
List Ranking 

Chapter 4 



Problem on linked lists 
2-level memory model 

•  List Ranking problem 
   Given a (mono directional) linked list L  of n items,   
   compute the distance of each item from the tail of L. 
 

1	   2	   3	   4	   5	   6	  

3	   5	   3	   6	   4	   1	  

1	   5	   0	   3	   4	   2	  

   Id 

Succ 

Rank 
	  



List ranking 

•  Easy sequential solution in the RAM model, O(n). 
–  Compute the predecessor of I, such that Pred[Succ[i]] = i; 
–  Scan the list starting from the tail, setting Rank[tail]=0 
    and incrementing the value at each item. 

•  Recursive solution 
     ListRank(i): 

 if (Succ[i]==i) Rank[i]=0; 
          else Rank[i]=ListRank(Succ[i]) +1; 
 
   First call: ListRank(head)   
   O(n)  and no additional space to store Pred.  



2-level model 
•  Very bad in this model Θ(n) I/O accesses!! 

 far from the lower bound Ω(n/B). 
•  Solution: use a technique coming from the 

theory of parallel algorithms, the pointer 
jumping, that can be done in parallel for every 
item. 

•  At each iteration update the pointer with the 
pointer of the pointed item: 

•  Succ[i]= Succ[succ[i]] and compute the rank  
   accordingly. 



Parallel List ranking 
1: for  1 ≤i ≤ n  pardo     
     if Succ(i) ==i then Rank(i) = 0   

  else  Rank(i)= 1 
2: for  1 ≤ i ≤ n  pardo  

  while (Succ(i) ≠ i ) do 
            Rank(i) := Rank(i) + Rank(Succ(i));                      
                  Succ(i) := Succ(Succ(i)) 
     end        
	  



Parallel List ranking 

Initial step: 

1	   2	   3	   4	   5	   6	  

3	   5	   3	   6	   4	   1	  

1	   1	   0	   1	   1	   1	  

   Id 
Succ 
Rank 
	  



Pointer Jumping 

Step 2 and 3 of the while: 

At step 4 (last) only Rank[2] becomes 5. 



Parallel List ranking 

The parallel algorithm, using n processors,  takes O(logn)  
time and O(nlogn) operations. 
 
Observation: The distances from the tail, at each step, of 
pointer jumping do not grow linearly, but duplicate. This 
means that the most distant item will take O(logn) steps 
to be ranked. 
The overall operations are O(nlogn) because, at each step. 
O(n) processors are working in parallel. 
 
Idea: Use the simulation of the pointer jumping technique 
for the 2-level model and Sort and Scan primitives for 
Triples. 



Parallel algorithm simulation in a 2-level model 

The simulation is performed via a constant number of Sort 
and Scan primitives over n triples of integers. 
Sort is very complicate in the 2-level model (see future  
lectures). We use here a primitive of complexity Õ(n/B) 
I/Os operations,  
Õ : polylog factors (in M, n, B) are hidden. 
Scan is easy and takes O(n/B) I/Os operations.  
 
Express the two basic parallel operations in the same way: 
Rank (i) += Rank(Succ(i))  
Succ(i) =Succ(Succ(i)) 
op is sum and a assignment for the Rank array (A=Rank) 
op is a copy for the update of the Succ array (A=Succ) 
 

A(ai) op A(bi) 
	  



Parallel simulation in a 2-level model 

The simulation of A(ai) op A(bi) can be implemented 
simultaneously over all i=1,2…,n.    5 steps: 
1.  Scan the disk and create a triple <ai, bi, 0>. 
2.  Sort the triples according to the second component; 
3. Scan the triples and array A to create the new triple  
   <ai, bi, A[bi]>. The coordinate scan allows to copy A[bi]  
   into the triple. 
4. Sort the triples according to the first component (ai). 
5. Scan the triples and the array A and, for every triple 
    update the memory content of cell A(ai). 

