      3 
1 2 -4 1 3 2 -2 1         4      4 
1 2 -4 1 3 2 -2 1         6      6 
1 2 -4 1 3 2 -2 1         4      6 
1 2 -4 1 3 2 -2 1         5      6 



2-level memory model 

•  B= block (page) size 
•  M= internal memory size 
 
How to evaluate the complexity of an algorithm? 
     
               number of I/Os  operations 
 
•  In this model Solution3 takes n/B  I/Os  operations is 

optimal. 
•  It is independent from the block size. Very important 

feature for an algorithm. Cache-oblivious. 
 

 
 
 
 



Another linear time algorithm 
•  Let SumD [x,s] the sum of items in positions from x to s 
                   SumD [x,s] = SumD [1,s] -SumD [1,x-1]    
                                                                 

             prefix sums      prefix sums     O(n) 
                                          until s            until  x-1 
New algorithm: 
                 max( max SumD [b,s] ) 
                   s     b≤s 
                
                  max( max SumD [1,s] -SumD [1,b-1] )                  
                    s     b≤s 
 
                  

 
 



Another linear time algorithm 
Find the positions <l,r> of the subarray.  
Compute prefix sums of D in array P. 
  
D 
                  
  
P 
 
Note that     P[i] =P[i-1] + D[i]       pose P[0] =0 
 
Write the sum in terms of P: 
         

    max( max SumD (1,s) -SumD (1,b-1) )                  
            s     b≤s 
          max(max (P[s] -P [b-1] )                  
          s       b≤s 
 
Decompose max computation in max-min computation: 
 
max(max (P[s] -P [b-1] ) = max((P[s] – min P [b-1] )                  
   s     b≤s                            s               b≤s  
                                      
                        independent from b         can be precomputed in M 
  

4	 -2	 	1	 	2	 5	 	3	 6	 	2	 	3	 -6	 	0	

4	 -6	 3	 1	 3	 -2	 3	 -4	 1	 -9	 6	



Another linear time algorithm 
  
 D 
                  
 P 
 M[i] = min (M[i-1], P[i])   M[0] = 0       M[0, 10] 
 M 
 
P[s]- M[s-1] 
P’ 
 
Max value is 8 for s=7,  
Left extreme is computed as position where P’ is min, l=2, 
+1 :    Return <3, 7> 

0	 4	 -2	 	1	 2	 5	 3	 6	 2	 3	 -6				|			0		

4	 -6	 3	 1	 3	 -2	 3	 -4	 1	 -9	 6	

0	 	0	 	-2	 	-2	 -2	 -2	 -2	 -2	 -2	 -2	 -6	

min P [b-1] )                  
b≤s 	

4	 -2	 	3	 	4	 7	 5	 8	 	4	 	5	 -4	 	6	



Another linear time algorithm 
 
                  

 
 

The discussed algorithm takes three scans over D, in fact can be organized 
in a single pass and no memory. 
Keep the values of P[s]  and of M[s-1] (max and min) in 2 variables Tmpsum 
and MinTmpSum scanning the array and compute formula P[s]- M[s-1] 
incrementally. 
 
 
 



Interesting variants with application to the Bio-
informatics 

 Sub-array               Segment   
 Maximum-sum segment problem   
 DNA sequence  is a  string on 4 letters (A,T, C, G) 
      
     AGATA 
     TAGATÀ 
     GATTA 
     GATTACCA 
     ATTACCA 
     ACCATTA 
     TACATACA 

 
.  



Interesting variants with application to the Bio-
informatics 

 Sub-array               Segment  
 Maximum-sum segment problem   
 DNA sequence   is a  string on 4 letters (A,T, C, G) 
      

Problem: Identify segments rich of C and G nucleotides 
(biologically significant). 
 
Is it possible to exploit our algorithm? 
Input:  from   DNA sequences  to arrays of numbers.  



Two ways 

1.  Assign penalty -p to A and T and a reward 1-p to C and 
  G. In this way the sum of the values of a segment of 
 length l containing x C or G is x-pl.  

       x(1-p)-(l-x) p =x-xp –xl+xp =x-pl 
       
Our linear algorithm can be used to solve this problem 
       with this objective function.  

  
  



Another way 

2.  Assign value 0 to A and T and 1 to C and G.  
 Compute the density of a segment l, containing x 
 occurrences of C and G as x/l. 

