12

The Burrows-Wheeler Transform

12.1 The Burrows-Wheeler Transform...................... 12-2
The forward transform * The backward transform

12.2 Two other simple transforms ........................... 12-6
The Move-To-Front transform ¢ The RLE transform

12.3 The bzip COMPIeSSOT.......c.oviviieiiiiiiieiaiaienns. 12-11

12.4 On compression boosting™............................... 12-15

12.5 On compressed indexing®..............cocoevinininnn.. 12-16

This chapter describes a lossless data compression technique devised by Michael Burrows and
David Wheeler in 1994 at the DEC Systems Research Center. This technique was published in
a Technical Report of the company [3, 7],! and since it was rejected from the Data Compression
Conference (as Mike Burrows stated in its foreword to [8]?), the two authors decided of not pub-
lishing their paper anywhere. Fortunately, Mark Nelson drew attention to it in a Dr. Dobbs article,
and that was enough to ensure its survival.

A wonderful thing about publishing an idea is that a greater number of minds can be brought to
bear on the surrounding problems. This is what happened around the Burrows-Wheeler Transform,
whose studies exploded around the year 2000, leading me, Giovanni Manzini and S. Muthukrishnan
to celebrate a ten-years-later resume in a special issue of Theoretical Computer Science [8]. In that
volume, Mike Burrows again declined to publish the original TR but wrote a wonderful Foreword
dedicated to the memory of David Wheeler, who passed away in 2004, and finally stated: “This issue
of Theoretical Computer Science is an example of how an idea can be improved and generalized
when more people are involved. I feel sure that David Wheeler would be pleased to see that his
technique has inspired so much interesting work.”

The so called Burrows-Wheeler Transform (or BWT) offered a revolutionary alternative to dictionary-
based compressors and actually initiated a new family of compressors (such as bzip2 [16] or the
booster [5]) as well as a new powerful family of compressed indexes (such as FM-index [6], and
many variations [13]). In the following we will detail the BWT and the other two simple compressors,
i.e. Move-To-Front and Run-Length Encoding, whose combination constitutes the bzip-based com-
pressors. We will also briefly mention few theoretical issues about the BWT performance expressed
in terms of the k-th order empirical entropy of the data to be compressed.

I'M. Burrows: “In the technical report that described the BWT, I gave the year as 1981, but later, with access to the
memory of his wife Joyce, we deduced that it must have been 1978.”

2Years passed, and it became clear that David had no thought of publishing the algorithm—he was too busy thinking of
new things. Eventually, I decided to force his hand: I could not make him write a paper, but I could write a paper with
him, given the right excuse.

© Paolo Ferragina, 2009-2014 12-1



12-2 Paolo Ferragina

12.1 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) is not a compression algorithm per se, as it does not squeeze
the input size, it is a permutation (and thus, a lossless transformation) of the input symbols which are
laid down in a way that the resulting string is most suitable to be compressed via simple algorithms,
such as Move-To-Front coding (shortly MTF) and Run Length Encoding (shortly RLE), both to be
described in Section 12.2. This permutation forces some “locally homogeneous” properties in the
ordering of the symbols that can be fully deployed, efficiently and efficaciously, by the combination
MTF + RLE. A last statistical encoding step (e.g. Huffman or Arithmetic) is finally executed in order
to eventually squeeze the output bit stream. All these steps constitute the backbone of any bzip-like
compressor which will be discussed in Section 12.3.

The BWT consists of a pair of inverse transformations: a forward transform, which rearranges
the symbols in the input string; and a backward transform, which somewhat magically reconstructs
the original string from its BWT. It goes without saying that the invertibility of BWT is necessary to
guarantee the decompression of the input file!

12.1.1 The forward transform

Let s = 5,5,...5, be an input string on n symbols drawn from an ordered alphabet £. We append to s
a special symbol $ which does not occur in X and it is assumed to be smaller than any other symbol
in the alphabet, according to its total ordering.> The forward transform proceeds as follows:

1. Build the string s$.

2. Consider the conceptual matrix M of size (n + 1) X (n + 1), whose rows contain all the
cyclic left-shifts of string s$. M is called the rotation matrix of s.*

3. Sort the rows of M reading them left-to-right and according to the ordering defined on
alphabet X U {$}. The final matrix is called M’. Since $ is smaller than any other symbol
in X and, by construction, appears only once, the first row of M’ is $s.

4. Set bw(s) = (L,r) as the output of the algorithm, where L is the string obtained by
reading the last column of M’, sans symbol $, and r is the position of $ there.

We said above that M is a conceptual matrix because we have to avoid its explicit construction,
which otherwise would make the BWT an elegant mathematical object: the size of M is quadratic
in bw(s)’s length, so the conceptual matrix has size 28 ~ 1000Tb just for transforming a string of
16Mb. In Section 12.3 we will actually show that M’ can be built in time and space linear in the
length of the input string s, by resorting Suffix Arrays.

An alternate enunciation of the algorithm, less frequent yet still present in the literature [1],
constructs matrix M’ by sorting the rows of M reading them right-to-left (i.e. starting from the
last symbol of every row). Then, it takes the string F formed by scanning the first column of
M’ top-to-bottom and, again, skipping symbol $ and storing its position in r’. The output is then
bw(s) = (I?, r"). This enunciation is the dual of the one given above because it is possible to formally
prove that both strings F and L exhibit the same local-homogeneity properties and thus compression,
to be illustrated below. In the rest of the chapter we will refer to the left-to-right sorting of M’s rows
and to (L, r) as the BWT of the string s, somehow forgetting the integer r.

3The step that concatenates the special symbol $ to the initial string was not part of the original version of the algorithm
as described by Burrows and Wheeler. It is here introduced with the intent to simplify the description.
4The left shift of a string ac is the string aza, namely the first symbol is moved to the end of the original string.



The Burrows-Wheeler Transform 12-3

In order to better understand the power of the Burrows-Wheeler Transform, let us consider the
following running example formulated over the string s = abracadabra. The left side of Figure
12.1 shows the rotated matrix M built over s; whereas the right side of Figure 12.1 shows sorted
matrix M’. Because the first row of M is the only one to end with $, which is the lowest-ordered
symbol in the alphabet, row $abracadabra is the first row of M’. The other three rows of M’ are
the ones beginning with a, and then follow the rows starting with b, c, d and finally r, respectively.

. sort directicn
] abracadanza —_—

il
=0

abt:-acadabr

Nl

Lraczdsor= 5

<o

racadanra s 1 Sabracadal
kraiakzraca
b

cacakrasalk

acadzslbr=%=

Ul =
Il
=

acadakra

cakrasakra

01

~aZab:racad
acadakral i

acabralakr £

(]
(el o T B W R S =

alzrasakrac

o

WD W0 N O W N

afabracada o

=

L]
HHQaOooUopo QPO Pl

RO U S - T v T S N B <

o =
[ =

abracadzor acacabirasa i

[
[

FIGURE 12.1: Forward Burrows-Wheeler Transform of the string s = abracadabra.

If we read the first column of M’, denoted by F, we @tain the string aaaaabbcdr which is the
sorted sequence of all symbols in 5. We finally obtain L by excluding the single occurrence of $
from the last column L, so L = ardrcaaaabb, and set r = 3.

