List Ranking

Chapter 4

Problem on linked lists 2-level memory model

- List Ranking problem

Given a (mono directional) linked list L of n items, compute the distance of each item from the tail of L.

Id	1	2	3	4	5	6
Succ	3	5	3	6	4	1
Rank	1	5	0	3	4	2

List ranking

- Easy sequential solution in the RAM model, $O(n)$.
- Compute the predecessor of I, such that Pred[Succ[i] = i;
- Scan the list starting from the tail, setting Rank[tail]=0 and incrementing the value at each item.
- Recursive solution

ListRank(i):
if (Succ[i]=:i) Rank[i]=0; else Rank[i]=ListRank(Succ[i]) +1 ;

First call: ListRank(head)
$O(n)$ and no additional space to store Pred.

2-level model

- Very bad in this model $\Theta(n)$ I/O accesses!! far from the lower bound $\Omega(n / B)$.
- Solution: use a technique coming from the theory of parallel algorithms, the pointer jumping, that can be done in parallel for every item.
- At each iteration update the pointer with the pointer of the pointed item:
- Succ[i]= Succ[succ[i]] and compute the rank accordingly.

Parallel List ranking

1: for $1 \leq i \leq n$ pardo
if $\operatorname{Succ}(i)==i$ then $\operatorname{Rank}(i)=0$ else Rank(i)=1
2: for $1 \leq i \leq n$ pardo while (Succ(i) $\neq i$) do

$$
\begin{aligned}
& \operatorname{Rank}(i):=\operatorname{Rank}(i)+\operatorname{Rank}(\operatorname{Succ}(i)) \text { : } \\
& \operatorname{Succ}(i):=\operatorname{Succ}(\operatorname{Succ}(i))
\end{aligned}
$$

end

Parallel List ranking

Initial step:

Id	1	2	3	4	5	6
Succ	3	5	3	6	4	1
Rank	1	1	0	1	1	1

Pointer Jumping

Step 2 and 3 of the while:

At step 4 (last) only Rank[2] becomes 5.

Parallel List ranking

The parallel algorithm, using n processors, takes $O(\operatorname{logn})$ time and $O(n \operatorname{logn})$ operations.

Observation: The distances from the tail, at each step, of pointer jumping do not grow linearly, but duplicate. This means that the most distant item will take $O(\operatorname{logn})$ steps to be ranked.
The overall operations are $O(n \log n)$ because, at each step. $O(n)$ processors are working in parallel.

Idea: Use the simulation of the pointer jumping technique for the 2-level model and Sort and Scan primitives for Triples.

Parallel algorithm simulation in a 2-level model

The simulation is performed via a constant number of Sort and Scan primitives over n triples of integers. Sort is very complicate in the 2-level model (see future lectures). We use here a primitive of complexity $\tilde{O}(n / B)$ I/Os operations,
Õ : polylog factors (in M, n, B) are hidden. Scan is easy and takes $O(n / B)$ I/Os operations.

Express the two basic parallel operations in the same way:
Rank (i) $+=\operatorname{Rank}(S u c c(i))$
A(ai) op $A(b i)$
$\operatorname{Succ}(\mathrm{i})=\operatorname{Succ}(\operatorname{Succ}(\mathrm{i}))$
op is sum and a assignment for the Rank array ($A=$ Rank) op is a copy for the update of the Succ array ($A=S u c c$)

Parallel simulation in a 2 -level model

The simulation of $A(a i)$ op $A(b i)$ can be implemented simultaneously over all $i=1,2 \ldots, n . \quad 5$ steps:

1. Scan the disk and create a triple <ai, bi, 0>.
2. Sort the triples according to the second component;
3. Scan the triples and array A to create the new triple <ai, bi, A[bi]. The coordinate scan allows to copy $A[b i]$ into the triple.
4. Sort the triples according to the first component (ai).
5. Scan the triples and the array A and, for every triple update the memory content of cell A(ai).

Parallel simulation in a 2-level model

Item	1	2	3	4	5	6
Rank	1	7	0	7	7	7
Suce	3	4	3	1	6	3

Hem	1	2	3	4	5	6
Rank	1	4	0	3	4	2
Suce	3	1	3	3	3	3

Parallel simulation in a 2 -level model

More general result:
Every parallel algorithm using n processors and taking T steps can be simulated in a 2 -level memory by a diskaware sequential algorithm taking ($(\tilde{O}(n / B) T$) I/Os operations, and $O(n)$ space.

It is convenient when: $T=O(B)$ that is sub-linear number of I/O's.
Exploit algorithms for the PRAM model

Parallel simulation in a 2-level model: with Divide\&Conquer

Divide\&Conquer

- Divide: Divide the problem in k sub-problems of size n_{1}, \ldots, n_{k}.
- Conquer: Solve the sub-problems recursively, or directly if $n_{k}=O(1)$.
- Recombine: Combine the sub-problems to find the solution to the original problem.
Complexity with recursion relation:

Master Theorem to solve recurrence of the kind:

$$
T(n)=a T(n / b)+f(n)
$$

With $a \geq 1, b>1$, constant, $f(n)$ be a function

Master Theorem for recurrence relations

$T(n)=a T(n / b)+f(n)$
With $a \geq 1, b>1$, constant, $f(n)$ a function.
$T(n)$ can be bounded asymptotically as follows:

1. If $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\boldsymbol{\Theta}\left(n^{\log _{b} a}\right)$
2. If $f(n)=\boldsymbol{\Theta}\left(n^{\log _{b} a}\right)$ then $T(n)=\boldsymbol{\Theta}\left(n^{\log _{b} a} \log n\right)$
3. If $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\boldsymbol{\Theta}(f(n))$ if the regolarity condition holds.