 
 



Parallel simulation in a 2-level model 

Rank(Succ(i))	  

Rank (i) += Rank(Succ(i))  
Succ(i) =Succ(Succ(i)) 
	  



Parallel simulation in a 2-level model 

More general result: 
Every parallel algorithm using n processors and taking T 
steps can be simulated in a 2-level memory by a disk-
aware sequential algorithm taking (Õ(n/B) T) I/Os 
operations, and O(n) space. 
 
It is convenient when:  T = o(B) that is sub-linear 
number of I/O’s. 
Exploit algorithms for the PRAM model 
                
 



Parallel simulation in a 2-level model: 
with Divide&Conquer  

Divide&Conquer 
•  Divide: Divide the problem in k sub-problems of size n1, …,nk. 
•  Conquer: Solve the sub-problems recursively, or directly if nk=O(1). 
•  Recombine: Combine the sub-problems to find the solution to the 

original problem. 
Complexity with recursion relation: 
               
 
  
 
 
 
 
 
 
 
 
 
 

 
Master Theorem to solve recurrence of the kind: 

        T(n) = aT(n/b) + f(n) 
With a≥1, b> 1, constant, f(n) be a function 

       
             
 



Master Theorem for recurrence relations 

T(n) = aT(n/b) + f(n) 
With a≥1, b> 1, constant, f(n) a function. 
T(n) can be bounded asymptotically as follows: 
 
1.  If f(n) =O(nlog

b
a-ɛ) for some constant  ɛ>0, then  

      T(n) = Θ(nlog
b
a)  

2.  If f(n) = Θ(nlog
b
a) then T(n) =Θ(nlog

b
alogn) 

3.  If f(n) = Ω (nlog
b
a+ɛ) for some constant  ɛ>0, then  

      T(n) = Θ(f(n)) if the regolarity condition holds. 
 
 
Regolarity c.: a(f(n/b)≤cf(n)  for some constant c<1 and sufficiently large n. 
 
Ex: T(n) = 4T(n/2)+n; T(n) = 4T(n/2)+n2; T(n) = 4T(n/2)+n3. 
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Master Theorem for recurrence relations 
1.  T(n) = 4T(n/2)+n;  
2.  T(n) = 4T(n/2)+n2;  
3.  T(n) = 4T(n/2)+n3. 
 1)    a=4. b=2,  nlog

b
a = n2, f(n) =n: f(n)=O(nlog

b
a-ɛ), per 0≤ɛ≤1 

         case 1 of Th      T(n) = Θ (n2) 
 2)   a=4, b=2,  nlog

b
a = n2

, f(n)=n2:  f(n)=Θ(nlog
b
a)  

         case 2 of Th       T(n)= Θ (n2logn) 
 3) a=4, b=2,  nlog

b
a = n2,f(n) =n3: f(n)=Ω (nlog

b
a+ɛ), per 0≤ɛ≤1 

     Case 3 of Th       T(n)= Θ (n3) 
     se   af(n/b)≤cf(n)    4 (n/2)2≤cn2     n2≤cn2, true for c<1. 



A Divide&Conquer approach for List Ranking 
1.  Divide: Identify a set I of items from the list L, such 

 that I is an independent set for L, that is the 
 successor of each item in I does not belong to I.  

  |I|≤n/2. In the alg |I| is also kept ≥ n/c 
2.  Conquer: Form the list L* =L-I by pointer jumping on 

 the predecessor of the items in I. At any step, rank[x] 
 is the distance between x and the current succ[x] in the 
 input list. Solve recursively on L*, where n/2≤|L*|≤ 
 (1-1/c)/n. 

3.  Recombine: Assume that the list rank is correctly been 
 computed for all L*. Now derive the final rank of each 
 item x in I as rank[x]=rank[x]+rank[succ[x]] as for  
 pointer jumping. 



Divide&Conquer for List Ranking	  

I=  {5, 1}   Rank update su L*: Rank[2] = Rank[2]+Rank[Succ[5]]= 1 +Rank[4]=2 
Rank[6] = Rank[6]+Rank[Succ[6]] =1+Rank[1] = 2 



List ranking over L of n elements	  

I/O’s complexity via Divide&Conquer: 
T(n) = I(n) + T((1-1/c))n + Õ(n/B) 
 
Where I(n) is the cost of selecting the independent set; 
Õ(n/B) is for the recombine step that can be solved by a costant 
number of Sort and Scan as before. 
 