The example is illustrative of the locally-homogeneous property we were mentioning before: the
last 6 symbols of the last column of M form a highly repetitive string aaaabb which can be eas-
ily and highly compressed via the two simple compressors MTF + RLE (described below). The
soundness of this statement will be mathematically sustained in the following pages, here we con-
tent ourselves by observing that this repetitiveness occurs not by chance but it is induced by the
way M’s rows are sorted (left-to-right) and texts are written down by humans (left-to-right). The
nice issue here is that many real sources (they are called Markovian) do exist that generate data
sequences, other than texts, that can be turned to be locally homogeneous via the Burrows-Wheeler
Transformation, and thus can be highly compressed by bzip-like compressors.

12.1.2 The backward transform

We observe, both by construction and from the example provided above, that each column of the
sorted cyclic-shift matrix M’ (and also M) contains a permutation of s$. In particular, its first col-
umn F = aaaaabbcdr is alphabetically sorted and thus it represents the best-compressible trans-
formation of the original input block. But unfortunately F cannot be used as BWT because it is
not invertible: every text of length 11 and consisting of 5 occurrences of symbol a, 2 occurrences
of b, 1 occurrence c, d, r respectively, originates a BWT whose F is the same as the one above.



12-4 Paolo Ferragina

The Burrows-Wheeler transform represents, in some sense, the best column of M’ to be chosen as
transformed s in terms of reversibility and compressibility of s.

In order to prove these properties more formally, let us define a useful function that tells us how
to locate in M’ the predecessor of a symbol at a given index in s.

FACT 12.1 For1 < i< n, let slk;,n — 1] denote the suffix of s prefixing row i of M’. Clearly,
row i is then followed by symbol $, and then by the prefix s[1, k; — 1] because of the leftward cyclic
shift.

For example in Figure 12.1, row 2 of M’ is prefixed by abra, followed by $abracad.

Property 12.1 The symbol L[i] precedes the symbol F[i] in the string s, except for the row i such
that L[i] = $, in which case F[i] = s[1].

Proof Because of Fact 12.1 the last symbol of the row i is L[i] = s[k; — 1] and its first symbol is
F[i] = s[k;]. So the statement follows. [ |

Intuitively, this property descends from the very nature of every row in M and M’ that is a left
cyclic-shift of s$, so if we take two extremes of each row, the symbol on the right extreme (i.e. on
L) is immediately followed by the one on the left extreme (i.e. on F) over the string s.

Property 12.2 All the occurrences of a same symbol c¢ in L maintain the same relative order as in
F. This means that the kth occurrence in L of symbol ¢ corresponds to the kth occurrence of the
symbol c in F.

Proof Given two strings ¢ and ', we shall use the notation # < ¢’ to indicate that string ¢ lexico-
graphically precedes string ¢’.

Fix now the symbol c. If ¢ occurs once in s then the proof derives immediately because the
single occurrence of ¢ in F obviously maps to the single occurrence of ¢ in L. (Both columns are
permutations of s.) To prove the more complicate situation that ¢ occurs at least twice in s, let us fix
two of these occurrences and pick their rows of the sorted matrix M’, say r(i) and r(j) with i < j.
We can observe few interesting things:

o row r(i) precedes lexicographically row r(j), given the ordering of M’’s rows and the
fact that i < j, by assumption;

e both rows r(i) and r(j) start with symbol ¢, by assumption;
e given that r(i) = ca and r(j) = ¢f3, itis a < .

Since we are interested in the respective positions of those two occurrences of ¢ when they are
mapped to L, we consider the two rows r(i") and (j") which are obtained by rotating those two rows
leftward by one single symbol: r(i’) = @ c and r(j') = Bc. This way, this rotation brings the first
symbol F[i] (resp. F[j]) into the last symbol L[i’] (resp. L[j") of the rotated rows. Since @ < B, it
is r(i") < r(j") and so the preservation of the ordering in L holds true for that pair of occurrences of
c. Given that this order-preserving property holds for every pair of occurrences of ¢ in F/L, it holds
true for all of them. |

_We have now all mathematical tools to design an algorithm which reconstructs s from its bw(s) =
(L, r) by exploiting the so called LF-mapping, an array of » integers in the range [0,n — 1].



The Burrows-Wheeler Transform 12-5

Algorithm 12.1 Constructing the LF-mapping from column L
1: fori=0,1,...,n—1do
C[L[i]]++;
. end for
. temp =0, sum = 0;
fori=0,1,...,|Z|do
temp = C[i];
Cli] = sum;
sum+= temp;
: end for
fori=0,1,...,n—1do
LF[i] = C[L[i]];
C[L[i]]++;
: end for

R A

—_— =

DEFINITION 12.1 [Itis LF[i] = j iff the symbol L[i] maps to symbol F[j]. This way, if L[i]
is the kth occurrence in L of symbol ¢, then F[LF[i]] is the kth occurrence of ¢ in F.

Building LF is pretty straightforward for symbols that occur only once, as it is the case of §, c
and d in s = abracadabra$, see Figure 12.1. But when it comes to symbols a, b and r, which
occur several times in the string s, computing LF efficiently is no longer trivial. Nonetheless it can
be solved in optimal O(n) time thanks to Property 12.2, as Algorithm 12.1 details. This algorithm
uses an auxiliary vector C, of size |X| + 1. For the sake of description, we assume that array C is
indexed by a symbol rather than by a integer.’

The first for-cycle computes, for each symbol c, the number . of its occurrences in L, and stores
Clc] = n.. Then, the second for-cycle, turns these symbol-wise occurrences into a cumulative sum,
so that the new C|[c] stores the total number of occurrences in L of symbols smaller than c, namely
Clc] = Y. <. nx. This is done by adopting two auxiliary variables, so that the overall working space
is still O(n). We notice that C[c] gives the first position in F where symbol ¢ occurs. Therefore,
before the last for-cycle starts, C[c] is the landing position in F of the first ¢ in L (we thus know
the LF-mapping for the first occurrence of every alphabet symbol). Finally, the last for-cycle scans
the column L and, whenever it encounters symbol L[i] = ¢, then it sets LF[i] = C[c]. This is correct
when c¢ is met for the first time; then C[c] is incremented so that the next occurrence of ¢ in L will
map to the next position in F (given the contiguities in F of all rows starting with that symbol). So
the algorithm keeps the invariant that LF[i] = },,..n, + k, after that k occurrences of ¢ in L have
been processed. It is easy to derive the time complexity of such computation which is O(n).

Given the LF-mapping and the fundamental properties shown above, we are able to reconstruct
s backwards starting from the transformed output bw(s) = (Z, r) in O(n) time and space. Clearly
it is easy from bw(s) to construct L, just insert $ at position r of L. The algorithm then picks the
last symbol of s, namely s[n — 1], which can be easily identified at L[0], given that the first row
of M’ is $s. Then it proceeds by moving one symbol at a time to the left in s, deploying the two
Properties above: Property 12.2 allows to map the current symbol occurring in L (initially L[0]) to
its corresponding copy in F’; then Property 12.1 allows to find the symbol which precedes that copy
in F by taking the symbol at the end of the same row (i.e. the one in L). This double step, which

3Just implement C as a hash table, or observe that in practice any symbol is encoded via an integer (ASCII code maps to
the range O, . .., 255) which can be used as its index in C.



