Set Intersection

“Sharing is caring!”

This lecture attacks a simple problem over sets, it constitutes the backbone of every query resolver
in a (Web) search engine. The nice feature of this lecture is that we will apply classic algorithm-
design paradigm in a novel and elegant way, which lead to very interesting algorithmic solution
which are indeed used in the practical design of (Web) search engines.

A search engine is a tool designed to search for information in a collection of documents D. In
the present chapter we restrict our attention to search engines for fextual documents, meaning with
this the fact that a document d; € D is a book, a news, a tweet or any file containing a sequence
of linguistic tokens (aka, words). Among many other auxiliary data structures, a scarch engine
builds an index to answer efficiently the queries posed by users. The user query Q is commonly
structured as a bag of words, say wiw, - - - wy, and the goal of the search engine is to retrieve the
most relevant documents in O which contain all query words. The people skilled in this art know
that this is a very simplistic definition, because modern search engines search for documents that
contain possibly most of the words in Q, the verb contain may be fuzzy interpreted as contain
synonyms or related words, and the notion of relevance is pretty subjective and time-varying so that
it cannot be defined precisely. In any case, this is not a chapter of an Information Retrieval book, so
we refer the interested reader to the Information Retrieval literature, such as [4, 7]. Here we content
ourselves to attack the most generic algorithmic step specified above.

Problem. Given a sequence of words Q = wiw, ---wy and a document collection D, find
the documents in D that contain all Q’s words.

An obvious solution is to scan each document in D searching for all words specified by Q. This is
simple but it would take time proportional to the whole length of the document collection, which
is clearly too much even for a supercomputer or a data-center given the Web size! And, in fact,
modern search engines build a very simple, but efficient, data structurc called inverted index that
helps in speeding up the flow of bi/million of daily user queries.

The inverted index consists of three main parts: the dictionary of words w, one list of occurrences
per dictionary word (called posting list, below indicated with L[w]), plus some additional infor-
mation indicating the importance of each of these occurrences (to be deployed in the subsequent
phases where the relevance of a document has to be established). The term “inverted” refers to the
fact that word occurrences are not sorted according to their position in the document, but according
to the alphabetic ordering of the words to which they refer. So inverted indexes remind the classic
glossary present at the end of books, here extended to represent occurrences of all the words present
into a collection of documents (and so, not just the most important words of them).

© Paolo Ferragina. 2009-2016 3-1

3-2 Paolo Ferragina

Each posting list £[w] is stored contiguously in a single array, eventually on disk. The names of
the indexed documents (actually, their identifying URLs) are placed in another table and are suc-
cinctly identified by integers, called docIDs, which we may assume to have been assigned arbitrarily
by the search engine.! Also the dictionary is stored in a table which contains some satellite infor-
mation plus the pointers to the posting lists. Figure 3.1 illustrates the main structure of an inverted
index.

Dictionary | Posting list

abaco 50,23,10

abiura 131,100, 90, 132
ball 20,21,90
mathematics | 15,1,3,23,30,7,10,18,40,70
Z00 5, 1000

FIGURE 3.1: An example of inverted (unsorted) index for a part of a dictionary.

Coming back to the problem stated above, let us assume that the query Q consists of two words
abaco mathematics. Finding the documents in 9 that contain both two words of Q boils down to
finding the docIDs shared by the two inverted lists pointed to by abaco and mathematics: namely,
10 and 23. It is easy to conclude that this means to solve a set intersection problem between the two
sets represented by L[abaco] and L[mathematics], which is the key subject of this chapter.

Given that the integers of two posting lists are arbitrarily arranged, the computation of the
intersection might be executed by comparing each docID a € [L[abaco] with all docIDs b €
L[mathematics]. If a = b then a is inserted in the result set. If the two lists have length n
and m, this brute-force algorithm takes n X m steps/comparisons. In the real case that n and m are
of the order of millions, as it typically occurs for common words in the modern Web, then that
number of steps/comparisons is of the order of 10°x 10° = 102, Even assuming that a PC is able to
execute one billion comparisons per second (10° cmp/sec), this trivial algorithm takes 10° seconds
to process a bi-word query (so about ten minutes), which is too much even for a patient user!

The bad news is that the docIDs occurring in the two posting lists cannot be arranged arbitrarily,
but we must impose some proper structure over them in order to speed up the identification of the
common integers. The key idea here is to sort the posting lists as shown in Figure 3.2.

