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Prologo

“This is a rocket science but you
don’t need to be a rocket
scientist to use it”
The Economist, September 2007

The main actor of this book is the Algorithm so, in order to dig into the beauty and challenges
that pertain with its ideation and design, we need to start from one of its many possible defini-
tions. The Oxford English Dictionary reports that an algorithm is, informally, “a process, or set of
rules, usually one expressed in algebraic notation, now used esp. in computing, machine transla-
tion and linguistics”. The modern meaning for Algorithm is quite similar to that of recipe, method,
procedure, routine except that the word Algorithm in Computer Science connotes something more
precisely described. In fact many authoritative researchers have tried to pin down the term over the
last 200 years [3] by proposing definitions which became more complicated and detailed nonethe-
less, hopefully in the minds of their proponents, more precise and elegant. As algorithm designers
and engineers we will follow the definition provided by Donald Knuth at the end of the 60s [7, pag
4]: an Algorithm is a finite, definite, e↵ective procedure, with some output. Although these five
features may be intuitively clear and are widely accepted as requirements for a sequence-of-steps to
be an Algorithm, they are so dense of significance that we need to look into them with some more
detail, even because this investigation will surprisingly lead us to the scenario and challenges posed
nowadays by algorithm design and engineering, and to the motivation underling these lectures.

Finite: “An algorithm must always terminate after a finite number of steps ... a very finite
number, a reasonable number.” Clearly, the term “reasonable” is related to the e�ciency
of the algorithm: Knuth [7, pag. 7] states that “In practice, we not only want algorithms,
we want good algorithms”. The “goodness” of an algorithm is related to the use that
the algorithm makes of some precious computational resources such as: time, space,
communication, I/Os, energy, or just simplicity and elegance which both impact onto
the coding, debugging and maintenance costs!

Definite: “Each step of an algorithm must be precisely defined; the actions to be carried out
must be rigorously and unambiguously specified for each case”. Knuth made an e↵ort
in this direction by detailing what he called the “machine language” for his “mythical
MIX...the world’s first polyunsaturated computer”. Today we know of many other pro-
gramming languages such as C/C++, Java, Python, etc. etc. All of them specify a
set of instructions that the programmer may use to describe the procedure underlying
his/her algorithm in an unambiguous way: “unambiguity” here is granted by the formal
semantics that researchers have attached to each of these instructions. This eventually
means that anyone reading the algorithm’s description will interpret it in a precise way:
nothing will be left to personal mood!
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E↵ective: “... all of the operations to be performed in the algorithm must be su�ciently basic
that they can in principle be done exactly and in a finite length of time by a man using
paper and pencil”. Therefore the notion of “step” invoked in the previous item implies
that one has to dig into a complete and deep understanding of the problem to be solved,
and then into logical well-definite structuring of a step-by-step solution.

Procedure: “... the sequence of specific steps arranged in a logical order”.
Input: “... quantities which are given to it initially before the algorithm begins. These inputs

are taken from specified sets of objects”.
Output: “... quantities which have a specified relation to the inputs”.

In this booklet we will not use a formal approach to algorithm description, because we wish to
concentrate on the theoretically elegant and practically e�cient ideas which underlie the algorithmic
solution of some interesting problems, without being lost in the maze of programming technicalities.
So in every lecture we will take an interesting problem coming out from a real/useful application
and then propose deeper and deeper solutions of increasing sophistication and improved e�ciency,
taking care that this will not necessarily correspond to increasing the complexity of algorithm’s
description. Actually, problems were selected to admit surprisingly elegant solutions that can be
described in few lines of code! So we will opt for the current practice of algorithm design and
describe our algorithms either colloquially or by using pseudo-code that mimics the most famous
C and Java languages. In any case we will not renounce to be as much rigorous as it needs an
algorithm description to match the five features above.