12-6 Paolo Ferragina

Algorithm 12.2 Reconstructing s from bw(s)
1: Derive column L from bw(s);

: Compute LF[0,n — 1] from L;

k=0;i=n-1;

: while i > 0 do

slil = LIk

k = LF[k];

-

: end while

A A R ol

returns on L, allows to move one symbol leftward in s. Repeating this up to the beginning of s we
are able to reconstruct this string. The pseudo-code is reported in Algorithm 12.2.

As an example, refer to Figure 12.1 where we have that L[0] = s[n — 1] = a, and execute the
while-cycle of Algorithm 12.2. Definition 12.1 guarantees that LF[0] points to the first row starting
with a, this is the row 1. So that copy of a is LF-mapped to F[1] (and in fact F[1] = a), and the
preceding symbol in s is thus L[1] = r. These two basic steps are repeated until the whole string s is
reconstructed. Just continuing the previous running example, we have that L[1] = r is LF-mapped
to the symbol in F at position LF[1] = 10 (and indeed F[10] = r). In fact, L[1] and F[10] is the
first occurrence of symbol r in both columns L and F, respectively. The algorithm then takes as
preceding symbol of r in s the symbol L[10] = b. And so on...

THEOREM 12.3 The original string s can be reconstructed from its BWT in O(n) time and
space. Algorithm 12.2 elicits possibly one cache-miss per symbol.

Several recent results addressed the problem of reducing the number of cache misses as well as the
working space of algorithms inverting BWT. Some progress has been made in the literature (see e.g.
[15, 10, 11, 9]), but yet reductions are limited, e.g. small constants for the cache-misses, say 2 + 4,
which get larger if the data is highly repetitive. Much has still to be discovered here!

12.2 Two other simple transforms

Let us now focus on two simple algorithms that come in very useful to design the compressor
bzip2. These algorithms are called Move-To-Front (MTF) and Run-Length Encoding (RLE). The
former maps symbols into integers, the latter maps runs of equal symbols into pairs. For the sake
of completeness we observe that RLE is a compressor indeed, because the output sequence may
be reduced in length in the presence of long runs of equal symbols; while MTF can be turned into a
compressor by encoding the run-lengths via proper integer encoders [2]. In general the compression
performance of those algorithms is very poor: BWT is magically their killer application!

12.2.1 The Move-To-Front transform

The MTF-transformation [2] implements the idea that every symbol of a string s can be replaced with
its index in a proper dynamic list LMTF containing all alphabet symbols. The string produced in
output, denoted hereafter as s"77 is initialized to the empty string and contains as symbols integers
in the range [0, [X| — 1]. At each step i, we process the symbol s[i] and find its position p in £LM7F.
Then p is added to the string s"77, and LYTF is modified by moving the symbol s[i] to the front of
the list.



The Burrows-Wheeler Transform 12-7

s: “bananacocco”

3: {a,b,c,n,0}

o:“b” |i o:“a” Ii o:“n” Ii
2:1 2:1 7:3
l: {a,b,c,n, o0} —1l: {b,a,c,n,o0} —l: {b,a,c,n,o0}
SMTF:“I” SMTF:ullw SMTF:ullgn

‘ T
Q.:I“a" |i (?.:lﬁ‘n” Ii q,: ua’” Iﬁ
7 1 1
l: {n,a,b,c, o} —1 I {a,n,b,c,o0} —1: {n,a,b,c,o}
SMTF:“1131” SMTFZ“11311” SMTFZ“113111”

‘ T
g:“c” |i g:“0” Iﬁ g:“c’ Iﬂ
2:3 1:4 2:1
l: {a,n,b,c, o} —1 I {c,a,n,b,o0} — I: {o,c,a,n,b}
sMTF.«1131113” sMTF.«11311134” sMTF. «1141113417

‘ T
O_: “C” IE O-: “O” |£ O_: [1%5) B
:0 i:1 i
l: {¢c,0,a,n,b} — 1: {c,0,a,n,b} —1: {o,¢,a,n,b}
sMTF.«1131113410” sMTF.«113111341017 | sM7TF:411311134101"]

FIGURE 12.2: An example of MTF-transform over the string # = bananacocco, alphabet ~ =
{a, b, c,n,o} and thus index set {0, 1,2, 3,4}.

It is greatly advantageous to apply this processing over the column L of bw(s) because, as it
will be clear next, it transforms locally homogeneous substrings of L into a globally homogeneous
string LMTF in which abound small integers. At this point we could apply any integer compressor,
described in Chapter 9, instead the bzip deploys the structural properties of LMT* to apply, in cas-
cade, RLE and finally a Statistical encoder (such as Huffman, Arithmetic, or some of their variations,
see Chapter 10).

Figure 12.2 shows a running example for MTF over the string + = bananacocco which consists
of 5 distinct symbols. It is evident that more frequent symbols are to the front of the list £LY7F and
thus get smaller indices in sM”7’; this is the principle exploited in [2] to prove some compressibility
bounds for the compressor that applies 6-coding over the integers in s¥77 (see Theorem 12.5 below).

We notice two local homogeneous substrings in s— “anana” and “cocco”— which show indi-
vidually some redundancy in a few symbols. This is turned by MTF into two substrings of s con-
sisting of small integers. The nice thing of the MTF-mapping is that homogeneous substrings which
possibly involve different symbols (such as {a, n} and {c, o} in our running example), are changed
into the homogeneous string s*7 = 11311134101 which involves small numbers (mostly Os and
1s) and is thus defined over a unique (integer) alphabet. The strong local-homogeneity properties of
the column L in bw(s) will make L¥T7 full of Os, so that the use the single and simple compressor
RLE is worth and effective.

Inverting sM7¥ is easy provided that we start with the same initial list £%7F used for the MTF-

transformation of s. A running example is provided in Figure 12.3. The algorithm maps an integer
i in sMTF onto the symbol which occurs at position i in £, and then moves that symbol to the
front of the list. This way the inversion algorithm mimics the transformation algorithm, by keeping
both MTF-lists synchronized.



sMTF. 113111341017

Paolo Ferragina

3 {a,b,c,n,0}
1 2 3

i:1 I— i:1 I— :3 |_
l: {a,b,¢c,n,0} l: {b,a,c,n,o0} l: {b,a,c,n,0}
s: “b” s: “ba” s: “ban”

: 4 5 I 6
2:1 I— 2:1 I— 2:1 |_
I: {n,a,b,c, 0} I: {a,n,b,c, o} l: {n,a,b,c, o}
s: “bana” s: “banan” s: “banana”

: 7 8 I 9
2:3 I— :4 I— 2:1 |_
I: {a,n,b,c,0} —1I: {c,a,n,b,0} —1 I: {o,c,a,n,b}
s: “bananac” s: “bananaco” s: “bananacoc”

: 10 11 | 12
:0 I— 2:1 I— i |—
l: {¢c,0,a,n,b} —1 1: {¢,0,a,n,b} — I: {o0,c,a,n,b}
s: “bananacocc” s: “bananacocco” s: “bananacocco”

FIGURE 12.3: An example of MTF-inversion over the string s¥7F = 11311134101, starting with
the list LMTF = {a, b, ¢, n, o).

