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Sorting on  
2-level memory model 

Atomic items   occupy constant-fixed number of memory 
cells (no variable length). Usually 4 or 8 bytes. 
Sequence S of n atomic items with n>M 
 
In disk model Sorting problem is equivalent to Permuting 
problem by the point of view of I/o complexity. 
 
In RAM model Sorting includes Permuting since we need to 
determine the sorted permutation and then permute the 
items. Sorting is Θ(nlogn) while permuting is Θ(n). 

Moving elements is difficult as Sorting in this model. It is 
the real bottleneck 



The merge-based sorting 
MergeSort (S ,i, j) 
1.  If (i<j) { 
2.       m=(i+j)/2; 
3.       MergeSort (S, i, m); 
4.       MergeSort (S, m+1, j); 
5.       Merge (S, I, m, j); 
6.  } 
Based on Divide&Conquer. MergeSort is not in place alg. 
Merging step needs auxiliary array on elements.  
Merge takes O(n) time hence: 

 T(n)= 2T(n/2) + O(n) ,    T(n) = Θ(nlogn) time 
     and  Θ(n) space 
 



2-level model 
The cost of merging 2 sequences of a total number of 
items z is O(z/B) I/O’s . 
 
If M≥2B, the alg. takes in main memory 2 pages that 
contain items pointed by the 2 pointers scanning S(i, j). 
When a pointer advances into another page there is an 
I/O fault and another page is fetched to M. 
O(z/B) I/O’s are also needed to write the merged 
sequence 
 
Hence the I/O complexity of MergeSort is: 

    T(n) = 2T(n/2) +O(n/B) = O (n/B logn) 
 
logn levels of recursion, at each level O(n/B) 
 
 



2-level model 
Assume n>M: S is stored on disk, I/O operation takes 
5ms on average. 
If one comparison takes one I/O operation the running 
time on a massive data set S is: 
5ms X Θ(nlogn).  
If n is of order of few Gigabytes, such as n~230  
          5X230X30 = 108 ms  around 1 day of computation!! 
But if we run MergeSort on a PC on such a sequence S it 
takes only few hours. 
                                 Why? 
When the recursion produces sub-arrays of size less 
than M the cost reduces. 



2-level model 
When the sub-sequence is of size z=O(M), is contained 
into the cache. It can be handled completely inside the 
memory with no I/O faults. 
 
The cost of sorting sub-sequence is of size z=O(M) is 
not O (z/B logz) according to the previous result 
 
But O(z/B)  which is the cost to load the sub-sequence 
into the memory. 
 
 
 



MergeSort in 2-level model 
N. of sequences       N. of items           #I/Os for Merge 

   2                       n/2                 O(n/B) 
   4      n/4                 O(n/B) 
   8                       n/8       O(n/B) 

               ….               …..     …. 
              n/M                     M                   O(n/B) 
 
The last n/M sequences takes O(M/B) instead of  
O((M/B)logM)) to be sorted. 
The total gain is O((n/B)logM) 
O((n/B) logn) - O((n/B)logM) = 
 
O((n/B) log(n/M))    Total number of I/O’s 



Optimize MergeSort 
Stop the recursion at M:  
More precisely: when the subsequence size S[i+1,j],  j-i < 
cM. 
c takes into account of the space occupancy of the 
sorter. (c=1 for in place sorting, c=0.5 for MergeSort 
for the extra-array for merging). 
We should write cM instead of M in the previous bound, 
that becomes  O((n/B) log(n/cM)). 
 
c is close to 1 using a different in place alg. when sorting 
small subsequences, e.g. Heapsort or InsertionSort 
which is good enough for small values of M. e. g. when 
there are two levels of cache L1 and L2, L1 is small (few 
megabytes). 
 
 



Optimize MergeSort 
Problem: Merge passes over the data  bottleneck!  
O((n/B) log(n/M)) is bigger when M is small 
Solutions: 
Enlarge M (physically is very expensive!) 
1)  Deploy M as much as possible 
 SnowPlow algorithm: virtually increase the memory  
 size of a factor 2 in average.  
 