Elegance will not be the only feature of our algorithm design, of course, we will also aim for
e�ciency which commonly relates to the time/space complexity of the algorithm. Traditionally time
complexity has been evaluated as a function of the input size n by counting the (maximum) number
of steps, say T (n), an algorithm takes to complete its computation over an input of n items. Since
the maximum is taken over all inputs of that size, the time complexity is named worst case because
it concerns with the input that induces the worst behavior in time for the algorithm. Of course, the
larger is n the larger is T (n), which is therefore non decreasing and positive. In a similar way we
can define the (worst-case) space complexity of an algorithm, as the maximum number of memory
cells it uses for its computation over an input of size n. This approach to the design and analysis
of algorithms assumes a very simple model of computation, known as model of Von Neumann (aka
Random Access Machine, RAM model). This model consists of a CPU and a memory of infinite size
and constant-time access to each one of its cells. Here we argue that every step takes a fixed amount
of time on a PC, which is the same for any operation: being it arithmetic, logical, or just a memory
access (read/write). Here one postulates that it is enough to count the number of steps executed
by the algorithm in order to have an “accurate” estimate of its execution time on a real PC. Two
algorithms can then be compared according to the asymptotic behavior of their time-complexity
functions as n �! +1, the faster is growing the time complexity over inputs of larger and larger
size, the worse is its corresponding algorithm. The robustness of this approach has been debated
for a long time but, eventually, the RAM model dominated the algorithmic scene for decades (and
is still dominating it!) because of its simplicity, which impacts on algorithm design and evaluation,
and its ability to estimate the algorithm performance “quite accurately” on (old) PCs. Therefore it
is not surprising that most introductory books on Algorithms take the RAM model as a reference.

But in the last ten years things have changed significantly, thus highlighting the need for a shift
in algorithm design and analysis! Two main changes occurred: the architecture of modern PCs
became more and more sophisticated (not just one CPU and one monolithic memory!), and input
data have exploded in size (“n �! +1” does not live only in the theory world!) because they
are abundantly generated by many sources: such as DNA sequencing, bank transactions, mobile
communications, Web navigation and searches, auctions, etc. etc.. The first change turned the RAM
model into an unsatisfactory abstraction of modern PCs; whereas the second change made the design
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FIGURE 1.1: An example of memory hierarchy of a modern PC.

of asymptotically good algorithms ubiquitous and fruitful not only for dome-headed mathematicians
but also for a much larger audience because of their impact on business [2], society [1] and science
in general [4]. The net consequence was a revamped scientific interest in algorithmics and the
spreading of the word “Algorithm” to even colloquial speeches!

In order to make algorithms e↵ective in this new scenario, researchers needed new models of
computation able to abstract in a better way the features of modern computers and applications and,
in turn, to derive more accurate estimates of algorithm performance from their complexity analysis.
Nowadays a modern PC consists of one or more CPUs (multi-core?) and a very complex hierarchy
of memory levels, all with their own technological specialties (Figure 1.1): L1 and L2 caches,
internal memory, one or more mechanical or SSDisks, and possibly other (hierarchical-)memories
of multiple hosts distributed over a (possibly geographic) network, the so called “Cloud”. Each
of these memory levels has its own cost, capacity, latency, bandwidth and access method. The
closer a memory level is to the CPU, the smaller, the faster and the more expensive it is. Currently
nanoseconds su�ce to access the caches, whereas milliseconds are yet needed to fetch data from
disks (aka I/O). This is the so called I/O-bottleneck which amounts to the astonishing factor of
105 � 106, nicely illustrated by Tomas H. Cormen with his quote:

“The di↵erence in speed between modern CPU and (mechanical) disk technologies is analogous to
the di↵erence in speed in sharpening a pencil using a sharpener on one’s desk or by taking an

airplane to the other side of the world and using a sharpener on someone else’s desk”.

Engineering research is trying nowadays to improve the input/output subsystem to reduce the
impact of the I/O-bottleneck onto the e�ciency of applications managing large datasets; but, on the
other hand, we are aware that the improvements achievable by means of a good algorithm design
abundantly surpass the best expected technology advancements. Let us see the why with a simple
example!1

Assume to take three algorithms having increasing I/O-complexity: C1(n) = n, C2(n) = n2 and
C3(n) = 2n. Here Ci(n) denotes the number of disk accesses executed by the ith algorithm to process
n input data (stored e.g. in n/B disk pages). Notice that the first two algorithms execute a polynomial
number of I/Os (in the input size), whereas the last one executes an exponential number of I/Os.
Moreover we note that the above complexities have a very simple (and thus unnatural) mathematical
form because we want to simplify the calculations without impairing our final conclusions. Let us

