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maximum from the heap 
and visit its children.

max-Heap

k=4

9
7

Results

107
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7

8

7
 

7
7
7

7

Claim: we “touch” at most 2k nodes. 
⇒ Query time O(k log k) 

Important: the cartesian tree is not built. 
Use RMQ instead! 

1

Assume you have a Data Structure on top 
of S answering in O(1) by using O(N) bits 

RMQ(i,j) = position of the maximum in the 
range S[i,j]
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between the maxima of any its 
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|R| = 2n - 2
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You’ll see how to reduce to  
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