Regolarity c.: $a(f(n / b) \leq c f(n)$ for some constant $c<1$ and sufficiently large n.
Ex: $T(n)=4 T(n / 2)+n ; T(n)=4 T(n / 2)+n^{2} ; T(n)=4 T(n / 2)+n^{3}$.

Master Theorem for recurrence relations

$T(n)=a T(n / b)+f(n)$
With $a \geq 1, b>1$, constant, $f(n)$ a function.
$T(n)$ can be bounded asymptotically as follows:

1. If $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\boldsymbol{\Theta}\left(n^{\log _{b} a}\right)$
2. If $f(n)=\boldsymbol{\Theta}\left(n^{\log _{b} a}\right)$ then $T(n)=\boldsymbol{\Theta}\left(n^{\log _{b} a} \log n\right)$
3. If $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\boldsymbol{\Theta}(f(n))$ if the regolarity condition holds.

Regolarity c.: $a(f(n / b) \leq c f(n)$ for some constant $c<1$ and sufficiently large n.
Ex: $T(n)=4 T(n / 2)+n ; T(n)=4 T(n / 2)+n^{2} ; T(n)=4 T(n / 2)+n^{3}$.

Master Theorem for recurrence relations

1. $T(n)=4 T(n / 2)+n ;$
2. $T(n)=4 T(n / 2)+n^{2}$;
3. $T(n)=4 T(n / 2)+n^{3}$.
1) $a=4, b=2, n^{\log _{b} a}=n^{2}, f(n)=n: f(n)=O\left(n^{\log _{b} a-\varepsilon}\right), \operatorname{per} 0 \leq \varepsilon \leq 1$ case 1 of Th $\quad T(n)=\Theta\left(n^{2}\right)$
2) $a=4, b=2, n^{\log _{b} a}=n^{2}, f(n)=n^{2}: f(n)=\Theta\left(n^{\log _{b} a}\right)$ case 2 of $T h \quad T(n)=\Theta\left(n^{2} \log n\right)$
3) $a=4, b=2, n^{\log _{b} a}=n^{2}, f(n)=n 3: f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, per $0 \leq \varepsilon \leq 1$ Case 3 of $\operatorname{Th} \quad T(n)=\Theta\left(n^{3}\right)$
se $a f(n / b) \leq c f(n) \quad 4(n / 2)^{2} \leq n^{2} \quad n^{2} \leq c n^{2}$, true for $c<1$.

A Divide\&Conquer approach for List Ranking

1. Divide: Identify a set I of items from the list L, such that I is an independent set for L, that is the successor of each item in I does not belong to I. $|I| \leq n / 2$. In the alg $|I|$ is also kept $\geq n / c$
2. Conquer: Form the list $L^{*}=L-I$ by pointer jumping on the predecessor of the items in I. At any step, rank[x] is the distance between x and the current succ $[x]$ in the input list. Solve recursively on L^{*}, where $n / 2 \leq\left|L^{\star}\right| \leq$ $(1-1 / c) / n$.
3. Recombine: Assume that the list rank is correctly been computed for all L^{*}. Now derive the final rank of each item x in I as $\operatorname{rank}[x]=\operatorname{rank}[x]+\operatorname{rank}[\operatorname{succ}[x]]$ as for pointer jumping.

Divide\&Conquer for List Ranking

$I=\{5,1\}$ Rank update su L*: Rank[2] = Rank[2]+Rank[Succ[5]]= $1+\operatorname{Rank}[4]=2$ $\operatorname{Rank}[6]=\operatorname{Rank}[6]+\operatorname{Rank}[\operatorname{Succ}[6]]=1+\operatorname{Rank}[1]=2$

List ranking over L of n elements

I/O's complexity via Divide\&Conquer:
$T(n)=I(n)+T((1-1 / c)) n+\tilde{O}(n / B)$
Where $I(n)$ is the cost of selecting the independent set; $\tilde{O}(n / B)$ is for the recombine step that can be solved by a costant number of Sort and Scan as before.

Identify a large independent set I from L avoiding many I/Os :

1. Randomized solution
2. Deterministic coin tossing

Correctness of rank computation

1. The independent set property on I assures that Succ[i] L^{*}, so its rank is available.
2. By induction: $\operatorname{Rank}(\operatorname{Succ}[x]]$ accounts for the distance of Succ[x] from the tail of L and $\operatorname{Rank}[x]$ accounts for the distance between x and $\operatorname{Succ}(x)$ in the input list.
Pointer Jumping is applied only to the predecessors of the removed items and the others have their Succ pointer unchanged.
The I/O efficiency of the algorithm depends onto the Divide step.