1This is paraphrased from [8], now we talk about I/Os instead of steps.
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now ask for how many data each of these algorithms is able to process in a fixed time-interval of size
t, given that each I/O takes c time. The answer is obtained by solving the equation Ci(n)⇥c = t with
respect to n: so we get t/c data are processed by the first algorithm in t time,

p
t/c data are processed

by the second algorithm, and only log2(t/c) data are processed by the third algorithm. These values
are already impressive by themselves, and provide a robust understanding of why polynomial-time
algorithms are called e�cient, whereas exponential-time algorithms are called ine�cient: a large
change in the length t of the time-interval induces just a tiny change in the amount of data that
exponential-time algorithms can process. Of course, this distinction admits many exceptions when
the problem instances have limited size or have distributions which favor e�cient executions (think
e.g. to the simplex algorithm). But, on the other hand, these examples are quite rare, and the
much more stringent bounds on execution time satisfied by polynomial-time algorithms make them
considered provably e�cient and the preferred way to solve problems. Algorithmically speaking,
most exponential-time algorithms are merely implementations of the approach based on exhaustive
search, whereas polynomial-time algorithms are generally made possible only through the gain of
some deeper insight into the structure of a problem. So polynomial-time algorithms are the right
choice from many points of view.

Let us now assume to run the above algorithms with a better I/O-subsystem, say one that is k
times faster, and ask: How many data can be managed by this new PC? To address this question we
solve the previous equations with the time-interval set to the length k⇥ t, thus implicitly assuming to
run the algorithms over the old PC but providing itself with k times more time. We get that the first
algorithm perfectly scales by a factor k, the second algorithm scales by a factor

p
k, whereas the

last algorithm scales only of an additional term log2 k. Noticeably the improvement induced by a k-
times more powerful PC for an exponential-time algorithm is totally negligible even in the presence
of impressive (and thus unnatural) technology advancements! Super-linear algorithms, like the
second one, are positively a↵ected by technology advancements but their performance improvement
decreases as the degree of the polynomial-time complexity grows: more precisely, if C(n) = n↵ then
a k-times more powerful PC induces a speed-up of a factor ↵

p
k. Overall, it is not hazardous to state

that the impact of a good algorithm is far beyond any optimistic forecasting for the performance of
future (mechanical or SSD) disks.2

Given this appetizer about the “Power of Algorithms”, let us now turn back to the problem of
analyzing the performance of algorithms in modern PCs by considering the following simple ex-
ample: Compute the sum of the integers stored in an array A[1, n]. The simplest idea is to scan A
and accumulate in a temporary variable the sum of the scanned integers. This algorithm executes n
sums, accesses each integer in A once, and thus takes n steps. Let us now generalize this approach
by considering a family of algorithms, denoted by As,b, which di↵erentiate themselves according
to the pattern of accesses to A’s elements, as driven by the parameters s and b. In particular As,b
looks at array A as logically divided into blocks of b elements each, say Aj = A[ j ⇤ b+ 1, ( j+ 1) ⇤ b]
for j = 0, 1, 2, . . . , n/b � 1.3 Then it sums all items in one block before moving to the next block
that is s blocks apart on the right. Array A is considered cyclic so that, when the next block lies
out of A, the algorithm wraps around it starting again from its beginning. Clearly not all values of
s allow to take into account all of A’s blocks (and thus sum all of A’s integers). Nevertheless we
know that if s is co-prime with n/b then [s ⇥ i mod (n/b)] generates a permutation of the integers
{0, 1, . . . , n/b � 1}, and thus As,b touches all blocks in A and hence sums all of its integers. But the
specialty of this parametrization is that by varying s and b we can sum according to di↵erent patterns
of memory accesses: from the sequential scan indicated above (setting s = b = 1), to a block-wise

2See [11] for an extended treatment of this subject.
3For the sake of presentation we assume that n and b are powers of two, so b divides n.
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access (set a large b) and/or a random-wise access (set a large s). Of course, all algorithms As,b
are equivalent from a computational point of view, since they read exactly n integers and thus take
n steps; but from a practical point of view, they have di↵erent time performance which becomes
more and more significant as the array size n grows. The reason is that, for a growing n, data will
be spread over more and more memory levels, each one with its own capacity, latency, bandwidth
and access method. So the “equivalence in e�ciency” derived by adopting the RAM model, and
counting the number-of-steps executed byAs,b, is not an accurate estimate of the real time required
by that algorithms to sum A’s elements.