THEOREM 12.4 Transforming a string s via MTF takes O(|s|) time and O(|X|) working space.

A key concept for evaluating the compression performance of MTF is the one named locality of
reference, which we have previously called locally homogeneous substrings. Locality of references
in s means that the distance between consecutive occurrences of the same symbol are small. For
example the string bananacocco shows this feature in the substrings anana and cocco. We are
perfectly aware that this concept is roughly specified but, for now, let us stick onto this abstract
formulation which we will make mathematically precise next.

If the input string s exhibits locality of references, then the MTF-compressor (namely one that
MTF-transforms s and then compresses someway the integers in s¥7F) performs better than the
Huffman’s compressor. This might appear surprising because Huffman’s compressor is an optimal
prefix-code; but, actually this is not surprising, because the MTF-compressor is not a prefix-code
given that a symbol may be dynamically associated to different codewords. As an example look at
Figure 12.2 and notice that symbol ¢ gets three different numbers in s*7*—i.e. 3, 1,0— and thus
three different codewords.

Conversely, if the input string s does not exhibits any kind of locality of reference (e.g. it is a
(quasi-)random string over the alphabet X), then the MTF-compressor performs much worse than
Huffman’s compressor. The following theorem (proved in [2]) makes this rough analysis precise by
combining the MTF-transform with the y-code. It goes without saying that the upper bound stated
below could be made closer to the entropy H by substituting the y-code with the 6-code or any other
better universal compressor for integers (see Chapter 9).



The Burrows-Wheeler Transform 12-9

THEOREM 12.5 Let n. be the number of occurrences of a symbol c in the input string s,
whose total length is n = |s|. We denote by pyrr(s) the average number of bits per symbol used
by the compressor that squeezes the string sMTF using the y-code over its integers. It is pyrr(s) <
2H +O(|Z), namely that compressor can be no more than twice worse than the entropy of the source,
and thus it cannot be more than twice worse than the Huffiman compressor.

Proof Let py,...,py,, be the positions in s where symbol ¢ occurs. Clearly, between any two
consecutive occurrences of ¢ in s, say p; and p,_;, there may exist no more than p; — p;_; distinct
symbols (including c itself). So the index encoded by the MTF-compressor for the occurrence of ¢
at s; is at most s; — s;—1. In fact, when processing position s;_; the symbol ¢ is moved to the front of
the list, then it can move (at most) one position back per symbol processed subsequently, until we
reach the occurrence of c¢ at position s;. This means that the integer emitted for the occurrence of ¢
at position s; is < s; — s;-; (number of symbols processed). This integer is then encoded via y-code,
thus using no more than y(s; — s;-1) < 2(log,(s; — si-1)) + 1 bits. As far as the first occurrence of ¢
is concerned, we can assume that sy = 0, and thus encode it with at most y(s;) < 2(log, s1) + 1 bits.
Overall the cost in bits for storing the occurrences of ¢ in string s is

<y(s1) + Z v(si — si-1)
=)
(12.1)

ne
<log,(sy) + 1 + Z log, (s; — si_1) + L.
i=2
By applying Jensen’s inequality we can move the logarithm function outside the summation, so
that a telescopic sum comes out:

1
<2n, 10g2 (— (Sl + (s; — S,‘_l)]) +1
n

¢ i=2

=2n, 1og2(si) +1 (12.2)

<2n, 10g2(£)+1

where the last inequality comes from the simple observation that s, < n. If now we sum for
every symbol ¢ € ¥ and divide for the string length n we get:

purr(s) <2 (Z % log, (nﬁ)] +1 (12.3)

ceX
<2H + O(|Z])

The thesis follows because H lower bounds the average codeword length of Huffman’s code. W

There do exist cases for which the MTF-based compressor performs much better than Huffman’s
COMPIessor.

LEMMA 12.1 The compressor based on the combination of MTF-transform and y-code can be
better than Huffman compressor by the unbounded factor Q(logn), where n is the length of the
string to be compressed.



12-10 Paolo Ferragina

Proof Take the string s = 172" - - - n"* defined over an alphabet of size n and having length |s| = n?.
Since every symbol occurs n times, the distribution is uniform and thus Huffman uses for each
symbol log, n bits. The overall compression of s by Huffman takes ©(|s|logn) = @(n* log n) bits.
We used the asymptotic notation because constants here do not matter.

If we adopt the MTF-transform we get the string s*7F = 07 1071 20"1 30"! --.. Applying the
v-code, with the warning that integer i is encoded as y(i + 1) since i may be null, we get an output
bit sequence of length O(n? + nlogn). This is due to the fact that the @(n?) integers equal to 0 are
encoded as y(1) = 1, thus taking 1 bit, whereas all other integers (they are n — 1 and smaller than n)
are encoded with O(log n) bits each. |

12.2.2 The RLE transform

This is a very simple transform which maps every maximal contiguous substring of ¢ occurrences
of symbol ¢ into a pair {c, £). As an example, suppose we have to compress the following string
which represents a line of pixels of a monochromatic bitmap (where W stands for “white” and B for
“Black™).

WWWWWWWWWWWBWWWWWWWWWWWWBBBBBWWWWWW

We can take the first block of W and compress in the following way:

WWWWWWWWWWW BWWWWWWWWWWWWBBBBBWWWWWW
(1L,W)

We can proceed in the same way until the end of the line is encountered, thus obtaining the
sequence of pairs (11, W), (1, B), (12, W), (5, B), (6, W). It is easy to see that the encoding is lossless
and simple to reverse. A remarkable observation is that if || = 2, as in the previous example, we
can simply emit individual numbers (which indicate the run length) rather than pairs, plus the first
symbol of the string to compress (W in the example), and still be able to decode back to the original
string. In the previous example we could emit: W, 11,1, 12,5, 6.

RLE is actually more than a transform because it can be turned into a simple compressor by
combining it with an integer encoder (as we did for MTF). Its best known context of application
is fax transmission [1]: a sheet of paper is viewed as a binary (i.e. monochromatic) bitmap, this
bitmap is first transformed by XORing two consecutive lines of pixels, then every output line is
RLE-transformed and, finally, the integers are compressed via Huffman or Arithmetic (recall that
in binary images, the alphabet has size two). Provided that the paper to be faxed is pretty regular,
the XORed lines will be full of Os, and thus their RLE-transformation will originate few runs, whose
compression will be significant. Nothing prevents to apply this argument to colored images, but the
XORing of contiguous lines will get less 0s. More sophisticated methods are needed in this setting!

RLE can perform better or worse than the Huffman scheme: this depends on the message we want
to encode. The following lemma shows that RLE can be much better than Huffman, by adopting the
same string we used to prove Lemma 12.1.