2) Enlarge M virtually 
Data compression: encode the items with integer 
compression which squeezes integers in fewer bits. 
Encoded items can be packed more in internal memory. 
                     LATER! 

 
 



SnowPlow 
Is divided in phases. Each phase produces a sorted 
subsequence of size s, M ≤ s ≤2M.  
Each phase has 4 steps: 
 
1.  Form a min Heap H of the items contained  in M. 
2.  At each step, while scanning items from S: 
3.  - extract min from H and output it; 
4.  - if next > min insert next in H 
           else insert next in a auxiliary storage U.* 
A phase terminates when H is empty and U occupies the 
whole M. 
•  The output run is non decreasing. 
•  At the end all the elements in H will be output, hence 

the number of steps of a phase is ≥ M. 
 



SnowPlow 

The 4 steps of a phase. 



SnowPlow 
SnowPlow is more efficient than MergeSort on average. 
 
Let τ be the number of elements read in a phase 
A phase ends when H is empty and |U|=M. 
M items of the τ scanned end-up in U. 
Τ – M goes to H and written to the output  sorted run . 
The length of the sorted run at the end of the phase is 
 M + (τ –M). 
 
How much is τ on average? 
 
Pr(next < min) =1/2 for uniform distribution. 
So on average τ/2 elements go to H and τ/2 elements go 
to U. So M=τ/2 and τ=2M. 
 



SnowPlow 
SnowPlow builds O(n/M) sorted runs, each larger than 
M,  and of length 2M in average. 
 
Using Snowplow for generating sorted runs and a  
Merge-based sorting scheme we obtain: 
 
 
                     O((n/B) log(n/2M)) I/O’s on average. 
 
 
 



Multi-way MergeSort 
Previous algorithms                  binary Merge 
  
Now:  Multi-way Merge. 
Binary merge uses 3 blocks: 2 blocks to cache items 
from S[x] and S[y], 1 block to cache the output items. 
But M/B >> 3: Many more blocks available! 
 
K-way Merging, set k =(M/B)-1 (1 block for the output) 
 
Merge K-runs: 
•  Build minHeap H to contain the k minima from the k 

runs. 
•  Items are represented by pairs : <Ri[1], i> 



Multi-way MergeSort: Example 
k=3      

R1	  :	  	  11,	  18,	  44,	  63,	  87	  …	  
	  
R2:	  	  	  	  12,	  21,	  32,	  48,	  54,	  …	  
	  
R3:	  	  	  	  	  	  17,	  19,	  25,	  33,	  39,	  ….	  

Heap	  	  	  H	  

At each step:   
 - Extract min from H 
 - Take another item from Ri (if not ended) 

M=	  4B	  	  	  	  	  k=(M/B-‐1)	  



Multi-way MergeSort 

R1	  :	  	  	  11,	  18,	  44,	  63,	  87	  …	  
	  
R2:	  	  	  	  12,	  21,	  32,	  48,	  54,	  …	  
	  
R3:	  	  	  	  	  17,	  19,	  25,	  33,	  39,	  ….	  

Heap	  	  	  H	  

	  	  17	  

12	  

18	  



Multi-way MergeSort 
Merging takes O(logk) time per item. 
O(z/B) I/O’s to merge k runs of total length z. 
 
The runs can be produced e.g. by SnowPlow alg. 



Multi-way MergeSort 
How many levels of recursion? 
n/(M/B)i ≤ M    n/M≤(M/B)i     i≥ logM/B(n/M)  

Total number of I/O’s = O((n/B) logM/B(n/M)) 
and O(nlogn) time 



Multi-way MergeSort 
In practice: 
 
The number of recursion levels is very small. 
 
Assume B=4KB,  M=4GB,   M/B= 232/212=220 
 

The number of levels = logM/B, is 1/20 less than Binary MS! 
 
Remember: 

Logba=logca/logcb       logM/B n/M= log (n/m)/log(M/B) 


