
Sorting atomic items 
 

Chapter 5 

Lower bounds 



Sorting and permuting 
 

In RAM model Sorting includes Permuting since we need 
to determine the sorted permutation and then permute 
the items. Sorting is Θ(nlogn) while permuting is Θ(n). 

 
In disk model Sorting problem is equivalent to Permuting 
problem by the point of view of I/O complexity. 
Moving elements is difficult as Sorting in this model. It 
is the real bottleneck: I/O bottelneck. 
 
How to use Sort to Permute 



Use Sort to Permute 
Permute Sequence S, S[1,n] according Π[1,n], i.e. 
Output S[Π(1)], S[Π(2)], …S[Π(n)] 
 
RAM model: jump on the memory to read S[Π(i)] then O(n). 
Same algorithm on 2-level model: O(n) I/O’s: Too much! 
 
Use Sort and Scan to Permute; 

 1) Create sequence P of pairs <S[i], Π(i)> 
 2)Sort according Π component 
 3)Parallel scan of of S and P and change S[i] with S[Π(i)] 
 4)Sort P on the first component 

 
 



Use Sort to Permute 
S:   a, b, c, d   Π :   2, 4, 1, 3  
RESULT:   b, d, a, c 
1.  Create P. 
    P:  <a, 2> <b, 4> <c, 1> <d, 3> 
2. Sort on Π component 

 P:  <c, 1> <a, 2> <d, 3><b, 4>  
3 Parallel scan of S and P to substitute to Π[i] ,S[Π(i)] in P  
     S:   a, b, c, d  

  P:  <c, 1> <a, 2> <d, 3><b, 4>  
  P: <c, a> <a, b> <d, c> <b, d> 

4 Sort on the first component 
 P: <a, b> <b, d> <c, a> <d,c>       

 



Use Sort to Permute 
Algorithm uses 2 Scan and 2 Sort. Hence: 
 
O(min{n, (n/B) log(n/M)})  I/O’s 
 
This bound and that for Sorting are optimal for I/O’s. 
The bounds are equal whenever n = Ω(n/B) log(n/M) 
 
 



Lower bound for sorting 
RAM model: Comparison tree to prove lower bound. 
Node: comparison. Leaf: solution. Root-to-leaf path t: 
execution of the alg. on  specific data.  
 
 
 



Lower bound for sorting 
Sorting: binary tree. The possible solutions (n! for sorting) 
must be allocated on the leaves. 2t ≥ n!  
T≥ log(n!)    t= Ω (nlogn) 
 



Lower bound sorting in 2 level model 
Comparison tree. 
Account for I/O operations. 
Operations in internal memory can be used for free. 
Every node of the decision tree corresponds to one I/O. 
The fan-out corresponds to the result of the comparisons 
after an I/O: 
 
  M                                                           B 
 
 
A block of B new elements is fetched to M. M-B elements 
are old , B are new. 
The B elements can occupy   M    positions of M . 
                                                  B 



Lower bound sorting in 2 level model 
An I/O operations can generate M    different results. 
                                                        B 
Un addition, we have to consider B! different permutations 
of B. (the other M-B items have already been considered in 
previous I/O operations). 
 
In total     M   B! possible orderings generated by an I/O  
                  B 
operation and by the internal comparisons.  
 
            M  B! is the fan-out of each node. 
            B 



Lower bound sorting in 2 level model 
t height of the tree 
t ≥ n/B required to 
access S.  
                                                              n/B levels; fan-out 

                 M  B! 
                                                                            B 
 
                                                           

            t-n/B levels: fan-out 
 
 
 
The number of leaves  is    M  t (B!)n/B  
                                           B     

M 
B 
	
  



Sorting: lower bound 
 

   t  = Ω (N/B)logM/B( N/B) = Ω (N/B)logM/B( N/M) 
 



Lower bound for the D disks model 
•  Parallel D disks model : computer + D disks 
•  Input/output are from disks 
 
 

 



Lower bound for the D disks model 
I/O operation: 1 block of B data is fetched to the core 
memory of size M from each one disk. DB data are 
fetched in parallel. 
 
•  Evaluate the number of parallel I/O’s 
 
 
The previous bound can be easily extended to D disks. 
A comparison-based Sorting algorithm must execute: 

  
               Ω((n/DB) logM/B (n/DB))  I/O operations 
 
 



Lower bound for the D disks model 
 
Observation: D does not appear in the base of log. If 
this would be the case, it will increase the bound, so 
penalizing the sorting algorithm which uses D disks! 
MergeSort is optimal for 1 disks but it is not for D 
disks.  
 
The merging should be O(n/DB) I/O’s, that is at each 
step D pages are fetched one per disk, with an I/O.  
Merging is not parallel: after a comparison more than B 
items have to be possibly fetched from the same disk. 
 
 



Sorting in the D disks model 
•  Disk Striping technique: data layout on disks 
•  Look to the D disks as a single disk B’=DB. 
•  The bandwith of I/O’s increases but design efficient 

alg . is more difficult. 
          O((n/B’) logM/B’ (n/M)) =  O((n/DB) logM/DB(n/M)) 
 
•  Observe: the base of log. increases and disk striping 

is more and more inefficient as D increases.  
•  Merge is as before. 
•  Problem: the independency of disks is not exploited 

they are used as a monolithic system. Very difficult 
to exploit it! 



Sort in the D disks model 
 
We must design a different algorithm. 
In the following: 
 
•  Greed Sort: elegant and complex new algorithm  
    achieving a close to optimal upper bound. 
 



Lower bound for Permuting 
1 disk model: 
If B log (M/B) ≤ logn then    Ω (n) 
        otherwise                    Ω (n/B)logM/B( n/M)      NO PROOF   
 
The previous algorithm was optimal! 
 
D disks model:  Ω(min {n/D, (n/DB)logM/B( n/DB)}) 
 
The bounds for sorting and permuting are the same except for the case:  
Blog(M/B) ≤ logn.  
This inequality holds for n = Ω (28)  
(since B and M are few k bytes and few Gigabytes respectively and log (M/
B) can be neglected) .  
This situation id unreasonable! 
 
In practice, Sorting =  Permuting 
 
 

  