It is therefore preferable, from a computational point of view, to reformulate the intersection prob-
lem onto two sorted sets A = L[abaco] and B = L[mathematics], as follows:

(Sorted) Set Intersection Problem. Given two sorted integer sequences A = ayay - - - a,
and B = biby - -- by, such that a; < a;+, and b; < b;yy, compute the integers common to
both sets: namely, compute A N B.

The sortedness of the two sequences allows to design an intersection algorithm that is deceptively
simple, elegant and fast. It consists of scanning A and B from left to right by comparing at each

ITo be precise, the docID assignment process is a crucial one to save space in the storage of those posting lists, but its
solution is too much sophisticated to be discussed here and thus it is deferred to the scientific literature [6].

Set Intersection 33

Dictionary | Posting list

abaco 10,23, 50

abiura 90, 100, 131,132
ball 20,21,90
mathematics | 1,3,7,10,15,18,23,30,40,70
Z00 5, 1000

FIGURE 3.2: An example of inverted (sorted) index for a part of a dictionary.

step a pair of docIDs from the two lists. Say a; and b; are the two docIDs currently compared,
initially i = j = 1. If a; < b; the iterator i is incremented, if a; > b; the iterator j is incremented,
otherwise a; = b; and thus a common docID is found and both iterators are incremented. At each
step the algorithm executes one comparison and advances at least one iterator. Given that n = |A|
and m = |B| are the number of elements in the two sequences, we can deduct that i (resp. j) can
advance at most n times (resp. m times), so we can conclude that this algorithm requires no more
than n + m comparisons/steps; we write no more because it could be the case that one sequence is
exhausted much before the other one, so that many elements of the latter may be not compared. This
time cost is significantly smaller than the one mentioned above for the unsorted sequences (namely
n X m), and its real advantage in practice is strikingly evident. In fact, by considering our running
example with n and m of the order of 10° docIDs and a PC performing 10° comparisons per second,
we derive that this new algorithm takes 107 seconds to compute A N B, which is in the order of
milliseconds, exactly what occurs in modern search engines.

FACT 3.1 The intersection algorithm based on the merge-based paradigm solves the sorted set
intersection problem in O(m + n) time.

In the case that n = @(m) this algorithm is optimal, and thus it cannot be improved; moreover it is
based on the scan-based paradigm that it is optimal also in the disk model because it takes O(n/B)
I/Os. To be more precise, the scan-based paradigm is optimal whichever is the memory hierarchy
underlying the computation (the so called cache-oblivious model). The next question is what we can
do whenever m < n. This is the situation in which one word is much more selective than the other
one; here, the classic binary search can be helpful, in the sense that we can design an algorithm that
binary searches every element b € B (they are few) into the (many) sorted clements of A thus taking
O(mlog n) steps/comparisons. This time complexity is better than O(n+m) if m = o(n/ log n) which
is actually less stringent that the condition m < n we imposed above.

FACT 3.2 The intersection algorithm based on the binary-search paradigm solves the sorted
set intersection problem in O(mlogn) time.

The next question is whether an algorithm can be designed that combines the best of both merge-
based and search-based approaches. In fact, there is an inefficacy in the binary-search approach
which becomes apparent when m is of the order of n. When we search items b; in A we possibly re-
check over and over the same elements of A. Surely this is the case for its middle element, say a,2,
which is the first one checked by any binary search. But if b; > a,,, then it is useless to compare
b, with a,;, because for sure it is larger. And the same holds for all subsequent elements of B. A

3-4 Paolo Ferragina

similar argument applies possibly to other elements in A checked by the binary search; so the next
challenge we address is how to avoid this useless comparisons.

1
1 3

A 13 7 12"-_ 16 19 20 25 27 40 50 100

e | " - &
merge G merge

1

B | 256 10,1216 20 29 32

pivot

FIGURE 3.3: An example of the Intersection paradigm based on Mutual Partitioning: the pivot is
12, the median element of B.

Another classic algorithmic paradigm comes to help us: it is the partitioning one we used to
design the Quicksort, here applied to split repeatedly and mutually two sequences. Formally, let
us assume that m < n and be both even numbers, we pick the median element b,,;, of the shortest
sequence B as a pivot and search for it into the longer sequence A. Two cases may occur: (i) by, €
A, say by, = a;j for some j, and thus b, is returned as one of the elements of the intersection
ANB;or (i) by ¢ A, say a; < by < ajy (where we assume that g = —co and @, = +00). In
both cases the intersection algorithm proceeds recursively in the two parts created into each of the
sequences A and B by the choice of the pivot, thus computing recursively A[1, j] N B[1,m/2] and
Alj+ 1,n] N B[m/2 + 1,n]. A small optimization consists of discarding from the first recursive call
the element b,,;» = a; (in case (i)). The pseudo-code is given in Figure 3.1, and a running example is
illustrated in Figure 3.3. There the median element of B used as the pivot for the mutual partitioning
of the two sequences is 12, and it splits A into two unbalanced parts (i.e. A[1,4] and A[S, 12]) and
B into two almost-halves (i.e. B[1,5] and B[6, 9]) which are recursively intersected; since the pivot
occurs both in A and B it is returned as an element of the intersection. Moreover we notice that
the first part of A is shorter than the first part of B and thus in the recursive call their role will be
exchanged.