Select an independent set from L by randomized solution

Algorithm: toss a fair coin for each item i of L.
If coin(i) $=H$ select item i if $\operatorname{Coin}(\operatorname{Succ}(i))=T$.
Probability: item I is selected with prob. $\frac{1}{4}$ (this happens for the configuration HT)
Algorithm repeats the coin tossing until $|I| \underline{n} / c$, for some $c>4$. By Chernoff bound it can be proved that the repetition is executed a small number of time.
The check for the coin values and selecting the I's items, can be simulated via Sort and Scan primitives in $\widetilde{O}(n / B) I /$ O's on average.
Hence: $T(n)=\tilde{O}(n / B)+T(3 / 4 n)$ and by Master Th:

$$
T(n)=\tilde{O}(n / B) \quad \text { on average. }
$$

Select an independent set from L by deterministic coin tossing

Simulate deterministically the coin-tossing.
Instead of assigning to each item 2 possible values (H, T) assign n values ($0,1, \ldots, n-1$) that eventually will be reduce to 3 ($0,1,2$).
Selection: Pick the items that are local minima, that is their values is less than its two adjacent items.

Algorithm
Initialize Assign to each item i coin(i) $=\mathrm{i}-1$. The binary representation of coin(i), bit ${ }_{b}(i)$ takes $b=\lceil\operatorname{logn} 7$.

Deterministic coin tossing

Get 6 -coin values. Repeat the following steps until $\operatorname{coin}(i)<6$, for all i :

- Compute the position $\pi(i)$ where bit $_{b}(i)$ and bit $_{b}($ Succ $[i])$ differ, and denote by $z(i)$ the bit-value of $\mathrm{bit}_{b}(i)$ at that position.
- Compute the new coin-value for i as $\operatorname{coin}(i)=2 \pi(i)+z(i)$ and set the new binarylength representation as $b=\lceil\log b\rceil+1$.

Get just 3 -coin values. For each element i, such that $\operatorname{coin}(i) \in\{3,4,5\}$, do $\operatorname{coin}(i)=\{0,1,2\}-$ $\{\operatorname{coin}(S u c c[i]), \operatorname{coin}(\operatorname{Pred}[i])\}$.
Select I. Pick those items i such that coin((i) is a local minimum, namely it is smaller than $\operatorname{coin}(\operatorname{Pred}[i])$ and $\operatorname{coin}(S u c c[i])$.

Deterministic coin tossing Example

$\mathrm{Bit}_{b}(\mathrm{i})$ $B i t_{b}(\operatorname{succ}(i)) \pi(i) z(i)$ new coin(i)
01111011_{2} 00101111_{2} 2 4
00101111_{2} 01101011_{2} 2
1 5
01101011_{2}
\square
01111011_{2} 00101111_{2} 2 0 4
00101111_{2} 01101111_{2} 6 0 12

Deterministic coin tossing

$\operatorname{Bit}_{b}(n)=128 \quad n=2^{128}$
From b to $\log b+1$

$$
\begin{aligned}
2^{128} & \rightarrow 2 \cdot 128=2^{8} \\
2^{8} & \rightarrow 2 \cdot 8=2^{4} \\
2^{4} & \rightarrow 2 \cdot 4=2^{3} \\
2^{3} & \rightarrow 2 \cdot 3=6
\end{aligned}
$$

Deterministic coin tossing

Get 6 -coin values The step is repeated until coin(i) <6 for all i. Coin(i) $=\{0,1, \ldots, 5\}$

Observe: for all i : coin((i) is different from the coin(i) of its adjacent elements.

Proof by contraddiction: assume coin(i) $=\operatorname{coin}(\operatorname{succ}(i))$ then $2 \pi(i)+z(i)=2 \pi(\operatorname{succ}(i))+z(\operatorname{succ}(i))$ and it must be $z(i)=z(\operatorname{succ}(i))$ then this is contradiction since I and succ(i) differs at position $\pi(i)$. A similar argument holds for i and pred(i).

In addition: $2 \pi(i)+z(i) \leq 2(b-1)+1=2 b-1$
This max value can be represented by 「logb $7+1$ bits

Deterministic coin tossing

Get 3-coin values
The different values of coin(i) are ($0,1, \ldots 5$), since every 2 adjacent $c(i)$ are different.

Hence:
if coin(i) $=\{3,4,5\}$ the new value will be $\{0,1,2\}$ \{coin(pred(i)), coin(succ(i))\}

Deterministic coin tossing

The number of steps to get 6 values $\{0,1, \ldots, 5\}$ is $\log ^{*} n$. At each step:
b bits becomes logb+1 bits.
Log* n is the repeated application of the log function until value 1 is reached.

$$
\begin{gathered}
16 \\
\log (16)=4 \\
\log (4)=2 \\
\log (2)=1 \\
\log ^{\star}(16)=3
\end{gathered}
$$

Log* n is a function that grows very very slowly!

Select independent set Local minima

The list ranking problem is solved with coin tossing alg. with $\widetilde{O}(n / B)$ worst case I/Os