We need a di↵erent model that grasps the essence of real computers and is simple enough to
not jeopardize algorithm design and analysis. In a previous example we already argued that the
number of I/Os is a good estimator for the time complexity of an algorithm, given the large gap
existing between disk- and internal-memory accesses. This is indeed what is captured by the so
called 2-level memory model (aka. disk-model, or external-memory model [11]) which abstracts
the computer as composed by only two memory levels: the internal memory of size M, and the
(unbounded) disk memory which operates by reading/writing data via blocks of size B (called disk
pages). Sometimes the model consists of D disks, each of unbounded size, so that each I/O reads or
writes a total of D ⇥ B items coming from D pages, each one residing on a di↵erent disk. For the
sake of clarity we remark that the two-level view must not suggest to the reader that this model is
restricted to abstracts disk-based computations; in fact, we are actually free to choose any two levels
of the memory hierarchy, with their M and B parameters properly set. The algorithm performance
is evaluated in this model by counting: (a) the number of accesses to disk pages (hereafter I/Os),
(b) the internal running time (CPU time), and (c) the number of disk pages used by the algorithm
as its working space. This suggests two golden rules for the design of “good” algorithms operating
on large datasets: they must exploit spatial locality and temporal locality. The former imposes a
data organization onto the disk(s) that makes each accessed disk-page as much useful as possible;
the latter imposes to execute as much useful work as possible onto data fetched in internal memory,
before they are written back to disk.

In the light of this new model, let us re-analyze the time complexity of algorithmsAs,b by taking
into account I/Os, given that the CPU time is still n and the space occupancy is n/B pages. We start
from the simplest settings for s and b in order to gain some intuitions about the general formulas.
The case s = 1 is obvious, algorithms A1,b scan A rightward by taking n/B I/Os, independently
of the value of b. As s and b change the situation complicates, but by not much. Fix s = 2 and
pick some b < B that, for simplicity, is assumed to divide the block-size B. Every block of size
B consists of B/b smaller (logical) blocks of size b, and the algorithm A2,b examines only half of
them because of the jump s = 2. This actually means that each B-sized page is half utilized in
the summing process, thus inducing a total of 2n/B I/Os. It is then not di�cult to generalize this
formula by writing a cost of min{s, B/b} ⇥ (n/B) I/Os, which correctly gives n/b for the case of
large jumps over array A. This formula provides a better approximation of the real time complexity
of the algorithm, although it does not capture all features of the disk. In fact, it considers all I/Os
as equal, independently of their distribution. This is clearly unprecise because on real disks the
sequential I/Os are faster than the random I/Os.4 Referring to the previous example, the algorithms
As,B have still I/O-complexity n/B, independently of s, although their behavior is rather di↵erent
if executed on a (mechanical) disk because of the disk seeks induced by larger and larger s. As a
result, we can conclude that even the 2-level memory model is an approximation of the behavior of

4Conversely, this di↵erence will be almost negligible in an (electronic) memory, such as the DRAM or the modern
Solid-State disks, where the distribution of the memory accesses does not significantly impact onto the throughput of the
memory/SSD.
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algorithms on real computers, although it results su�ciently good that it has been widely adopted
in the literature to evaluate their performance on massive datasets. So that, in order to be as much
precise as possible, we will evaluate in these notes our algorithms by specifying not only the number
of executed I/Os but also characterizing their distribution (random vs contiguous) over the disk.

At this point one could object that given the impressive technological advancements of the last
years, the internal-memory size M is so large that most of the working set of an algorithm (roughly
speaking, the set of pages it will reference in the near future) can be fit into it, thus reducing sig-
nificantly the case of an I/O-fault. We will argue that an even small portion of data resident to disk
makes the algorithm slower than expected, and so, data organization cannot be neglected even in
these extremely favorable situations.

