
List Ranking

Chapter 4

Problem on linked lists
2-level memory model

•  List Ranking problem
 Given a (mono directional) linked list L of n items,
 compute the distance of each item from the tail of L.

1	 2	 3	 4	 5	 6	

3	 5	 3	 6	 4	 1	

1	 5	 0	 3	 4	 2	

 Id

Succ

Rank
	

List ranking

•  Easy sequential solution in the RAM model, O(n).
–  Compute the predecessor of I, such that Pred[Succ[i]] = i;
–  Scan the list starting from the tail, setting Rank[tail]=0
 and incrementing the value at each item.

•  Recursive solution
 ListRank(i):

 if (Succ[i]==i) Rank[i]=0;
 else Rank[i]=ListRank(Succ[i]) +1;

 First call: ListRank(head)
 O(n) and no additional space to store Pred.

2-level model
•  Very bad in this model Θ(n) I/O accesses!!

 far from the lower bound Ω(n/B).
•  Solution: use a technique coming from the

theory of parallel algorithms, the pointer
jumping, that can be done in parallel for every
item.

•  At each iteration update the pointer with the
pointer of the pointed item:

•  Succ[i]= Succ[succ[i]] and compute the rank
 accordingly.

Parallel List ranking
1: for 1 ≤i ≤ n pardo
 if Succ(i) ==i then Rank(i) = 0

 else Rank(i)= 1
2: for 1 ≤ i ≤ n pardo

 while (Succ(i) ≠ i) do
 Rank(i) := Rank(i) + Rank(Succ(i));
 Succ(i) := Succ(Succ(i))
 end
	

Parallel List ranking

Initial step:

1	 2	 3	 4	 5	 6	

3	 5	 3	 6	 4	 1	

1	 1	 0	 1	 1	 1	

 Id
Succ
Rank
	

Pointer Jumping

Step 2 and 3 of the while:

At step 4 (last) only Rank[2] becomes 5.

Parallel List ranking

The parallel algorithm, using n processors, takes O(logn)
time and O(nlogn) operations.

Observation: The distances from the tail, at each step, of
pointer jumping do not grow linearly, but duplicate. This
means that the most distant item will take O(logn) steps
to be ranked.
The overall operations are O(nlogn) because, at each step.
O(n) processors are working in parallel.

Idea: Use the simulation of the pointer jumping technique
for the 2-level model and Sort and Scan primitives for
Triples.

Parallel algorithm simulation in a 2-level model

The simulation is performed via a constant number of Sort
and Scan primitives over n triples of integers.
Sort is very complicate in the 2-level model (see future
lectures). We use here a primitive of complexity Õ(n/B)
I/Os operations,
Õ : polylog factors (in M, n, B) are hidden.
Scan is easy and takes O(n/B) I/Os operations.

Express the two basic parallel operations in the same way:
Rank (i) += Rank(Succ(i))
Succ(i) =Succ(Succ(i))
op is sum and a assignment for the Rank array (A=Rank)
op is a copy for the update of the Succ array (A=Succ)

A(ai) op A(bi)
	

Parallel simulation in a 2-level model

The simulation of A(ai) op A(bi) can be implemented
simultaneously over all i=1,2…,n. 5 steps:
1.  Scan the disk and create a triple <ai, bi, 0>.
2.  Sort the triples according to the second component;
3. Scan the triples and array A to create the new triple
 <ai, bi, A[bi]>. The coordinate scan allows to copy A[bi]
 into the triple.
4. Sort the triples according to the first component (ai).
5. Scan the triples and the array A and, for every triple
 update the memory content of cell A(ai).

Parallel simulation in a 2-level model

Rank(Succ(i))	

Rank (i) += Rank(Succ(i))
Succ(i) =Succ(Succ(i))
	

Parallel simulation in a 2-level model

More general result:
Every parallel algorithm using n processors and taking T
steps can be simulated in a 2-level memory by a disk-
aware sequential algorithm taking (Õ(n/B) T) I/Os
operations, and O(n) space.