 
 Segments of length 1 containing C or G have max 
  density,  but they are not very interesting! 
  
 Often biologists prefer to put limits on the length of 
 the segments, to avoid extremely short or long 
 segments. Now the algorithm cannot be applied!!! 
 Another linear solution, however, is possible.  

 



Small changes in the problem:: Big Jump in the 
complexity 

The trap is: no limits to the segment length implies only 
trivial solutions of length 1.  
Circumvent the single output searching: 
Problem: Maximize the sum provided that its length is 
within a given range. 
 
Complementary problem : Given an array D[1,n] of 
positive and negative integers , find the longest segment 
in D whose sum is largest of a fixed threshold t. 
 
The structure of the algorithmic solution is the same! 
 



The two problem can be reduced one into the other  

   SumD(x,y) = Σk=x,y D[k]   ≥ t                 Σk=x,y (D[k] –t) ≥ 0 
      y-x+1                 y-x+1 
Subtracting t to all elements in D, the problem of bounded density 
becomes equivalent to find the longest segment with sum larger or 
equal to 0. 
A sum based problem is equivalent to a density based problem! 
Reduction is very important technique to reuse solutions. 
 



  

Go back to the problem: 
 
Given an array D[1,n] of positive and negative integers , find the 
longest segment in D whose sum is larger than a fixed threshold s. 
 



Property 
Inductively: consider D[1, i-1]  and let D[li-1, ri-1] the longest segment 
with sum ≥t already computed for i=1, …, i-1. 
Consider D[1, i] : from the solution D[li-1, ri-1].  2 possibilities: 

 1. ri < i  the solution does not change  
      2. ri = i   D[li, ri] is longer than D[li-1, ri-1]. 
Observe:  li occurs to the left of position Li= i- (ri-1-li-1) 

                                                                                                             
          é    é é   é 

                                li-1    ri-1 Li   i 
We can discard for li all positions between Li and i since they 
generate solutions shorter than D[li-1, ri-1]. 
Reformulated problem. Given D[1, n] of positive and negative numbers 
we want to find at every step the smallest index li such that  
SumD [li, i] ≥ t. (li in the interval [1, Li) ). 



Algorithm 
Recall to compute the sum compute the prefix sums as before so 
that SumD[1, i]- SumD[1,li-1] = P[i]-P[li-1]. 
 
We look for the smallest index li in [1, Li] such that P[i]-P[li-1] ≥ t. 
Array P is  pre-computed in linear time and space.  
We have to find a minimum for all values of i, that means O(n2). 
Instead, we identify a set of candidate positions for iteration i: Ci,j 
is the position of the leftmost minimum of the sub-array P[1, Ci,j-1 -1]. 
Ci0=Li. 
 P                                                                  Li 
 
 
            Ci3            Ci2                               Ci1             Ci0 
Properties:   Ci3 <  Ci2 < Ci1 < Ci0=Li 
                    P[Ci3] > P[ Ci2 ]> P[Ci1] 
                    P[Cij] is the leftmost minimum of prefix P[1, Ci,j-1 -1]  
hence is smaller than any other values on its left. 
 
 

	4	 	7	 	3	 	8	 	3	 		1														6	 			2	 			3	 			2	



Algorithm 
 
P                                                                  Li 
 
 
            Ci3            Ci2                               Ci1             Ci0 
Properties:   Ci3 <  Ci2 < Ci1 < Ci0=Li 
                    P[Ci3] > P[ Ci2 ]> P[Ci1] 
                    P[Cij] is the leftmost minimum of prefix P[1, Ci,j-1 -1]  

     hence is smaller than any other values on its left. 
 
SumD[Ci,j+1 , i] can be computed as  P[i] - P[ Cij ]. 
 
 

	4	 	7	 	3	 	8	 	3	 		1														6	 			2	 			3	 			2	



Algorithm 

Fact: At each iteration i, the largest index j* such that  
SumD [Ci,j*+1, i] ≥t, if any, is the longest segment we are  
searching for. 
Proof: in the lecture notes. 
 
The computation of all candidate positions takes O(n) 
time. See also lecture notes. 
 
Computing j* does not require constant time at each 
iteration, but… if at iteration i, we perform Θ(si) steps 
we extend the solution by Θ(si) units. Hence the sum of 
the extra cost cannot be larger than n. 
 
 



Algorithm 
 
Amortized complexity:  
O(n), since le length of the solution is at most n. 
 