In order to evaluate the time complexity we need to identify the worst case. Let us begin with the
simplest situation in which the pivot falls outside A (i.e. j = 0 or j = n). This means that one of the
two parts in A is empty and thus the corresponding halve of B can be discarded from the subsequent
recursive calls. So one binary search over A, costing O(log n) has discarded an half of B. If this
occurs at any recursive call, the total number of calls will be O(log m) thus inducing an overall cost
for the algorithm equal to O(log m log n). That is, an unbalanced partitioning of A induces indeed a
very good behavior of the intersection algorithm; this is something opposite to what stated typically
about recursive algorithms. On the other hand, let us assume that the pivot b,,;, falls inside the
sequence A and consider the case that it coincides with the median element of A, say a,,. In this
specific situation the two partitions are balanced in both sequences we are intersecting, so the time
complexity can be expressed via the following recurrent relation 7'(n, m) = O(logn)+2T(n/2,m/2),

Set Intersection 3-5

Algorithm 3.1 Intersection based on Mutual Partitioning
1: Let m = |B| < n = |A|, otherwise exchange the role of A and B;

: Compute recursively the intersection A[1, j] N B[1,m/2];
: Compute recursively the intersection A[j + 1,n] N B[m/2 + 1,n].

2: Pick the median element p = by,,/2) of B;

3: Binary search for the position of pin A, say a; < p < aj,;
4: if p = a; then

5: print p;

6: end if

7

8

with the base case of T'(n, m) = O(1) whenever n,m < 1. It can be proved that this recurrent relation
has solution T'(n,m) = O(m(1 + log +-)) for any m < n. It is interesting to observe that this time
complexity subsumes the ones of the previous two algorithms (namely the one based on merging
and the one based on binary searching). In fact, when m = @(n) it is T (n,m) = O(n) (4 la merging);
when m < nitis T(n,m) = O(mlogn) (4 la binary searching). As we will see in the Chapter ??,
about Statistical compression, the term mlog £ reminds an entropy cost of encoding m items within
n items and thus induces to think about something that cannot be improved (for details see [1]).

FACT 3.3 The intersection algorithm based on the mutual-partitioning paradigm solves the
sorted set intersection problem in O(m(1 + log ﬁ)) time.

Algorithm 3.2 Intersection based on Doubling Search
1: Let m = |B| < n = |A|, otherwise exchange the role of A and B;
2. i=1;
3: for j=1,2,...,mdo

4: k=0,

5: while (i + 2% < n) and (B[j] > A[i + 2¢]) do

6: k=k+1;

7: end while

8: i’ = Binary search B[j] into A[i + 1, min{i + 2%, n}];
9: if (ay = b,) then

10: print b;;

11: end if

12: i=17.

13: end for

Although this time complexity is appealing, the previous algorithm is heavily based on recursive
calls and binary searching which are two paradigm that offer poor performance in a disk-based
setting when sequences are long and thus the number of recursive calls can be large (i.e. many
dynamic memory allocations) and large is the number of binary-search steps (i.e. random memory
accesses). In order to partially compensate with these issues we introduce another approach to
ordered set intersection which allows us to discuss another interesting algorithmic paradigm: the so
called doubling search or galloping search or also exponential search. It is a mix of merging and
a sort of binary searching, which is clearer to discuss by means of an inductive argument. Let us
assume that we have already checked the first j — 1 elements of B for their appearance in A, and

3-6 Paolo Ferragina

assume that a; < bj_; < a;. To check for the next element of B, namely bj, it suffices to search
itin A[i + 1,n]. However, and this is the bright idea of this approach, instead of binary searching
this sub-array, we execute a galloping search which consists of checking elements of A[i + 1,n]
at distances which grow as a power of two. This means that we compare b; against A[i + 2*] for
k = 0,1,... until we find that either b; < A[i + 2X], for some k, or it is i + 2¢ > n and thus we
jumped out of the array A. Finally we perform a binary search for b; in A[i + 1, min{i + 2, n}], and
we return b; if the search is successful. In any case, we determine the position of b; in that subarray,
say ay < bj < ap.y, so that the process can be repeated by discarding A[1, i'] from the subsequent
search for the next element of B, i.e. b, ;. Figure 3.4 shows a running example, whereas Figure 3.2
shows the pscudo-code of the doubling search algorithm.