It is convenient when: T = o(B) that is sub-linear
number of I/O’s.
Exploit algorithms for the PRAM model

Parallel simulation in a 2-level model:
with Divide&Conquer

Divide&Conquer
•  Divide: Divide the problem in k sub-problems of size n1, …,nk.
•  Conquer: Solve the sub-problems recursively, or directly if nk=O(1).
•  Recombine: Combine the sub-problems to find the solution to the

original problem.
Complexity with recursion relation:

Master Theorem to solve recurrence of the kind:

 T(n) = aT(n/b) + f(n)
With a≥1, b> 1, constant, f(n) be a function

Master Theorem for recurrence relations

T(n) = aT(n/b) + f(n)
With a≥1, b> 1, constant, f(n) a function.
T(n) can be bounded asymptotically as follows:

1.  If f(n) =O(nlog

b
a-ɛ) for some constant ɛ>0, then

 T(n) = Θ(nlog
b
a)

2.  If f(n) = Θ(nlog
b
a) then T(n) =Θ(nlog

b
alogn)

3.  If f(n) = Ω (nlog
b
a+ɛ) for some constant ɛ>0, then

 T(n) = Θ(f(n)) if the regolarity condition holds.

Regolarity c.: a(f(n/b)≤cf(n) for some constant c<1 and sufficiently large n.

Ex: T(n) = 4T(n/2)+n; T(n) = 4T(n/2)+n2; T(n) = 4T(n/2)+n3.

Master Theorem for recurrence relations

T(n) = aT(n/b) + f(n)
With a≥1, b> 1, constant, f(n) a function.
T(n) can be bounded asymptotically as follows:

1.  If f(n) =O(nlog

b
a-ɛ) for some constant ɛ>0, then

 T(n) = Θ(nlog
b
a)

2.  If f(n) = Θ(nlog
b
a) then T(n) =Θ(nlog

b
alogn)

3.  If f(n) = Ω (nlog
b
a+ɛ) for some constant ɛ>0, then

 T(n) = Θ(f(n)) if the regolarity condition holds.

Regolarity c.: a(f(n/b)≤cf(n) for some constant c<1 and sufficiently large n.

Ex: T(n) = 4T(n/2)+n; T(n) = 4T(n/2)+n2; T(n) = 4T(n/2)+n3.

Master Theorem for recurrence relations
1.  T(n) = 4T(n/2)+n;
2.  T(n) = 4T(n/2)+n2;
3.  T(n) = 4T(n/2)+n3.
 1) a=4. b=2, nlog

b
a = n2, f(n) =n: f(n)=O(nlog

b
a-ɛ), per 0≤ɛ≤1

 case 1 of Th T(n) = Θ (n2)
 2) a=4, b=2, nlog

b
a = n2

, f(n)=n2: f(n)=Θ(nlog
b
a)

 case 2 of Th T(n)= Θ (n2logn)
 3) a=4, b=2, nlog

b
a = n2,f(n) =n3: f(n)=Ω (nlog

b
a+ɛ), per 0≤ɛ≤1

 Case 3 of Th T(n)= Θ (n3)
 se af(n/b)≤cf(n) 4 (n/2)2≤cn2 n2≤cn2, true for c<1.

A Divide&Conquer approach for List Ranking
1. Divide: Identify a set I of items from the list L, such

 that I is an independent set for L, that is the
 successor of each item in I does not belong to I.

 |I|≤n/2. In the alg |I| is also kept ≥ n/c
2. Conquer: Form the list L* =L-I by pointer jumping on

 the predecessor of the items in I. At any step, rank[x]
 is the distance between x and the current succ[x] in the
 input list. Solve recursively on L*, where n/2≤|L*|≤
 (1-1/c)/n.

3. Recombine: Assume that the list rank is correctly been
 computed for all L*. Now derive the final rank of each
 item x in I as rank[x]=rank[x]+rank[succ[x]] as for
 pointer jumping.

