
Sorting atomic items

Chapter 5

Sorting on
2-level memory model

Atomic items occupy constant-fixed number of memory
cells (no variable length). Usually 4 or 8 bytes.
Sequence S of n atomic items with n>M

In disk model Sorting problem is equivalent to Permuting
problem by the point of view of I/o complexity.

In RAM model Sorting includes Permuting since we need to
determine the sorted permutation and then permute the
items. Sorting is Θ(nlogn) while permuting is Θ(n).

Moving elements is difficult as Sorting in this model. It is
the real bottleneck

The merge-based sorting
MergeSort (S ,i, j)
1.  If (i<j) {
2.  m=(i+j)/2;
3.  MergeSort (S, i, m);
4.  MergeSort (S, m+1, j);
5.  Merge (S, I, m, j);
6.  }
Based on Divide&Conquer. MergeSort is not in place alg.
Merging step needs auxiliary array on elements.
Merge takes O(n) time hence:

 T(n)= 2T(n/2) + O(n) , T(n) = Θ(nlogn) time
 and Θ(n) space

2-level model
The cost of merging 2 sequences of a total number of
items z is O(z/B) I/O’s .

If M≥2B, the alg. takes in main memory 2 pages that
contain items pointed by the 2 pointers scanning S(i, j).
When a pointer advances into another page there is an
I/O fault and another page is fetched to M.
O(z/B) I/O’s are also needed to write the merged
sequence

Hence the I/O complexity of MergeSort is:

 T(n) = 2T(n/2) +O(n/B) = O (n/B logn)

logn levels of recursion, at each level O(n/B)

2-level model
Assume n>M: S is stored on disk, I/O operation takes
5ms on average.
If one comparison takes one I/O operation the running
time on a massive data set S is:
5ms X Θ(nlogn).
If n is of order of few Gigabytes, such as n~230
 5X230X30 = 108 ms around 1 day of computation!!
But if we run MergeSort on a PC on such a sequence S it
takes only few hours.
 Why?
When the recursion produces sub-arrays of size less
than M the cost reduces.

2-level model
When the sub-sequence is of size z=O(M), is contained
into the cache. It can be handled completely inside the
memory with no I/O faults.

The cost of sorting sub-sequence is of size z=O(M) is
not O (z/B logz) according to the previous result

But O(z/B) which is the cost to load the sub-sequence
into the memory.

MergeSort in 2-level model
N. of sequences N. of items #I/Os for Merge

 2 n/2 O(n/B)
 4 n/4 O(n/B)
 8 n/8 O(n/B)

 …. ….. ….
 n/M M O(n/B)

The last n/M sequences takes O(M/B) instead of
O((M/B)logM)) to be sorted.
The total gain is O((n/B)logM)
O((n/B) logn) - O((n/B)logM) =

O((n/B) log(n/M)) Total number of I/O’s

Optimize MergeSort
Stop the recursion at M:
More precisely: when the subsequence size S[i+1,j], j-i <
cM.
c takes into account of the space occupancy of the
sorter. (c=1 for in place sorting, c=0.5 for MergeSort
for the extra-array for merging).
We should write cM instead of M in the previous bound,
that becomes O((n/B) log(n/cM)).

c is close to 1 using a different in place alg. when sorting
small subsequences, e.g. Heapsort or InsertionSort
which is good enough for small values of M. e. g. when
there are two levels of cache L1 and L2, L1 is small (few
megabytes).

Optimize MergeSort
Problem: Merge passes over the data bottleneck!
O((n/B) log(n/M)) is bigger when M is small
Solutions:
Enlarge M (physically is very expensive!)
1)  Deploy M as much as possible
 SnowPlow algorithm: virtually increase the memory
 size of a factor 2 in average.

2) Enlarge M virtually
Data compression: encode the items with integer
compression which squeezes integers in fewer bits.
Encoded items can be packed more in internal memory.
 LATER!

SnowPlow
Is divided in phases. Each phase produces a sorted
subsequence of size s, M ≤ s ≤2M.
Each phase has 4 steps:

1.  Form a min Heap H of the items contained in M.
2.  At each step, while scanning items from S:
3.  - extract min from H and output it;
4.  - if next > min insert next in H
 else insert next in a auxiliary storage U.*
A phase terminates when H is empty and U occupies the
whole M.
•  The output run is non decreasing.
•  At the end all the elements in H will be output, hence

the number of steps of a phase is ≥ M.

SnowPlow

The 4 steps of a phase.

SnowPlow
SnowPlow is more efficient than MergeSort on average.

Let τ be the number of elements read in a phase
A phase ends when H is empty and |U|=M.
M items of the τ scanned end-up in U.
Τ – M goes to H and written to the output sorted run .
The length of the sorted run at the end of the phase is
 M + (τ –M).

How much is τ on average?

Pr(next < min) =1/2 for uniform distribution.
So on average τ/2 elements go to H and τ/2 elements go
to U. So M=τ/2 and τ=2M.

SnowPlow
SnowPlow builds O(n/M) sorted runs, each larger than
M, and of length 2M in average.

Using Snowplow for generating sorted runs and a
Merge-based sorting scheme we obtain:

 O((n/B) log(n/2M)) I/O’s on average.

Multi-way MergeSort
Previous algorithms binary Merge

Now: Multi-way Merge.
Binary merge uses 3 blocks: 2 blocks to cache items
from S[x] and S[y], 1 block to cache the output items.
But M/B >> 3: Many more blocks available!

K-way Merging, set k =(M/B)-1 (1 block for the output)

Merge K-runs:
•  Build minHeap H to contain the k minima from the k

runs.
•  Items are represented by pairs : <Ri[1], i>

Multi-way MergeSort: Example
k=3

R1	 :	 	 11,	 18,	 44,	 63,	 87	 …	
	
R2:	 	 	 	 12,	 21,	 32,	 48,	 54,	 …	
	
R3:	 	 	 	 	 	 17,	 19,	 25,	 33,	 39,	 ….	

Heap	 	 	 H	

At each step:
 - Extract min from H
 - Take another item from Ri (if not ended)

M=	 4B	 	 	 	 	 k=(M/B-‐1)	

Multi-way MergeSort

R1	 :	 	 	 11,	 18,	 44,	 63,	 87	 …	
	
R2:	 	 	 	 12,	 21,	 32,	 48,	 54,	 …	
	
R3:	 	 	 	 	 17,	 19,	 25,	 33,	 39,	 ….	

Heap	 	 	 H	

	 	 17	

12	

18	

Multi-way MergeSort
Merging takes O(logk) time per item.
O(z/B) I/O’s to merge k runs of total length z.

The runs can be produced e.g. by SnowPlow alg.

Multi-way MergeSort
How many levels of recursion?
n/(M/B)i ≤ M n/M≤(M/B)i i≥ logM/B(n/M)

Total number of I/O’s = O((n/B) logM/B(n/M))
and O(nlogn) time

Multi-way MergeSort
In practice:

The number of recursion levels is very small.

Assume B=4KB, M=4GB, M/B= 232/212=220

The number of levels = logM/B, is 1/20 less than Binary MS!

Remember:

Logba=logca/logcb logM/B n/M= log (n/m)/log(M/B)

