Sorting atomic items

Chapter 5

Lower bounds



Sorting and permuting

In RAM model Sorting includes Permuting since we need
to determine the sorted permutation and then permute
the items. Sorting is ©(nlogn) while permuting is ©(n).

In disk model Sorting problem is equivalent to Permuting
problem by the point of view of I/0 complexity.

Moving elements is difficult as Sorting in this model. I't
is the real bottleneck: I/0 bottelneck.

How to use Sort to Permute



Use Sort to Permute

Permute Sequence S, S[1,n] according TT[1,n], i.e.
Output S[TT(1)]1, S[TT(2)], ..S[TT(n)]

RAM model: jump on the memory to read S[TI(i)] then O(n).
Same algorithm on 2-level model: O(n) I/O's: Too muchl!

Use Sort and Scan to Permute;
1) Create sequence P of pairs <S[i], TT(i)>
2)Sort according TT component

3)Parallel scan of of S and P and change S[i] with S[TT(i)]
4)Sort P on the first component



Use Sort to Permute

S: a,b,c,d TI: 2,4,1,3
RESULT: b,d,aq,c
1. CreateP.
P: <a, 2><b, 4> <c, 1><«d, 3>
2. Sort on TT component
P: «<c, 1><a, 2><«d, 3><b, 4>
3 Parallel scan of S and P to substitute to T1[i] ,S[TT(i)] in P
S: a,b,c,d
P: <c, 1><q, 2> <d, 3><b, 4>
P: <c, a><aq, b><d, ¢> <b, d>
4 Sort on the first component
P: <a, b><b, d> <c, a> <d,c>



Use Sort to Permute

Algorithm uses 2 Scan and 2 Sort. Hence:

O(min{n, (n/B) log(n/M)}) I/0O's

This bound and that for Sorting are optimal for I/O's.
The bounds are equal whenever n = Q(n/B) log(n/M)

time complexity (RAM model) | I/O complexity (two-level memory model)
Permuting O(n) Ominn, % 10gy5 1))
Sorting ((nlog, n) 0(% log,;; ﬁ)




Lower bound for sorting

RAM model: Comparison tree to prove lower bound.
Node: comparison. Leaf: solution. Root-to-leaf path t:
execution of the alg. on specific data.




Lower bound for sorting

Sorting: binary tree. The possible solutions (n! for sorting)
must be allocated on the leaves. 27> nl

Ts log(n!) 1= Q (nlogn)




Lower bound sorting in 2 level model

Comparison tree.

Account for I/0 operations.

Operations in internal memory can be used for free.
Every node of the decision tree corresponds to one I/0O.

The fan-out corresponds to the result of the comparisons
after an I/0O:

M B

A block of B new elements is fetched to M. M-B elements
are old , B are new.

The B elements can occupy | M | positions of M.
B



Lower bound sorting in 2 level model

An I/0 operations can generate/M | different results.
B

Un addition, we have to consider B! different permutations
of B. (the other M-B items have already been considered in
previous I/O operations).

In total |M |Bl possible orderings generated by an I/0
B
operation and by the internal comparisons.

M | B! is the fan-out of each node.
B



Lower bound sorting in 2 level model

t height of the tree
t > n/B required to
access S.
n/B levels; fan-out
EE
B

in----, t-n/B levels: fan-out

The number of leaves is [M] t(BI)ve
B



Sorting: lower bound

(%) (B > N
tlog (“ ) = 5 log(B!) = log(N!)
tB log(; B+ ¢ B logB > NlogN

tBlog(%) > N log(%"

N log( 3
: = B log(%s

t =Q (N/B)logy,s(N/B) = Q (N/B)logy,s( N/M)



Lower bound for the D disks model

* Parallel D disks model : computer + D disks
 Input/output are from disks

Sleslcs

l Internal memory ]

I

LN ol




Lower bound for the D disks model

I/0 operation: 1 block of B data is fetched to the core
memory of size M from each one disk. DB data are
fetched in parallel.

* Evaluate the number of parallel I/0's

The previous bound can be easily extended to D disks.
A comparison-based Sorting algorithm must execute:

Q((n/DB) logy,z (n/DB)) I/O operations



Lower bound for the D disks model

Observation: D does not appear in the base of log. If
this would be the case, it will increase the bound, so
penalizing the sorting algorithm which uses D disks!

MergeSort is optimal for 1 disks but it is not for D
disks.

The merging should be O(n/DB) I/QO's, that is at each
step D pages are fetched one per disk, with an I/0O.

Merging is not parallel: after a comparison more than B
items have to be possibly fetched from the same disk.



Sorting in the D disks model

Disk Striping technique: data layout on disks
Look to the D disks as a single disk B'=DB.

The bandwith of I/O's increases but design efficient
alg . is more difficult.

O((n/B’) logy,e (n/M)) = O((n/DB) logy, pe(n/M))

Observe: the base of log. increases and disk striping
is more and more inefficient as D increases.

* Merge is as before.

Problem: the independency of disks is not exploited
they are used as a monolithic system. Very difficult
to exploit it



Sort in the D disks model

We must design a different algorithm.
In the following:

 Greed Sort: elegant and complex new algorithm
achieving a close to optimal upper bound.



Lower bound for Permuting

1 disk model:
If Blog (M/B)<logn then Q (n)
otherwise Q (n/B)logy,s(n/M)  NO PROOF

The previous algorithm was optimall
D disks model: (2(min {n/D, (n/DB)log,,,s( n/DB)})

The bounds for sorting and permuting are the same except for the case:
Blog(M/B) < logn.

This inequality holds for n = Q (28)

(since B and M are few k bytes and few Gigabytes respectively and log (M/
B) can be neglected) .

This situation id unreasonablel!

In practice, Sorting = Permuting