Let us see why, by means of a “back of the envelope” calculation! Assume that the input size
n = (1 + ✏)M is larger than the internal-memory size of a factor ✏ > 0. The question is how
much ✏ impacts onto the average cost of an algorithm step, given that it may access a datum located
either in internal memory or on disk. To simplify our analysis, without renouncing to a meaningful
conclusion, we assume that p(✏) is the probability of an I/O-fault. As an example, if p(✏) = 1 then
the algorithm always accesses its data on disk (i.e. one of the ✏M items); if p(✏) = ✏

1+✏ then the
algorithm has a fully-random behavior in accessing its input data (since, from above, we can rewrite
✏

1+✏ =
✏M

(1+✏)M =
✏M
n ); finally, if p(✏) = 0 then the algorithm has a working set smaller than the

internal memory size, and thus it does not execute any I/Os. Overall p(✏) measures the un-locality
of the memory references of the analyzed algorithm.

To complete the notation, let us indicate with c the time needed for one I/O wrt one internal-
memory access— we have c ⇡ 105 � 106, see above— and we set a to be the fraction of steps that
induce a memory access in the running algorithm (this is typically 30% � 40%, according to [6]).
Now we are ready to estimate the average cost of the step for an algorithm working in this scenario:

1 ⇥ P(computation step) + tm ⇥ P(memory-access step),

where tm is the average cost of a memory access. To compute tm we have to distinguish two cases:
an in-memory access (occurring with probability 1 � p(✏)) or a disk access (occurring with proba-
bility p(✏)). So we have tm = 1 ⇥ (1 � p(✏)) + c ⇥ p(✏). Observing that P(memory-access step) +
P(computation step) = 1, and plugging the fraction a of memory accesses intoP(memory-access step),
we derive the final formula:

(1 � a) ⇥ 1 + a ⇥ [1 ⇥ (1 � p(✏)) + c ⇥ p(✏)] = 1 + a ⇥ (c � 1) ⇥ p(✏) � 3 ⇥ 104 ⇥ p(✏).

This formula clearly shows that, even for algorithms exploiting locality of references (i.e. a small
p(✏)), the slowdown may be significant and actually it turns out to be four order of magnitudes
larger than what might be expected (i.e. p(✏)). Just as an example, take an algorithm that exploits
locality of references in its memory accesses, say 1 out of 1000 memory accesses is on disk (i.e.
p(✏) = 0.001). Then, its performance on a massive dataset that is stored on disk would be slowed
down by a factor > 30 with respect to a computation executed completely in internal memory.

It goes without saying that this is just the tip of the iceberg, because the larger is the amount
of data to be processed by an algorithm, the higher is the number of memory levels involved in
the storage of these data and, hence, the more variegate are the types of “memory faults” (say
cache-faults, memory-faults, etc.) to cope with for achieving e�ciency. The overall message is that
neglecting questions pertaining to the cost of memory references in a hierarchical-memory system
may prevent the use of an algorithm on large input data.

Motivated by these premises, these notes will provide few examples of challenging problems
which admit elegant algorithmic solutions whose e�ciency is crucial to manage the large datasets
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that occur in many real-world applications. Algorithm design will be accompanied by several com-
ments on the di�culties that underlie the engineering of those algorithms: how to turn a “theoreti-
cally e�cient” algorithm into a “practically e�cient” code. Too many times, as a theoretician, I got
the observation that “your algorithm is far from being amenable to an e�cient implementation!”.
By following the recent surge of investigations in Algorithm Engineering [10] (to be not confused
with the “practice of Algorithms”), we will also dig into the deep computational features of some
algorithms by resorting few other successful models of computations— mainly the streaming model
[9] and the cache-oblivious model [5]. These models will allow us to capture and highlight some
interesting issues of the underlying computation: such as disk passes (streaming model), and uni-
versal scalability (cache-oblivious model). We will try our best to describe all these issues in their
simplest terms but, nonetheless to say, we will be unsuccessful in turning this “rocket science for
non-bo�ns” into a “science for dummies” [2]. In fact lots of many more things have to fall into place
for algorithms to work: top-IT companies (like Google, Yahoo, Microsoft, IBM, Oracle, Facebook,
Twitter, etc.) are perfectly aware of the di�culty to find people with the right skills for developing
and refining “good” algorithms. This booklet will scratch just the surface of Algorithm Design and
Engineering, with the main goal of spurring inspiration into your daily job as software designer or
engineer.
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