Identify a large independent set I from L avoiding many I/Os : 
1.  Randomized solution 
2.  Deterministic coin tossing 



Correctness of rank computation	  

1.  The independent set property on I assures that 
Succ[i] ε L*, so its rank is available. 

2.  By induction: Rank(Succ[x]] accounts for the 
distance of Succ[x] from the tail of L and Rank[x] 
accounts for the distance between x and Succ(x) in 
the input list. 

Pointer Jumping is applied only to the predecessors of 
the removed items and the others have their Succ 
pointer unchanged. 
The I/O efficiency of the algorithm depends onto the 
Divide step. 



Select an independent set from L by 
randomized solution	  

Algorithm: toss a fair coin for each item i of L.  
                  If coin(i) = H select item i if Coin(Succ(i))=T. 
Probability: item I is selected with prob. ¼ (this happens 
                  for the configuration HT) 
Algorithm repeats the coin tossing until |I|≥n/c, for some 
c > 4. By Chernoff bound it can be proved that the 
repetition is executed a small number of time. 
The check for the coin values and selecting the I’s items, 
can be simulated via Sort and Scan primitives in Õ(n/B) I/
O’s on average. 
Hence:    T(n) = Õ(n/B)+ T(3/4n)     and by Master Th: 
                 T(n) = Õ(n/B)        on average.  
 
 
 



Select an independent set from L by 
deterministic coin tossing	  

Simulate deterministically   the coin-tossing. 
Instead of assigning to each item 2 possible values (H,T) 
assign n values (0,1, …, n-1) that eventually will be reduce 
to 3 (0,1,2).  
Selection: Pick the items that are local minima, that is 
their values is less than its two adjacent items. 
 
Algorithm 
Initialize   Assign to each item i coin(i) = i-1. The binary 
representation of coin(i), bitb(i)  takes b=⌈logn⌉. 



Deterministic coin tossing	  



 Deterministic coin tossing 
Example	  

   Bitb(i)          Bitb(succ(i))	  	  	  π(i)  z(i)  new coin(i)	  



Deterministic coin tossing	  
Bitb(n)=128  n=2128     
 

From b to logb+1 



Deterministic coin tossing	  
Get 6-coin values     The step is repeated until  coin(i) 
<6 for all  i. Coin(i)={0,1,…,5} 
 
Observe: for all i :    coin(i) is different from the 
coin(i) of its adjacent elements. 
 
Proof by contraddiction: assume coin(i) = coin(succ(i)) 
then 2π(i)+z(i) = 2π(succ(i))+z(succ(i)) and it must be 
z(i) =z(succ(i)) then this is contradiction since I and 
succ(i) differs at position π(i). A similar argument 
holds for i and pred(i). 
 
In addition: 2π(i)+z(i) ≤ 2(b-1)+1=2b-1  
This max value can be represented by ⌈logb⌉+1 bits 



Deterministic coin tossing	  

Get 3-coin values  
The different values of coin(i) are (0,1, …5), since 
every 2 adjacent c(i)  are different. 
 
Hence: 
 
 if coin(i)= {3,4,5} the new value will be {0,1,2} – 
{coin(pred(i)), coin(succ(i))} 
 
 
 



Deterministic coin tossing	  

The number of steps to get 6 values {0,1,…, 5} is log*n. 
At each step: 
             b bits    becomes   logb+1 bits. 
 
Log*n is the repeated application of the log function 
until value 1 is reached. 
 
                             16 

     log(16)=4 
     log(4)=2 
     log(2)=1 

                         
                         log*(16)=3 
 
 Log*n is a function that grows very very slowly! 



Select independent set 
Local minima 

	  
	  
	  
The list ranking problem is solved with coin tossing alg. 
with Õ(n/B) worst case I/Os  
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