)

A | .. 12 16 19 20 25 27 30 31 34 38 40 41 44 45 4750 60 61 65 68 ..

B | -12a1. |
3

FIGURE 3.4: An example of the Doubling Search paradigm: the two sequences A and B are as-
sumed to have been intersected up to the element 12. The next element in B, i.e. 41, is taken to be
exponentially searched in the suffix of A following 12. This search checks A’s elements at distances
which are a power of two— namely 1, 2,4, 8, 16— until it finds the element 60 which is larger than
41 and thus delimits the portion of A within which the binary search for 41 can be confined. We
notice that the searched sub-array has size 16, whereas the distance of 41 from 12 in A is 11 thus
showing, on this example, that the binary search is executed on a sub-array whose size is smaller
than twice the real distance of the searched clement.

As far as the time complexity is concerned, we observe that the parameter £ satisfies the property
that A[i + 2¢7'] < b; < A[i + 2¥]. So the position i’ — i of b; in A[i + 1, min{i + 2, n}] is not much
smaller than the size of this sub-array, because it is 271 < i’ —i < 2% and so 2F < 2(i" —i). Let us
therefore denote with A; the size of the sub-array where the binary search of b; is executed, and let
us denote with i; = i’ as the position where b; occurs in A. For the sake of presentation we set ig = 0.
So, from before, we have A; < 2(i; — i;_1). These sub-arrays may be overlapping but by not much,
as indeed we have Sumj-;mA; < Sum;-1m2(i;—i;_1) = 2n because this is a telescopic sum in which
consecutive terms in the summation cancel out. For every j, the algorithm in Figure 3.2 executes
O(log A)) steps because of the while-statement and because of the binary search. Summing for j =

1,2,...,m we geta total time complexity of O(Sum’’; logA;) = O(mlog Sum;’?:l %) = O(mlog).

FACT 3.4 The intersection algorithm based on the doubling-search paradigm solves the sorted
set intersection problem in O(m(1 +log ++)) time. This is the same time complexity of the intersection
algorithm based on the mutual-partitioning paradigm but without incurring in the costs due to the
recursive partitioning of the two sequences A and B.

Set Intersection 3-7

Although the previous approach avoids some of the pitfalls due to the recursive partitioning of the
two sequences A and B, it still needs to jump over the array A because of the doubling scheme; and
we know that this is inefficient when executed in a hierarchical memory. In order to avoid this issue,
programmers adopt a two-level organization of the data, which is a very frequent scheme of efficient
data structures for disk. The main idea of this storage scheme is to logically partition the sequence
A into blocks A; of size L each, and copy the first element of each block (i.e. A;[1] = A[iL + 1]) into
an auxiliary array A" of size O(n/L). For the simplicity of exposition, let us assume that n = hL so
that the blocks A; are & in number. The intersection algorithm then proceeds in two main phases.
Phase 1 consists of merging the two sorted sequences A’ and B, thus taking O(n/L + m) time. As a
result, the elements of B are interspersed among the element of A’. Let us denote by B; the elements
of B which fall between A;[1] and A;;;[1] and thus may occur in the block A;. Phase 2 then consists
of executing the merge-based paradigm of Fact 3.1 over all pairs of sorted sequences A; and B;
which are non empty. Clearly, these pairs are no more than m. The cost of one of these merges is
O(|A;] + |B;j]) = O(L + |B;]) and they are at most m because this is the number of unempty blocks B;.
Moreover B = U;B;, consequently this intersection algorithm takes a total of O(% + mL) time. For
further details on this approach and its performance in practice the reader can look at [5].

FACT 3.5 The intersection algorithm based on the two-level storage paradigm solves the sorted
set intersection problem in O(1 + mL) time and O(75 + ’%L + m) I/Os, because every merge of two
sorted sequences A; and B; takes at least 1 I/O and they are no more than m.

The last algorithmic scheme we describe in this chapter for solving the sorted set intersection
problem hinges upon randomization and the fact that docIDs are integers in a finite universe U =
{1,2,...,u}. Instead of the previous approach where the partitioning of A was driven by the number
of items, here we partition according to the values of the keys which have been preliminary shuffled
via a random permutation 7 : U — U. We assume that the possible sets over which the sorted
set intersection problem can be invoked have been given in advance, and that N is the cardinality
of the largest set. This is not a restriction in the Search Engine scenario because the dictionary and
its posting lists are fixed in advance. Said this, we distinguish between a preprocessing phase and a
query phase.