LEMMA 12.2 The compressor based on the combination of the RLE-transform and the y-code
can be better than Huffman’s compressor by the unbounded factor Q( ;’n), where 7 is the length of
the string to be compressed.

lo

Proof Take the string s = 172" ---#", and recall from the proof of Lemma 12.1 that Huffman’s
code takes ©(n? log n) bits to compress it. If we apply the RLE-transform on the string s we get the



The Burrows-Wheeler Transform 12-11

string sRLE = (1,n)(2,n) (3, n) - --(n, n). The y-code over the integers of s*LF will use O(log n) bits

per pair and thus O(n log n) bits overall. |

But there are cases, of course, in which RLE-compressor can perform much worse than Huffman’s.
Just consider a string s in which runs are short, namely any English text!

12.3 The bzip compressor

As we anticipated in the previous sections, the compressor bzip hinges on the sequential combi-
nation of three transforms— i.e. BWT, MTF and RLE— which produce an output that is suitable to
be highly squeezed by a classical statistical compressor— such as Huffman, Arithmetic, or some
of their variations. The most time consuming step in this sequence is the computation/inversion of
the BWT, both at compression/decompression time respectively. This is not just in terms of number
of operations, which are O(n) for all transforms and the statistical compressor, but because of the
pattern of memory accesses that is very scattered thus inducing a lot of cache misses. This is an
issue that we will comment more deeply next.

The key property that makes bzip work well is the local homogeneity of the string produced
by the Burrows-Wheeler transform. To convince yourself of this property let us consider the input
string s and one of its substrings w, which is assumed to occur n,, times in s. Say cy,...,c,, are
the symbols preceding the occurrences of w in s. Now given the way bw(s) is computed, we can
conclude that all rows prefixed by the substring w in M’ (they are of course n,,) are contiguous, but
possibly shuffled depending on the symbols which follow w in each of those rows. In any case,
the symbols ¢; which precede w are contiguous in L (shuffled, accordingly), and thus constitute a
substring of L. If the string s is Markovian, in the sense that symbols are emitted based on their
previous ones (like linguistic texts), then the symbols c; are expected to be a few distinct ones, and
this property holds the more the longer is w. Given that w can be of any length, we say that L is
locally homogeneous because, as we observed, picking any of its substrings it will possibly show
few distinct symbols. This homogeneity is the core property that makes the subsequent steps in
bzip very effective in compressing L.

For the sake of clearness, let us consider the following example which runs bzip over the
string s defined as the concatenation for three times of the string mississippi. This way a
high repetitiveness is induced over s. The first step consists of computing bw(s), for space rea-
sons we do not detail this computation but just show the result that can be checked by hands:
L =1ippp ssss ssmm miip ppii isss sssi iiii i, where groups of 4 symbols simplify the
reading, and r = 15 (counting from 0). The next step is to apply the MTF-transform to L starting
with a list LMTF = {i_ m, p, s} which consists of the distinct symbols appearing in s. The storage of
r (using 4-8 bytes) and of LMTF (plainly) occurs in the preamble of the compressed file. The result
of MTF is the string LM"F = 0200 3000 0030 0303 0010 0300 0001 0000 0. Notice that runs
of equal symbols generate runs of 0, except for the first symbol of the run which is mapped to an
integer which represents its position in £M7F at the time of its processing.

The first specialty introduced by bzip is that RLE in not applied onto LM** but on a slightly differ-
ent string in which all numbers, except 0, are increased by one: LMTF+ = 9300 4000 0040 0404 0040
0400 0002 0000 0. The ratio behind this change relies on the way runs of 0 are encoded. In fact
bzip does not apply RLE to runs of all possible symbols, rather it applies a restricted variant, called
RLEO, which squeezes only the runs consisting of 0s. So the construction of LMTF*  instead of
IMTF can be looked as a smart way to reserve the integers 0 and 1 for the binary encoding of the
O-runs. More precisely, the run 80000 consisting of 5 occurrences of Os is encoded according to the
following scheme, known as Wheeler’s code: the length is increased by 1, hence 5 + 1 = 6, then
the binary encoding of 6 is returned, hence 110, and finally the first bit (surely 1) is removed thus



12-12 Paolo Ferragina

compression

Divine Comedy monochromatic image Gee

seconds 1.285

14X 1K 5508

g

3

» 0.648

wn
18

0.5 0.5 225 ]

0.143 0.022 0.082 | 0.048 0.000" 0.049

" Bzip Lzma Lzo Zip  Bzip Lzma Lzo Zip Bzip Lzma Lzo Zip

= less than the discretization of the machine

FIGURE 12.4: Compression speed (lower is better)

outputting the binary sequence 10. The first increment guarantees that the (increased) run-length is
at least 2, and thus it is represented in at least 2 binary digits in which the first one is surely a 1. So
the 1-bit removal leaves at least one bit to be output. Decoding Wheeler’s code is easy, just repeat
the above steps in reverse order.

The key property of Wheeler’s code is that the output bit sequence consists of no more digits than
numbers in LMTF* 5o this step can be considered as a preliminary compression, which is more and
more effective as longer and longer are the O-runs in L¥7F*, The binary output for the sequence
of our running example above is: RLE® = 0314 1041 4031 4141 0210. It is evident that the
decompressor can easily identify the run’s encodings because they consist of maximal sequences of
Os and 1s; recall that these numbers have been reserved explicitly for this purpose.

Finally RLEO is compressed by using a Statistical compressor that operates on an alphabet which
consists of integers in the range [0, |X|]. We observe that the alphabet size is |X| + 1, rather than |X],
because of the increment we did onto the non-null numbers in LY to derive LMTF*. The reader can
look at the home page of bzip2 [16] for further details, especially regarding the statistical-encoding
step.

Just to have an idea of the power of the BW-Transform, we report here few experiments that
compare a BWT-based compressor® against a few other well-known compression algorithms such
as LZMA (Lempel-Ziv-Markov chain algorithm)’, LZO1A (LZ-Oberhumer zip)?, and the classic
ZIP®. Tests were run in a commodity PC with 2GB RAM (using ramfs), AMD Athlon(tm)X2 Dual-
Core QL-64, running Linux. We used three datasets of different type and size: La Divina Commedia,
a raw monochromatic non-compressed image, and the package gcc-4.4.3. These experiments are
not intended to provide an official comparison among these compressors, rather to give the reader a
flavor of the differences in performance among them.

From Figures 12.4-12.6 we can easily draw some conclusions. First of all, LZMA is bad on these
datasets; it has ever the worst compression time and it does not reach the best compression rate.

OWe used http://www.bzip.org, version 1.0.5-rl

7We used the “lzip” package from http://www.nongnu.org, version 1.10

8We used the version 1.02_rc1-r1. LZO1A takes care about long matches and long literal runs so that it produces good
results on high redundant data and deals acceptably with non-compressible data.

9We used the package from http://www.info-zip.org/, version 3.0.