Divide&Conquer for List Ranking	

I= {5, 1} Rank update su L*: Rank[2] = Rank[2]+Rank[Succ[5]]= 1 +Rank[4]=2
Rank[6] = Rank[6]+Rank[Succ[6]] =1+Rank[1] = 2

List ranking over L of n elements	

I/O’s complexity via Divide&Conquer:
T(n) = I(n) + T((1-1/c))n + Õ(n/B)

Where I(n) is the cost of selecting the independent set;
Õ(n/B) is for the recombine step that can be solved by a costant
number of Sort and Scan as before.

Identify a large independent set I from L avoiding many I/Os :
1.  Randomized solution
2.  Deterministic coin tossing

Correctness of rank computation	

1.  The independent set property on I assures that
Succ[i] ε L*, so its rank is available.

2.  By induction: Rank(Succ[x]] accounts for the
distance of Succ[x] from the tail of L and Rank[x]
accounts for the distance between x and Succ(x) in
the input list.

Pointer Jumping is applied only to the predecessors of
the removed items and the others have their Succ
pointer unchanged.
The I/O efficiency of the algorithm depends onto the
Divide step.

Select an independent set from L by
randomized solution	

Algorithm: toss a fair coin for each item i of L.
 If coin(i) = H select item i if Coin(Succ(i))=T.
Probability: item I is selected with prob. ¼ (this happens
 for the configuration HT)
Algorithm repeats the coin tossing until |I|≥n/c, for some
c > 4. By Chernoff bound it can be proved that the
repetition is executed a small number of time.
The check for the coin values and selecting the I’s items,
can be simulated via Sort and Scan primitives in Õ(n/B) I/
O’s on average.
Hence: T(n) = Õ(n/B)+ T(3/4n) and by Master Th:
 T(n) = Õ(n/B) on average.

Select an independent set from L by
deterministic coin tossing	

Simulate deterministically the coin-tossing.
Instead of assigning to each item 2 possible values (H,T)
assign n values (0,1, …, n-1) that eventually will be reduce
to 3 (0,1,2).
Selection: Pick the items that are local minima, that is
their values is less than its two adjacent items.

Algorithm
Initialize Assign to each item i coin(i) = i-1. The binary
representation of coin(i), bitb(i) takes b=⌈logn⌉.

Deterministic coin tossing	

 Deterministic coin tossing
Example	

 Bitb(i) Bitb(succ(i))	 	 	 π(i) z(i) new coin(i)	

Deterministic coin tossing	
Bitb(n)=128 n=2128

From b to logb+1

Deterministic coin tossing	
Get 6-coin values The step is repeated until coin(i)
<6 for all i. Coin(i)={0,1,…,5}

Observe: for all i : coin(i) is different from the
coin(i) of its adjacent elements.

Proof by contraddiction: assume coin(i) = coin(succ(i))
then 2π(i)+z(i) = 2π(succ(i))+z(succ(i)) and it must be
z(i) =z(succ(i)) then this is contradiction since I and
succ(i) differs at position π(i). A similar argument
holds for i and pred(i).

In addition: 2π(i)+z(i) ≤ 2(b-1)+1=2b-1
This max value can be represented by ⌈logb⌉+1 bits

Deterministic coin tossing	

Get 3-coin values
The different values of coin(i) are (0,1, …5), since
every 2 adjacent c(i) are different.

Hence:

 if coin(i)= {3,4,5} the new value will be {0,1,2} –
{coin(pred(i)), coin(succ(i))}

Deterministic coin tossing	

The number of steps to get 6 values {0,1,…, 5} is log*n.
At each step:
 b bits becomes logb+1 bits.

Log*n is the repeated application of the log function
until value 1 is reached.

 16

 log(16)=4
 log(4)=2
 log(2)=1

 log*(16)=3

 Log*n is a function that grows very very slowly!

Select independent set
Local minima

	
	
	
The list ranking problem is solved with coin tossing alg.
with Õ(n/B) worst case I/Os

	 	 1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	