In the preprocessing phase, we logically spit the universe U into M/L buckets of size ul /M each,
denoted by U;. Then, we permute A according to the random permutation 7 and assign its permuted
elements to the buckets U;: namely, for each x € A we compute 7(x), take its £ = [log, %] most
significant bits and denote by m,(x) their value. We then assign x to the bucket Uy,). We denote
by A; the sub-list of A’s elements that have been mapped to U; and are sorted according to their
n-values. To implement the following query phase we need to store each element x in A; as a pair
(x,m(x)), sorted by the second component.

In the query phase, let us assume that we wish to compute the intersection of two sets A and B
which have been preprocessed above, and that n = |A| > m = |B|. The intuition is that, since the
permutation x is the same for all sets, if element z € A N B then 7(z) will be routed to some sublists
Aj and B; with j = m(z) according to its £ most significant bits. Therefore intersecting A; N B;
will correctly detect m1(z); moreover, since we store elements in pairs (z,7(z)) within the sublists,
then we can recover the original shared item z after having matched n(z). Given these premises
the intersection algorithm can be easily designed: for each B;, we compute B; N A; via the merge-
based approach (Fact 3.1) and return the 7~ '-image of the intersected elements. The average time
complexity is therefore O(m + min{n, mL}) because the number of unempty sublists B; is at most m
and each pair of intersected sets contains O(L) elements on average. In fact the random permutation
7 maps A’s elements in U’s buckets of size uL/M < uL/n so that, on average, each of those buckets
contains |A| * (L/M) < |A| * (L/n) = L. A running example is shown in Figure 3.5.

3-8 Paolo Ferragina

oo 01 ; 10 "
sorted 5 .' ;
A | 1234781112 | — |7|3§4|4 1|5 11]6 8|7;2|9 12|10;3|13 |
Ag Ay LA A
B B i 2 l4]a: 2|9 12|10 ;6|12 |
Bo ! B, B, Bs

FIGURE 3.5: An example of the Random Permuting and Splitting paradigm. We assume universe
U={1,...,13},set L =2 and M = 8, and consider the permutation 7(x) = 1 + (4x mod 13). So U
is partitioned in M/L = 4 buckets identified by the MSB ¢ = [log, UL/n] = [log, 13 +2/8] = 2 bits
of the m-image of each element. Recall that every n-image is represented in log, u = 4 bits, so that
(1) =5 = (0101); and its 2 MSB are 01. The figure shows in bold the elements of AN B, moreover
it depicts the item of sublists as the pair x|m(x). On top of every sublist is indicated the 2 MSBs. In
the example only three buckets of B are unempty, so we intersect only them with the corresponding
ones of A, so that we drop the sublist A; without scanning it. The result is {4]4, 2|9, 12|10}, that gives
A N B by dropping the second m-component: namely, {2, 4, 12}.

FACT 3.6 The intersection algorithm based on the random-permuting and splitting paradigm
solves the sorted set intersection problem in O(m + min{n, mL}) time and O(m + min{%, ’”—BL}) 1/Os,
because every merge of two sublists A;. and B} takes at least 1 I/O and they are no more than m.

The authors of [5] discuss some variants and the implementation of the permutation . For im-

provements on this approach, look at [3]. For other algorithmic solutions and experiments on these
challenging problem we refer the interested reader to [2].

References

[1] Ricardo Baeza-Yates. A fast set intersection algorithm for sorted sequences. In Procs of
Annual Symposium on Combinatorial Pattern Matching (CPM), Lecture Notes in Com-
puter Science 3109, pp. 400-408, 2014.

[2] Jérémy Barbay, Alejandro Lépez-Ortiz, Tyler Lu, Alejandro Salinger. An experimental
investigation of set intersection algorithms for text searching. ACM Journal of Experi-
mental Algorithmics, 14, 2009.

[3] Bolin Ding, Arnd Christian Konig. Fast set intersection in memory. PVLDB, 4(4):
255-266, 2011.

[4] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schiitze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[5] Peter Sanders, Frederik Transier. Intersection in integer inverted indices. In Procs of
Workshop on Algorithm Engineering and Experiments (ALENEX), 2007.

[6] Hao Yan, Shuai Ding, Torsten Suel. Inverted index compression and query processing
with optimized document ordering. In Procs of WWW, pp. 401-410, 2009.

[7] Ian H. Witten, Alistair Moffat, Timoty C. Bell. Managing Gigabytes. Morgan Kauffman,
second edition, 1999.