The Burrows-Wheeler Transform 12-13

compression rate
99% 99%

100% K 96% 98%
E 80% ey
g y Divine Comedy
12
] monochromatic image
3
18

Gece package

50% |

0%

Bzip Lzma Lzo Zip

FIGURE 12.5: Compression savings (higher is better)

bzip2 seems to be quite in the middle: sometimes it takes a lot of time to compress, but it reaches
the best compression rate. By considering the decompression time, bzip2 slows down too much as
the size of the file grows, and this is not a surprise because of its algorithmic structure. Perhaps the
best solution seems to be zip: it takes short time to compress/decompress and reaches a very good
compression rate. LZO is the fastest algorithm we tested, but unfortunately its compression ratio
seems to be not appealing, and this is due to the fact that it was engineered for speed rather than for
space savings. We restate here that these considerations are not definitive for those compressors,
they are just suitable for giving a glimpse on them about these three datasets. For more official and
robust comparisons we refer the reader to the page of Matt Mahoney. '

decompression
Divine Comedy monochrome image Gee
seconds 0.009 0-010 0.009
0.1 % 0.01 4 40k
§ 34.42
E 0.073
P
1=
0.05] 0.005] 20]
0.020 8.89
3.54
0.000°  0.001 0.000" L70

"Bzip Lzma Lzo Zip Bzip Lzma Lzo Zip Bzip Lzma Lzo Zip

« less than the discretization of the machine

FIGURE 12.6: Decompression speed (lower is better)

We are left with the problem of constructing the Burrows-Wheeler forward transform given that,

Ohttp://mattmahoney.net/dc/dce.html



12-14 Paolo Ferragina

suffix index sorted suffix  value M L
abracadabra$ 0 $ 11  $abracadabra | a
bracadabra$ 1 a$ 10 a$abracadabr | r
racadabra$ 2 abra$ 7 abra$abracad | d
acadabra$ 3 abracadabra$ 0 abracadabra$ | $
cadabra$ 4  acadabra$ 3 acadabra$abr | r
adabra$ 5 adabra$ 5 adabra$abrac | c
dabra$ 6 bra$ 8 bra$abracada | a
abra$ 7 bracadabra$ 1 bracadabra$a | a

bra$ 8 cadabra$ 4 cadabra$abra | a

ra$ 9 dabra$ 6 dabra$abraca | a

a$ 10 ra$ 9 ra$abracadab | b

$ 11  racadabra$ 2 racadabra$ab | b

FIGURE 12.7: Suffix Array versus sorted rotated matrix M’ over the string s = abracadabra$.

as we observed above, we cannot construct explicitly the rotation matrix M, and a fortiori its sorted
version M’, because this would take ®(n?) working space for a text s of length n. That is the
why most BWT-based compressors exploit some “tricks” in order to avoid the construction of these
matrices. One such “trick” involves the usage of Suffix Arrays, which were described in Chapter 8,
where we also detailed several algorithms to build them efficiently. The construction of BWT deploys
one of them'! and this use motivates the increased interest in the literature about the Suffix-Array
construction problem (see e.g. [12, 14, 1]).

To see why Suffix Arrays and BWT are connected, let us consider the following example. Take
the string abracadabra$ and compute its Suffix Array [11,10,7,0,3,5,1,4,6,9,2]. Figure 12.7
summarizes these data structures for the running example at hand. The first four columns show the
suffixes of the string s and its suffix array SA. The fifth column shows the corresponding sorted-
rotated matrix M’ with its last column L. It is easy to notice that sorting suffixes is equivalent to
sorting rows of M, given the presence of the sentinel symbol $§. The reader can check that the
formula below ties SA with L:

Liil = S[SA[]-1] if SA[i]+0
Ll = $ otherwise

This means that every symbol L[i] equals to the symbol of s that precedes the suffix SA[i] which
prefixes the ith row of M’. If, however, that suffix is the whole string s (thus SA[i] = 0), then $ will
be used as preceding symbol.

So, given the suffix array of string s, it takes only linear time to derive the string L. We have
therefore proved the following:

THEOREM 12.6 Let us given an input string s, constructing bw(s) takes a time/lO complexity
which is the one of Suffix Array construction. By using the Skew Algorithm, the overall cost of
building bw(s) is optimal in several model of computations. In particular, this is O(n) for the RAM

1'M. Burrows: “So I enlisted his help in finding ways to execute the algorithm’s sorting step efficiently, which involved
considering constant factors as much as asymptotic behavior. We tried many things, only some of which made it into the
paper, but we met my goals: we showed that the algorithm could be made fast enough to see practical use on modern
machines...”.



The Burrows-Wheeler Transform 12-15

model and O(Sort(n)) for the external-memory model, where Sort is the l/O-cost of sorting n
atomic items in a model in which M is the size of the internal memory and B is the disk-page size.

We conclude this section by observing that, in practice, bw(s) is costly to be computed so that
its implementations divide the input text into blocks and then apply the transform block-wise. This
is the reason why these compressors are called block-wise compressors. Likewise dictionary-based
compressors, the size of the block impacts onto the trade-off compression ratio versus compression
speed; but, unlike dictionary-based compressors, this impacts unfavorably also onto the decompres-
sion speed which is slowed down when working on larger and larger blocks. Anyway, the current
implementation of bzip2 allows to specify the size of the block at compression time with the pa-
rameter -1, ..., -9, that actually indicate a block of size 100Kb, ..., 900Kb.

12.4 On compression boosting>

Let us first recall the notion of entropy as a measure of uncertainty (or information) associated with
arandom source S emitting n symbols {xi, ..., x,} with probabilities p(x;):

H(S) = Zl PO X s

The previous formula is often called Oth order entropy, and it is indicated with Hy, because it is
computed with respect to the probabilities of the single symbols emitted by the source S, without
exploiting any context (or equivalently, exploiting an empty context, hence of length 0). Given
that we are dealing with compressors and real strings, most evaluations of their performance drop
probabilities in favor of frequencies: hence p(x;) is the ratio between the number of occurrences of
x; in the input string s and the total length of s, say |s|. Clearly, in this setting any string containing
n/2 symbols a and n/2 symbols b has entropy Hy = 1 independently of the fact that it is either a
random string or the regular string a™/?b"/2.

A more precise modeling of the information content of a string s (of of its uncertainty) can be
obtained by measuring the entropy over blocks of k-symbols. This is called kth order (empirical)
entropy of the string s, and can be computed as follows:

H(s) = ﬁ D" Iwil Ho(wy)
weAk

where w; represents the set of all symbols that follow w in s. Clearly Hi(s) < Hy(s), but it can
be much smaller, and for |s| and k that go to oo this value converges to the entropy of the source that
emitted s.

We are interested in this formula because it suggests a way to design a compressor that achieves
Hi(s) starting from a compressor that achieves Hy of its input strings. This kind of algorithm is
called a Compression Booster because it is able to boost a compression performance up to Hy into
a compression performance up to Hy. The algorithmic tool to achieve this is, surprisingly, the
Burrows-Wheeler Transform [5]. In order to illustrate this innovative and powerful idea, let us
consider a generic 0-order statistical compressor Cy whose performance, in bits per symbol, over a
string ¢ is bounded by Hy () + f(Jt]). We notice that function f(J¢t|) = 2/(|#]) for the Arithmetic coding
and it is f(|¢f]) = 1 for Huffman coding (see Chapter 10).

In order to turn Cy into an effective kth order compressor Cy, we proceed as follows.

o Compute the Burrows-Wheeler Transform bw(s) of the input string s.

o Take all possible substrings w of the string ¢, and partition the column L in such a way
that L,, is formed by the last symbols of rows prefixed by w.



12-16 Paolo Ferragina

o Compress each L,, with Cp, and concatenated the output bit sequences by alphabetically
increasing w (or, equivalently, by occurrence of L,, in L).

