**THEOREM 12.5** Let  $n_c$  be the number of occurrences of a symbol c in the input string s, whose total length is n = |s|. We denote by  $\rho_{MTF}(s)$  the average number of bits per symbol used by the compressor that squeezes the string  $s^{MTF}$  using the  $\gamma$ -code over its integers. It is  $\rho_{MTF}(s) \leq 2H + 1$ , namely that compressor can be no more than twice worse than the entropy of the source, and thus it cannot be more than twice worse than the Huffman compressor.

$$\leq \gamma(p_1) + \sum_{i=2}^{n_c} \gamma(p_i - p_{i-1})$$

$$\leq 2\log_2(p_1) + 1 + \sum_{i=2}^{n_c} (2\log_2(p_i - p_{i-1}) + 1)$$

$$\leq \sum_{i=1}^{n_c} (2\log_2(p_i - p_{i-1}) + 1).$$
(12.1)

By applying Jensen's inequality we can move the logarithm function outside the summation, so that a telescopic sum comes out:

$$\leq n_c \left( 2 \log_2 \left( \frac{1}{n_c} \left( \sum_{i=1}^{n_c} (p_i - p_{i-1}) \right) \right) + 1 \right)$$

$$= n_c \left( 2 \log_2 \left( \frac{p_{n_c}}{n_c} \right) + 1 \right)$$

$$\leq n_c \left( 2 \log_2 \left( \frac{n}{n_c} \right) + 1 \right)$$

$$(12.2)$$

where the last inequality comes from the simple observation that  $p_{n_c} \le n$ . If now we sum for every symbol  $c \in \Sigma$  and divide for the string length n, because the Theorem is stated as number of bits per symbol in s, we get:

$$\rho_{MTF}(s) \le 2\left(\sum_{c \in S} \frac{n_c}{n} \log_2\left(\frac{n}{n_c}\right)\right) + 1 \le 2H + 1$$
(12.3)

The thesis follows because H lower bounds the average codeword length of Huffman's code.

There do exist cases for which the MTF-based compressor performs much better than Huffman's compressor.