It is immediate to notice that L,, is a substring of L, and not a subsequence, because rows prefixed
by w in M’ are contiguous. Given the LCP-array of string s the partitioning of L takes linear time
(see Chapter 8) and thus it does not impact onto the efficiency of the final compressor Cy. As far as
the compression performance per symbol is concerned, we easily derive that it can be bounded as:

ﬁ D bl (Howy) + fwil) = Hils) +O(F)

wyeXk

where we have applied the definition of Hi(s) onto the summation of the Hy(wj), and the fact that
f(wsl) < 1. Ttis clear that the more effective is the O-th order compressor, the more it is closer to
Hy, the more evanishing is the term f(jw,|) and thus negligible is the additive term O(|Z[¥). In [5] the
authors showed that one actually does not need to fix k, since it does exist a Compression Booster
which identifies in optimal O(|s|) time a partition of L which achieves a compression ratio which is
better than the one obtained by Cy, for any possible k > 0. The algorithm is elegant and not much
involved, but it would require some space to be described in sufficient details, so that we refer the
interested reader to that paper.

12.5 On compressed indexing>

We have already highlighted the bijective correspondence between the rows of the rotated matrix M
and the suffixes of the string s, as well as the strong relationship between the string L and the suffix
array built on s (see Figure 12.7). This is relationship is at the core of FM-index’s design, which has
been the first compressed full-text index to achieve efficient substring search and space occupancy
up to the k-th order empirical entropy of the indexed string. Given these features we can look at
the FM-index as the compressed version of a suffix array, or as the searchable version of bzip-
compressed format. The nature of these notes does not allow to dig into the technical details of the
FM-index, so in the rest of this chapter we will just fly over its technicalities and concentrate on the
main algorithmic ideas; the interested reader may look at the seminal paper [6] and the survey [13].

In order to simplify the presentation we distinguish between three basic operations, which under-
lie the design of many search toolbox:

e Count(P) returns the range of rows [first,last] in M (and thus suffixes in the suffix
array) which are prefixed by the string P. The value (last — first + 1) accounts for the
number of these pattern occurrences.

e Locate(P) returns the list of all positions in s where P occurs (possibly unsorted).

e Extract(i, j) returns the substring s[i, j] by accessing its compressed representation in
FM-index.

For example, in Figure 12.7 for the pattern P = ab we have first = 2 and last = 3 for a total of
two occurrences. These two rows correspond, as the picture clearly illustrates, to the two suffixes
s[0, ] and s[7, ] which are prefixed by P.

Let us start from the description of Count(P). The retrieval of the rows first and last is not
implemented via a binary search, as it occurred in Suffix Arrays (see Chapter 8), but it uses a
peculiar search method which deploys the column L, the array C (which counts in C[c] the number
of occurrences in s of all symbols smaller than ¢) and an additional data structure which supports
efficiently the very basic counting Rank(c, k) which reports the number of occurrences of the symbol
¢ in the string prefix L[0, k — 1]. All data structures L, C and Rank can be stored compressed and



The Burrows-Wheeler Transform 12-17

Algorithm 12.3 Counting the occurrences of pattern P[0, p — 1] in s
I.i=p—1,c=Plp-1];

. first = Clc], last = C[c + 1] - 1;

: while (first < last)and i > 1 do

c=Pli—-1];

first = C[c] + Rank(c, first — 1);

last = C[c] + Rank(c, last) — 1;

i=i—1;

: end while

. return (first, last).

still retrieve efficiently their entries: namely access L[i] or C[c], or answer Rank(c, k). The literature
offers many solutions for this problem (see e.g. some classic results [6, ?, ?, 13]), here we report
some of them (possibly not the best ones at the time we write these notes):

LEMMA 12.3 Let s[0,n — 1] be a string over alphabet X and let L be its BW-Transform.

e For |Z| = O(polylog(n)), there exists a data structure which supports Rank queries on
L in O(1) time using nH;(s) + o(n) bits of space, for any k = o(log|yjn), and retrieves any
symbol L in the same time bound.

e For general Z, there exists a data structure which supports Rank queries on L in O(log log |Z|)
time, using nHy(s) + o(nlog|Z|) bits of space, for any k = o(logyjn), and retrieves any
symbol of L in the same time bound.

This means that Rank can be implemented in constant, or almost constant time and in space which
is very much close to the k-th order entropy of the string s we wish to index. The array C takes only
O(|Z|) space, which is negligible for real alphabets. This means that this ensemble of data structures
is very compact indeed.

We are left to show how this ensemble allows us to implement Count(P). Algorithm 12.3, usually
called backward search, reports the pseudo-code of such implementation which takes O(p) optimal
time, working in p constant-time phases numbered from p — 1 to 0. Each phase preserves the
following invariant: At the i-th phase, the parameter “first” points to the first row of the sorted
rotated matrix M’ prefixed by Pli, p — 1] and the parameter “last” points to the last row of M’
prefixed by P[i, p — 1]. Initially the invariant is true by construction: F[C[c]] is the first row in
M’ starting with ¢, and F[C[c + 1] — 1] is the last row in M’ starting with ¢ (recall that rows are
numbered from 0).!2 As running example take P = ab, so at the beginning we have: C[b] = 6 and
C[b + 1] = C[c] = 8 in Figure 12.7 and thus [6, 7] is the range of rows prefixes by b before that the
backward-search starts.

At each subsequent phase, Algorithm 12.3 has found the range of rows [ first, last] prefixed by
P[i, p — 1]. Then it determines the new range of rows [ first, last] prefixed by P[i — 1,p — 1] =
Pli — 1] P[i, p — 1] by proceeding as follows. First it determines the first and last occurrence of
the symbol ¢ = P[i — 1] in the substring L[ first, last] by deploying the function Rank properly
queried. Specifically Rank(c, first— 1) counts how many occurrences of ¢ precede position first in
L, and Rank(c, last) counts how many occurrences of ¢ precede position last in L. These values are

12We adopt the shorthand notation that C[c + 1] is the entry storing the counting for the symbol following c in the
alphabet.



12-18 Paolo Ferragina

then used to compute the LF-mapping of those first/last occurrences of c. In fact Property 12.2 and
Definition 12.1 imply the equality LF[i] = C[L[i]] + Rank(L[{], {). This means that the computation
of the LF-mapping can occur efficiently and succinctly provided that we store compactly the data
structure that implements Rank(c, k). For a formal proof that this mapping actually retrieves the new
range of rows [ first, last] prefixed by P[i — 1, p — 1] we refer the reader to the seminal publication
[6]. Here we make an example to convince experimentally the reader that everything works fine.
Refer again to Figure 12.7 and consider, as before, the pattern P = ab and the range [6,7] of
rows in M’ prefixes by P[2] = b. Now pick the previous pattern symbol P[1] = a, Algorithm
12.3 computes Rank(a,5) = 1 and Rank(a,7) = 3 because L[O0, first — 1] contains 1 occurrences
of a and L[O, last] contains 3 occurrences of a. So the algorithm computes the new range as:
first = Cla]+Rank(a,5) = 1 +1 =2, last = C[a] +Rank(a,7)—1 = 1 +3 -1 = 3, which is indeed
the contiguous range of rows prefixed by the pattern P = ab.

After the final phase (i.e. i = 0), first and last will delimit the rows of M’ containing all the
suffixes prefixed by P. Clearly if last < first the pattern P does not occur in s. The following
theorem summarizes what we have sketched.

THEOREM 12.7 Given a string s[0, n—1] drawn from an alphabet X, there exists a compressed
index that takes O(p X trank) time to support Count(P[0, p — 1]), where tranx is the time cost of
a single Rank operation over the BW-transform L of string s. The space usage is bounded by
nHy(s) + o(nlog|X|) bits, for any k = o(logs, n).

The interesting corollary of the Theorem above is that, by plugging Lemma 12.5, we get an
implementation of Count(P) which takes optimal O(p) time and compressed space. However this
solution suffers of I/O-inefficiency because every phase elicits some cache/IO misses due to the
jumping around L and Rank. Several efforts have been dedicated in the literature to make FM-index
cache-oblivious or cache-aware but yet an equally elegant solution for those issues is still missing.

Let us now describe the implementation of the location of pattern occurrences via procedure
Locate(P). For a fixed parameter y, we sample the rows i of M’ which correspond to suffixes
that start at positions of the form pos(i) = ju, for j = 0,1,2,.... Each such pair (i, pos(i)) is
stored explicitly in a data structure P that supports membership queries in constant time (on the
row-component). Now, given a row index r, the value pos(r) can be derived immediately if r € P is
a sampled row; otherwise, the algorithm computes j = LF'(r), for r = 1,2,.. ., until j is a sampled
row and thus is found in P. In this case, pos(r) = pos(j) + t. The sampling strategy ensures that
arow in P is found in at most yu iterations, and thus the occ occurrences of the pattern P can be
located via O(u X occ) queries to the Rank-data structure.

THEOREM 12.8 Given a string s[0,n—1] drawn from an alphabet %, there exists a compressed
index that takes O(u occ) time and O(2 log n) bits of space to support Locate(P), provided that the
range [ first, last] of rows prefixed by P is available.

By fixing u = log'*€ n, the solution above takes poly-logarithmic time per occurrence and sub-
linear space (in bits). Trade-offs are possible and they were investigated [4].

Not much surprising is that Count(P) can be adapted to implement the last basic operation sup-
ported by FM-index: Extract(i, j). Let r be the row of M’ prefixed by the suffix s[j,n — 1], and
assume that the value of r is known. The algorithm sets s[j] = F[r] and then starts a cycle which
sets s[j— 1 —1¢] = L[LF'[r]], fort = 0,1,...,j—i— 1. The main idea underlying this cycle is that
we repeatedly compute the LF-mapping (implemented via the Rank-data structure) of the current
symbol, so jumping backward in s starting from s[j — 1] (in fact s[j] is found via F-array). We stop



The Burrows-Wheeler Transform 12-19

after j — i — 1 steps, when we have reached s[i]. This approach reminds the one we have taken in
BWT-inversion, the difference relies in the fact that the array LF is not explicitly available, but its
entries are generated on-the-fly via Rank-computations. This guarantees still constant-time access
to LF-array, but succinct space storage (thanks to Lemma ).

Given the appealing asymptotical performance and structural properties of the FM-index, several
authors have investigated its practical behavior by performing an extensive set of experiments. We
invite the reader to check paper [4] and to look at the Pizza&Chili’s site!®> which offers many
implementations of compressed indexes, not just FM-index. Experiments have shown that the FM-
index is compact (its space occupancy is close to the one achieved by bzip), it is fast in counting the
number of pattern occurrences (few micro-secs per pattern’s symbol), and the cost of their retrieval
is reasonable when they are few (about 100k occurrences/sec). In addition the FM-index allows to
trade space occupancy for search time by choosing the amount of auxiliary information stored into
it (i.e. parameter u and few other parameters arising in the implementation of Rank). As a result
the FM-index combines compression and full-text indexing: like bzip it encapsulates a compressed
version of the original file (accessible via Extract); like suffix trees and suffix arrays it allows to
search for arbitrary patterns (via Count and Locate). Everything works by looking only at a small
portion of the compressed file, thus avoiding its full decompression.

References

[1] Donald Adjeroh, Tim Bell, and Amar Mukherjee. The Burrows-Wheeler Transform:
Data Compression, Suffix Arrays, and Pattern Matching. Springer, 2008.

[2] Jon L. Bentley, David D. Sleator, Robert E. Tarjan, and Victor K. Wei. A locally
adaptive data compression scheme. Communication of the ACM, 29(4):320-330, 1986.

[3] Mike Burrows and David J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical Report 124, Digital Systems Research Center (SRC), 1994.

[4] P. Ferragina, R. Gonzalez, G. Navarro, R. Venturini. Compressed Text Indexes: From
Theory to Practice. ACM journal on Experimental Algorithmics, vol. 13, art. 12, Feb-
braio 2009.

[5] Paolo Ferragina, Raffaele Giancarlo, Giovanni Manzini, Marinella Sciortino. Compres-
sion boosting in optimal linear time. Journal of the ACM, 52(4):688-713, 2005.

[6] Paolo Ferragina, Giovanni Manzini. Indexing compressed texts. Journal of the ACM,
52(4):552-581, 2005.

[7] Paolo Ferragina and Giovanni Manzini. Burrows-wheeler transform. In Ming-Yang
Kao, editor, Encyclopedia of Algorithms. Springer US, 2008.

[8] Paolo Ferragina, Giovanni Manzini, S. Muthukrishnan, co-editors. Special Issue on the
Burrows-Wheeler Transform. Theoretical Computer Science, 387(3), 2007.

[9] Juha Karkkainen, Dominik Kempa, and Simon J. Puglisi. Slashing the time for BWT
inversion. Proc. IEEE Data Compression Conference, 99-108, 2012.

[10] Juha Karkkainen and Simon J. Puglisi. Medium-space algorithms for inverse BWT.
Proc. European Symposium on Algorithms, LNCS 6346, 451-462, 2010.

[11] Juha Karkkainen and Simon J. Puglisi. Cache-friendly Burrows-Wheeler inversion.
Proc. International Conference on Data Compression, Communication and Processing,
38-42, 2011.

Bhttp://pizzachili.dcc.uchile.cl/



12-20 Paolo Ferragina

12]
13]
[14]
[15]

[16]
[17]

Giovanni Manzini and Paolo Ferragina. Engineering a lightweight suffix array con-
struction algorithm. Algorithmica, 40(1):33-50, 2004.

Gonzalo Navarro and Veli Méakinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1), 2007.

Simon J. Puglisi, William F. Smyth, and Andrew Turpin. A taxonomy of suffix array
construction algorithms. Procs of the Prague Stringology Conference, 1-30, 2005.
Julian Seward. Space-time tradeoffs in the inverse B-W transform. In Proc. IEEE Data
Compression Conference, 439-448, 2001.

Julian Seward. The bzip2 home page. http://sources.redhat.com/bzip2.

Tan II. Witten, Alistair Moffat and Timothy C. Bell. Managing Gigabytes: Com-
pressing and Indexing Documents and Images, Second Edition. Morgan Kaufmann,
1999.



